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摘要

社群貼文的熱門程度往往反映受眾對於內容的喜愛程度，社群網紅或廠商

可透過觀察貼文的按讚數變化，制定更有效的行銷策略，進而提升社群行銷的

成效。因此，如何準確預測社群貼文的熱門度是一大關鍵。然而，現實世界的

社群媒體資料具備不平衡的特性，極冷門與極熱門的貼文往往只具備很少的資

料量，造成預測熱門度時的失準。有鑒於近年來對比學習在特徵學習的成功，

以及將對比學習概念引進回歸任務的新興趨勢，本研究提出加權排序對比迴歸

(Weighted-Rank Contrastive Regression)損失函數，以解決真實世界的回歸問題中

數據不平衡的問題。我們在社群媒體熱門度預測資料集 (B. Wu et al., 2019)上進行

實驗，實驗結果顯示我們的方法優於傳統方法 (僅以 L1損失函數進行擬合)和當

前的最先進的對比迴歸方法 Rank-N-Contrast (Zha et al., 2024)，尤其在處理高熱門

貼文、缺乏負樣本數的異常值方面表現更佳。本研究所提出的加權排序對比迴歸

損失函數不僅解決了社群媒體熱門度預測中的數據不平衡問題，更提供了一種可

泛化的特徵學習方法，可推廣至其他任意的不平衡迴歸任務中。

關鍵字：社群媒體、熱門度預測、對比學習、不平衡回歸、網紅行銷
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Abstract

Social Media Popularity Prediction (SMPP) is the task of forecasting the level of

engagement a social media post will receive. In SMPP, it is crucial for understanding au-

dience engagement and enabling targeted marketing strategies. The popularity of social

media posts often reflects the audience’s preference for the content. Social media influ-

encers or brands can design more effective marketing strategies by observing the changes

in the number of likes on posts, thereby enhancing the effectiveness of social media mar-

keting. However, the inherent imbalance in real-world social media data, where certain

popularity levels are underrepresented, posed a significant challenge. In this study, we

leveraged the recent success of contrastive learning and its growing integration into re-

gression tasks, and introduced a weighted-rank contrastive regression loss to counteract

the data imbalance challenges. Experiments on the Social Media Prediction Dataset (B.

Wu et al., 2019) demonstrated that our method outperformed the vanilla approach (solely

fit on L1 loss) and the current State of the art (SOTA) contrastive regression approach
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Rank-N-Contrast (Zha et al., 2024) , especially for challenging outliers with high popu-

larity and few negative counterparts. The proposed weighted-rank contrastive regression

loss not only addressed the inherent data imbalance in SMPP but also offered a robust

representation learning solution that could be generalized to other real-world imbalanced

regression tasks.

Keywords: Social Media, Popularity Prediction, Contrastive Learning, Imbalance Re-

gression, Influencer Marketing
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Chapter 1 Introduction

1.1 Background

Social media platforms have become deeply integrated into our daily lives, influenc-

ing how we communicate, access information, and consume content. For businesses and

brands, social media represents a vast landscape of potential customers and a powerful

tool for advertising and engagement. With the rise of social media, influencer market-

ing (Hayes, 2008) has emerged as an alternative to traditional marketing. This strategy

involves brands collaborating with influencers (Freberg et al., 2010), who are social me-

dia users with established credibility and a loyal following within specific niches or in-

dustries. Influencers possess the ability to sway opinions and drive consumer behavior,

making them valuable partners for brands aiming to reach targeted audiences. By partner-

ing with influencers, brands could leverage this established trust and influence to promote

their products or services in a more relatable and effective manner (X. Yang et al., 2019).

Consumers are more likely to trust recommendations from individuals they admire and

identify with, making influencer marketing a potent tool for enhancing brand awareness

and driving sales.

A crucial aspect of influencermarketing is SocialMedia Popularity Prediction (SMPP),

which is the task of forecasting the level of engagement a social media post will receive.

1
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This prediction is valuable for both content creators and businesses, as it informs content

strategies and marketing decisions. For influencers, understanding which factors con-

tribute to a post’s success could help them refine their content strategies andmaximize their

reach. For brands, accurate popularity predictions could guide their influencers’ selection

process, ensuring they invest in partnerships that yield the highest return on investment.

Social media platforms are dynamic environments where content popularity can fluctuate

rapidly. Factors such as timing, visual appeal, content relevance, and user engagement all

play a role in determining a post’s success. Developing models that can accurately predict

social media popularity is a complex task that requires a deep understanding of domain

knowledge.

One of the main challenges in social media popularity prediction (SMPP) is the lim-

ited availability of real-world social media data. While some platforms offer APIs for

data collection, access is often restricted or comes at a cost. This lack of publicly avail-

able data hampers research and development efforts in the field of social media popularity

prediction. To address the scarcity of real-world data, the Social Media Prediction (SMP)

Challenge (B. Wu et al., 2019) was established as an annual research event. The challenge

provides participants with a well-structured dataset and a platform to develop and evaluate

their models. Over the years, the SMP challenge has fostered significant advancements

in social media popularity prediction, leveraging cutting-edge techniques in feature engi-

neering and deep learning (Ding et al., 2019; Hsu et al., 2019; Lai et al., 2020; J. Wu et al.,

2022). Another challenge in social media popularity prediction (SMPP) is the inherent

imbalance in real-world social media data. The distribution of popularity metrics, such as

number of likes, tends to be highly skewed, with a small number of posts achieving viral

status while the majority receive mid-level engagement. This imbalance makes it difficult

2
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for traditional machine learning models to accurately predict popularity across the entire

spectrum of values.

Although the SMP challenge has led to significant advancements in predicting social

media popularity, the inherent data imbalance issue remains largely unaddressed, where

themajority of social media posts fall into themid-level popularity range, while posts at the

extremes of low and high popularity suffer from data scarcity. This imbalance hinders the

development of effective representations for these less frequent types of posts, and posed

a significant obstacle to accurate prediction. Traditional approaches for handling imbal-

anced data primarily focus on categorical targets (Chawla et al., 2002; H. He &Ma, 2013;

Yen & Lee, 2006), where the goal is to classify instances into distinct classes. However,

numerous real-world applications involve continuous target variables, often with skewed

distributions. For example, in computer vision, determining age from facial images in-

volves a continuous target with inherent imbalances, similar challenges arise in medical

applications where health metrics like heart rate and blood pressure are continuous and

frequently exhibit skewed distributions across patients.

Y. Yang et al. (2021) first defined these challenges as Deep Imbalanced Regression

(DIR) and proposed a smoothing approach to align feature and label space distributions

for robust representation. Building on this, Gong et al. (2022) utilized a ranking loss as

a regularizer to align feature and label similarities. Zha et al. (2024) further refined this

approach by modeling the ranking loss as contrastive regression loss, thereby improving

feature-label alignment which mitigating data imbalance issues. These recent advance-

ments have highlighted the potential of contrastive regression as a promising approach for

generating more robust representations in the face of imbalanced data.

3
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1.2 Research Motivation and Objectives

Inspired by Zha et al. (2024)’s success in modeling the feature-label alignment prob-

lem in a contrastive learning framework, we proposed a Weighted-Rank Contrastive Re-

gression loss as a regularizer to address the data imbalance problem in social media pop-

ularity prediction. We integrated a weighted mechanism into the current state of the art

(SOTA) Rank-N-Contrast (Zha et al., 2024). Our experiments on the Social Media Pre-

diction Dataset (B. Wu et al., 2019) demonstrated the effectiveness of our approach in

improving the accuracy and robustness of popularity predictions. The main contribution

of this research are as follow:

• We proposed aWeighted-RankContrastive Regression loss that contrast the features

by label distance.

• We demonstrated that by assigning weights to negative sample pairs enhanced the

robustness of representation especially for those rare and extreme labels.

• We also proposed an simple end-to-end contrastive regression learning framework

for multi-modal representation learning that can be extended to more complex ar-

chitecture.

The remainder of this thesis is structured as follows. Chapter 2 provides a compre-

hensive literature review on Social Media Popularity Prediction and Imbalanced Regres-

sion. Chapter 3 details the proposedWeighted-Rank Contrastive Regression Loss, and the

end-to-end multi-modal representation learning framework. In Chapter 4, we present an

empirical evaluation of the proposed framework. Finally, Chapter 5 concludes the thesis

by summarizing our research findings and discussing potential avenues for future work.

4



doi:10.6342/NTU202403142

Chapter 2 Literature Review

Social Media Popularity Prediction (SMPP) is a well-established research area with

numerous studies proposing frameworks for predicting popularity of social media posts.

Early studies relied on manually crafted features to enhance prediction accuracy (Gelli

et al., 2015; Jin et al., 2010; McParlane et al., 2014). However, recent research has shifted

towards leveraging pre-trained models for feature extraction (Ding et al., 2019; Kim et al.,

2020; J. Wu et al., 2022; Xu et al., 2020), leading to significant advancements in perfor-

mance over time. However, despite advancements in features and model architectures, the

inherent imbalance distribution in social media data has often been overlooked, neglecting

potential improvements from addressing this issue.

Y. Yang et al. (2021) proposed a feature distribution smoothing approach to tackle

the imbalance regression problem. This approach enhanced the robustness of under-

represented data and has effectively addressed the data imbalance. Subsequent studies

(Gong et al., 2022; Keramati et al., 2023; Zha et al., 2024) have built upon this founda-

tion, further demonstrating the potential of contrastive regression to revolutionize the field

of imbalanced regression.

5
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2.1 Social Media Popularity Prediction

Social Media Popularity Prediction (SMPP) refers to the task of forecasting the level

of popularity a social media post will receive. Popularity, oftenmeasured by the number of

likes, reflects the influencer’s impact on viewers, making the prediction valuable for both

content creators and businesses by informing content strategies and marketing decisions.

Previous approaches to SMPP have employed two primary methods for feature extraction:

manually preprocessed features and the utilization of pre-trained models.

2.1.1 Manually Preprocessed Features

Earlier studies in social media popularity prediction heavily relied on manually pre-

processed features derived from textual, visual, or user profile data. For instance, Jin et

al. (2010) employed upload frequency, upload time, and tags to predict image popular-

ity on Flickr. McParlane et al. (2014) incorporated features from visual context (device

type, size, orientation), visual content (scene type, number of faces, dominant color), user

profile (gender, account type, number of uploads), and tags represented using TF-IDF

vectors. Furthermore, Gelli et al. (2015) employed Name-Entity Recognition (NER) on

image descriptions, identifying and counting entities like Location, Organization, and Per-

son. These manually processed features have proven valuable and continue to be widely

adopted in recent approaches. Notably, Ding et al. (2019) and Lai et al. (2020) also incor-

porated text features like caption length, and the number of tags. Table 2.1 summarizes

the various manually processed features employed in these studies.

While offering valuable insights, manually preprocessed features require domain ex-

6
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Table 2.1: Manually processed Features

Feature Category Specific Features
User Profile upload frequency, upload time, # uploads
Visual Features image size, orientation, scene type, # faces, dominant colors
Textual Features TF-IDF (keywords), sentiment, NER, caption length, # tags

pertise and careful selection to avoid introducing bias. To address these limitations, some

features have been replaced with more comprehensive ones extracted from pre-trained

models. These pre-trained models have been exposed to vast amounts of data during their

training process, learning to recognize subtle patterns and relationships that might not be

readily apparent through manual preprocessing. These hidden insights provide a deeper

understanding of the underlying data structure, resulting in more accurate predictions and

improved performance in SMPP tasks.

2.1.2 Pretrained Models

In recent years, researchers have leveraged various pre-trained deep learning models

to extract subtle features from multi-modal inputs like texts and images. For instance,

Ding et al. (2019) and Xu et al. (2020) utilized a pre-trained ResNet (K. He et al., 2016)

backbone for visual features and Word2Vec (Mikolov et al., 2013) for textual features.

Meanwhile, J. Wu et al. (2022) employed a BERT (Bidirectional Encoder Representa-

tions from Transformers; (Devlin et al., 2019)) for text features and CLIP (Contrastive

Language-Image Pre-training; (Radford et al., 2021)) for joint text-image features. These

approaches have been effective in capturing subtle patterns that are difficult to achieve

with manual feature engineering. Figure 2.1 illustrates a multimodal post encoder pro-

posed by Kim et al. (2020), which effectively summarized the feature extraction process

for social media posts.

7
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Figure 2.1: A typical feature extraction framework of social media posts (Kim et al., 2020).

The multimodal feature extraction framework is a more comprehensive approach

that combines information from different modalities, such as text and images, to create

a richer representation of social media posts. This approach recognizes that popularity

is often influenced by a combination of factors, including the content’s textual meaning,

visual appeal, and the context in which it is shared. By integrating multimodal features,

SMPP models can achieve better accuracy and robustness in their predictions, leading to

more effective content strategies and targeted marketing campaigns.

2.2 Overcome the Imbalance Regression

Despite significant progress in Social Media Popularity Prediction (SMPP), a critical

challenge remains largely unaddressed: the inherent imbalance within social media data.

This is evident in datasets like Social Media Prediction Dataset (SMPD; (B. Wu et al.,

2019)), where popularity distributions often exhibit a long-tail pattern, with the majority

8
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of posts having mid-level popularity and fewer samples as popularity increases (Figure

2.2). This imbalance poses a challenge for traditional models, hindering their ability to

generalize across the entire popularity spectrum.

Figure 2.2: The data distribution of SMPD, where the x-axis denotes the log normalized
popularity score (range from 1.0 to 16.5), and the y-axis denotes the number of posts. (B.
Wu et al., 2019)

Previous attempts to address data imbalance have often relied on techniques like re-

sampling or re-weighting, which primarily focus on categorical targets and are not di-

rectly applicable to regression tasks. To overcome this limitation, Y. Yang et al. (2021)

introduced the concept of Deep Imbalanced Regression (DIR), and proposed a Feature

Distribution Smoothing (FDS) approach that emphasized the significance of aligning fea-

ture and label spaces to enhance the generalization of under-represented samples. This

innovative approach has ignited a surge of research in DIR, with recent methods incor-

porating contrastive learning to further enhance robustness for under-represented labels.

This promising direction holds significant potential to address the challenges of imbal-

anced data in SMPP and various other real-world applications.

9
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2.2.1 Data Imbalance

Data imbalance is a common challenge in machine learning. It occurs when certain

target values (labels) are significantly underrepresented in the training data. This leads

to biased models in classification tasks, as they tend to favor the majority classes due to

their over-representation. This bias negatively impacts overall performance metrics and

can lead to inaccurate predictions for underrepresented classes. However, data imbalance

also affects regression tasks, where the target variable is continuous, and specific ranges of

values may be less frequent. This imbalance can cause features associated with minority

label ranges to converge towards those of the majority due to insufficient training data,

leading to increased prediction errors for these underrepresented ranges.

Traditional re-samplingmethods primarily target classification tasks. However, some

adaptations have been tailored for imbalanced regression. Random undersampling (Torgo

et al., 2013, 2015) grouped lables in bins and randomly removes samples from majority

bins to balance with minority bins. SMOTER (Torgo et al., 2013), a regression adapta-

tion of SMOTE (Chawla et al., 2002), combines undersampling with synthetic minority

sample generation to balance the data distribution. SMOGN (Branco et al., 2017) fur-

ther improves SMOTER by adding gaussian noise to increase sample diversity. Despite

the simplicity of re-sampling, these methods have limitations in imbalanced regression.

Firstly, they do not fully account for the density of neighboring target values, which is

crucial in determining a data point’s representation. As illustrated in Figure 2.3, a low-

frequency point within a dense neighborhood may be adequately represented, while one

in a sparse neighborhood remains underrepresented. Secondly, linear interpolation tech-

niques like SMOTEmay be ineffective and can lead to a degradation in performance when
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generating synthetic samples for high-dimensional data, as is often the case with modern

large pre-trained models.

Figure 2.3: The importance of neighborhood density in regression (Y. Yang, 2021). Al-
though the two red label bins contain the same amount of data, the left bin exhibits less
imbalance due to the denser distribution of data points in its neighboring ranges, which
provides a richer representation for the surrounding popularity levels.

Re-weighting techniques offer an alternative solution to address class imbalances by

adjusting the contribution of each label to the overall loss. Dong et al. (2018) proposed

a method that focuses on rectifying minority classes and mining hard samples from the

majority. Cui et al. (2019) introduced a re-weighting scheme based on the effective num-

ber of samples per class to achieve a class-balanced loss. Cao et al. (2019) proposed a

label-distribution-aware margin (LDAM) loss to minimize a margin-based generalization

bound, which improved generalization on less frequent classes. However, the lack of dis-

tinct class boundaries in regression tasksmakes the direct application of these re-weighting

methods challenging and unsuitable for regression scenarios.

These limitations highlighted the need for innovative solutions to learn robust rep-

resentations in imbalanced regression tasks, moving beyond traditional re-sampling or

re-weighting techniques.
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2.2.2 Deep Imbalance Regression

Deep Imbalanced Regression (DIR), a concept introduced by Y. Yang et al. (2021),

addresses the inherent imbalance often found in real-world regression tasks. Numerous

applications, such as predicting age from facial images or predicting health metrics from

patient populations, involve continuous target variables with skewed distributions. This

imbalance is also prevalent in fields like economics, crisis management, and meteorol-

ogy, where target variables often follow a normal distribution with rare occurrences at the

extremes.

The challenge of imbalanced data is more intense in deep learning models due to their

tendency to produce overconfident predictions, further amplifying the impact of skewed

distributions. To tackle this issue, Y. Yang et al. (2021) defined DIR as the task of learn-

ing from such imbalanced data with regression tasks. The goal of DIR is to learn robust

representations from imbalanced and skewed data, ensuring that these representations gen-

eralize effectively across the entire spectrum of target values.

Y. Yang et al. (2021) conducted an empirical experiment and found that the error dis-

tribution of categorical datasets differs from those with continuous label spaces. They uti-

lized CIFAR100, a 100-class classification dataset, and the IMDB-WIKI dataset, a large-

scale image dataset for age estimation with continuous labels for experiments. To simulate

data imbalance, they sub-sampled both datasets and maintain the same label density dis-

tribution for the two sampled datasets. Figure 2.4 illustrates the distribution of the two

sub-sampled datasets.

By plotting the test error distributions (Fig 2.5), Y. Yang et al. (2021) observed that

the error distribution for CIFAR-100 correlates with the label density distribution. This is
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Figure 2.4: The sub-sampled datasets from both CIFAR-100 (classification) and IMDB-
WIKI (regression) were curated to exhibit the same imbalance distribution. (Y. Yang,
2021)

expected sincemajority classes withmore samples are learned better thanminority classes.

Interestingly, the error distribution for IMDB-WIKI differs significantly even when the

label density distribution is the same as CIFAR-100. The IMDB-WIKI error distribution

is much smoother and does not correlate well with the label density distribution (-0.47).

This phenomenon indicates that for continuous labels, the empirical label density

fails to accurately capture the imbalance as perceived by the neural network model. In

other words, the empirical label distribution does not represent the true underlying distri-

bution of the regression dataset due to the inherent dependencies between data samples

with similar label values.

To address this issue, They adopted the Label Distribution Smoothing (LDS) on the

training data (Fig 2.6). Given a continuous empirical label density distribution, LDS con-

volves a symmetric kernel k with the empirical density distribution to extract a kernel-

smoothed version that accounts for the overlap in information of data samples of nearby

labels. The resulting effective label density distribution turns out to correlate well with the

error distribution now, with a Pearson correlation of −0.83. This demonstrates that LDS
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Figure 2.5: Despite both the classification and regression datasets being sub-sampled to
exhibit the same level of imbalance, the distribution of test errors differs significantly
between the two. (Y. Yang, 2021).

captures the real imbalance that affects regression problems.

Figure 2.6: The test error correlation improved after LDS. (Y. Yang, 2021)

Motivated by the intuition that continuity in the target space should create a corre-

sponding continuity in the feature space, Y. Yang et al. (2021) suggested that if the data

is balanced, one expects the feature statistics corresponding to nearby targets to be close

to each other. They first visualized the similarity between feature statistics (Fig 2.7) of

an age prediction task. First, they selected age 30 as an anchor bin, denoted as b0, and

obtained the feature statistics (mean and variance) for this bin. Additionally, they calcu-
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late statistics for other bins and the cosine similarity between the feature statistics of b0

and all other bins. The results are summarized in Figure 2.7. The figure also indicates re-

gions with different data densities using the colors purple, yellow, and pink, where purple

represents many-shot regions, yellow represents medium-shot regions and pink represents

few-shot regions.

Figure 2.7: The cosine similarity of mean and variance w.r.t the anchor (age 30), where
the x-axis denotes the target value (age) and the y-axis denotes the cosine similarity (Y.
Yang, 2021).

Interestingly, Y. Yang et al. (2021) found that feature statistics around the anchor bin

are highly similar to feature statistics at the anchor bin. Specifically, the cosine similarity

of both the feature mean and feature variance for all bins between age 25 and 35 are within

a few percent from their values at age 30 (the anchor age). They noticed that the anchor

age at bin 30 falls in the many-shot region. Thus, the figure confirms the intuition that

when there is enough data for continuous targets, the feature statistics of nearby bins are

similar.

Inspired by these observations, Y. Yang et al. (2021) proposed feature distribution

smoothing (FDS), which performs distribution smoothing on the feature space, essentially

transferring feature statistics between nearby target bins. This procedure aims to calibrate

potentially biased estimates of the feature distribution, particularly for underrepresented

targets. They take a closer look at FDS and analyze its influence on network training.
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Similar to their previous setup, they plotted the feature statistics similarity for anchor age

0. As shown in Figure 2.8, due to very few samples in the target bin 0, the feature statistics

can be largely biased, where age 0 shares high similarity with the region between ages 40-

80. In contrast, with FDS, the statistics are better calibrated, resulting in high similarity

only within its neighborhood and gradually decreasing similarity scores as the target value

increases.

Figure 2.8: The cosine similarity of mean and variance before and after FDS. (Y. Yang,
2021)

To support the practical evaluation of imbalanced regression methods and facilitate

future research,Y. Yang et al. (2021) curated five DIR benchmarks spanning computer

vision, natural language processing, and healthcare. These benchmarks range from single-

value prediction tasks like age, text similarity score, and health condition score to dense-

value prediction tasks like depth.

• IMDB-WIKI-DIR (vision, age): This dataset contains face images and corre-

sponding ages for age estimation. The validation and test sets are balanced.

• AgeDB-DIR (vision, age): Similar to IMDB-WIKI-DIR, AgeDB-DIR is also for

age estimation from a single input image. However, the label distribution ofAgeDB-

DIR differs from IMDB-WIKI-DIR, despite having the same task.

• NYUD2-DIR (vision, depth): Although it involves single target value prediction,
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NYUD2-DIR is based on the NYU2 dataset for depth estimation, a dense-value

prediction task.

• STS-B-DIR (NLP, text similarity score): This benchmark focuses on inferring the

Semantic Textual Similarity score between two input sentences, a continuous value

ranging from 0 to 5 with an imbalanced distribution.

• SHHS-DIR (Healthcare, health condition score): This benchmark involves in-

ferring a general health score (0-100) based on high-dimensional Polysomnography

signals from patients’ sleep data. The score distribution is also imbalanced.

The experiment results on the IMDB-WIKI-DIR dataset is illustrated in figure 2.9.

Different methods are grouped into four sections based on their fundamental strategies.

Within each group, Label Distribution Smoothing (LDS), Feature Distribution Smoothing

(FDS), and their combination (LDS+FDS) are applied to the baseline method. The abso-

lute improvements of LDS+FDS over the Vanilla model are reported. The table demon-

strates that LDS and FDS achieve notable performance improvements regardless of the

base training technique. Notably, for the few-shot region, they obtain over 40% relative

improvements compared to the baseline model.

Y. Yang et al. (2021)’s work has significantly advanced the field of deep imbalanced

regression (DIR). Their proposed feature distribution smoothing technique demonstrates

promising potential in mitigating the negative effects of imbalanced data in regression

tasks. Furthermore, their exploration of aligning label and feature spaces suggests a valu-

able avenue for creating more robust representations in regression models. Overall, their

contributions have not only filled a critical gap in the existing literature but have also

opened up new directions for future research in the area imbalance regression.

17



doi:10.6342/NTU202403142

Figure 2.9: The experiment results on the IMDB-WIKI-DIR dataset. (Y. Yang, 2021)

2.2.3 Contrastive Regression

Y. Yang et al. (2021) revealed that feature-label alignment is key in addressing Deep

Imbalanced Regression (DIR) problems. Building upon this insight, recent studies have

endeavored to achieve this alignment through tailored loss functions. Notably, Gong et al.

(2022) introduced RankSim, incorporating a ranking loss as a regularizer to capture both

local and distant relationships effectively. By aligning the sorted lists of neighbors in label

and feature spaces, RankSim tackles the complexities of DIR. Experimental results onDIR

benchmarks proposed by Y. Yang et al. (2021) showcase RankSim’s superior performance

than FDS.

Contrastive learning, a pairwise representation learning technique, excels at differ-

entiating between semantically similar and dissimilar samples. It offers several distinct

advantages:

• Semantic Clustering: Contrastive learning actively encourages the model to group
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together samples with similar labels while distancing those with dissimilar labels.

This process results in semantically meaningful clusters within the learned repre-

sentations. (Chen et al., 2020; Gao et al., 2021; Khosla et al., 2020)

• Capture Invariant Features: Contrastive learning facilitates the learning of key

features shared by samples with the same label. This maximization of mutual infor-

mation between latent representations ensures that the model captures the essential

characteristics that define a particular class. (Bachman et al., 2019)

• Robustness to Noise: By prioritizing the relationships between data points over

individual labels, contrastive learning enhances model resilience against noisy or

erroneous data. This focus reduces the susceptibility to inconsistencies within the

training data. (Tian et al., 2020)

Inspired by contrastive learning＇s success in robust representation learning, Zha et

al. (2024) proposed Rank-N-Contrast (RNC), which modeled the ranking loss within a

contrastive framework to address data imbalance: First, the samples are ranked according

to their target distances, and then contrasted against each other based on their relative

rankings. Second, given an anchor vi, the likelihood of any other vj is modeled to increase

exponentially with respect to their similarity in the representation space. The set Si,j :=

vk|k ̸= i, d(yi, yk) ≥ d(yi, yj) is introduced to denote the set of samples with higher ranks

than vj in terms of label distance w.r.t. vi, where d(·, ·) is the distance measure between

two labels (e.g., L1 distance). The normalized likelihood of vj given vi and Si,j is then:

P (vj | vi, Si,j) =
exp(sim(vi, vj)/τ)∑

vk∈Si,j
exp(sim(vi, vk)/τ)

,
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Where sim(·, ·) is the similarity measure between two feature embeddings (e.g., neg-

ative L2 norm) and τ denotes the temperature parameter. Maximizing P (vj|vi, Si,j) effec-

tively increases the probability that vj outperforms other samples in the set and emerges at

the top rank within Si,j . As a result, they defined the per-sample RNC loss as the average

negative log-likelihood over all other samples in a given batch:

L(i)
RNC = − 1

N − 1

∑
j ̸=i

log
exp(sim(vi, vj)/τ)∑

vk∈Si,j
exp(sim(vi, vk)/τ)

The context of positive and negative pairs of RNC loss is illustrated in Fig 2.10. For

a batch of data containing posts of popularity {1, 3, 4, 8}, Two example positive pairs and

corresponding negative pair(s) when the anchor is a post with popularity score 3 . When

the anchor forms a positive pair with a post with popularity score 4, their label distance

is 1, hence the corresponding negative samples are the post with popularity score 1 and

the post with popularity score 8, whose label distances to the anchor are larger than 1.

When the post with popularity score 1 creates a positive pair with the anchor, the post

with popularity score 8 has a larger label distance to the anchor, thus serving as a negative

sample.

Figure 2.10: Two examples of positive and negative pairs of RNC loss for a batch of data
containing posts of popularity {1, 3, 4, 8}when the anchor is the post with popularity score
3.

Intuitively, for an anchor sample i, Rank-N-Contrast contrasts it with every other
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sample j in the batch. This process enforces a higher feature similarity between i and j

compared to i and any other sample k in the batch, provided the label distance between

i and k is larger than that between i and j. Minimizing RNC loss aligns the orders of

feature embeddings with their corresponding orders in the label space relative to anchor i.

Extending this concept to all pairs in the batch, the method ensures that when the anchor

is contrasted with the sample of closest label distance, their similarity surpasses that of all

other samples in the batch. Similarly, when contrasting with the second closest sample, the

similarity only needs to be greater than those with ranks of three or higher. By optimizing

RNC loss, the model successfully aligns features with their corresponding label distances,

maintaining high similarity among neighboring labels and less similarity with distant la-

bels. Rank-N-Contrast has achieved state-of-the-art performance on the DIR benchmark

proposed by Y. Yang et al. (2021), demonstrating superior ability in addressing the DIR

problem.

Despite its successes, Rank-N-Contrast had a significant limitation: it did not con-

sider varying label distances in negative samples. Its approach disregarded the impact of

negative samples further from the anchor in the label space, which should ideally have pro-

vided a stronger contrastive signal than closer ones. Figure 2.11 illustrated this issue. The

top image, replicating Figure 2.10, presented positive and negative pairs within a batch

containing posts with popularity scores {1, 3, 4, 8}. The bottom image showed another

batch with scores {1, 3, 4, 15}. In this scenario, for the positive pair {3, 4}, the negative

samples became {3, 1} and {3, 15}. Similarly, for the positive pair {3, 1}, the nega-

tive sample became {3, 15}. Under Rank-N-Contrast, both negative samples {3, 8} and

{3, 15} contributed equally to the overall Rank-N-Contrast loss, overlooking the impact

of the more popular post with score 15.
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Figure 2.11: RNC loss treats negative pairs {3, 8} and {3, 15} equally in both batches,
neglecting the impact of the larger label distance posed by the higher popularity score of
15.

This oversight regarding the varying distances from the respective anchors in the label

space could negatively impact the feature representation of rare extreme labels, as their

larger influence on the feature space was not adequately captured and reflected in the RNC

loss. This challenge arises from the difficulty in sampling a sufficiently diverse batch of

data. Theoretically, increasing the batch size could mitigate this issue by incorporating a

broader range of samples. However, this solution is often impractical due to the following

constraints:

• Skewed Data: Lack of extremely popular or extremely unpopular posts makes it

hard to achieve true diversity by sampling a wide range of popularity levels.

• Hardware Limitations: Increasing batch size for better sample diversity can be

computationally expensive and limited by hardware capabilities.

As a result, there is a clear need for practical approaches that can effectively address
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the limitation of Rank-N-Contrast, especially in situations where extreme skewed data

distribution makes it infeasible to obtain a diverse range of samples.

2.3 Summary

We followed the multi-modal feature extraction framework proposed by Kim et al.

(2020) as illustrated in Figure 2.1 for its simplicity. This framework included image and

text features extracted from post content, supplemented by additional dense features such

as user profile and time information available in the training data.

Instead ofmodifying themodel architecture, we focused on refiningRank-N-Contrast

(Zha et al., 2024) to overcome its limitation of not distinguishing between negative sam-

ples based on their label distances. We introduced a weighting mechanism that incorpo-

rated label distance information into the contrastive regression loss. Experimental results

demonstrated that our approach fostered a more uniform feature space and significantly

improved robustness on extremely rare and even unseen labels.
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Chapter 3 Methodolodgy

3.1 Problem Definition

Given a new post v by user u, our objective is to predict its popularity s, defined

as the expected number of attentions it would received if published at time t on social

media. Popularity can be quantified using various dynamic indicators (e.g., views, likes,

clicks) across different social media platforms. In our dataset, the ”view count” serves as

a fundamental indicator of post popularity. To mitigate the wide variations in view counts

among photos (ranging from zero to millions), a log-normalization function is applied:

s = log2
r

d
+ 1 (3.1)

where s is the normalized popularity, r is the view count, and d is the number of days

since posting.

3.2 Overview of Our Proposed Framework

We leveraged pre-trained visual and textual models as feature encoders to extract

multi-modal features. These features were then concatenated with additional dense fea-
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Figure 3.1: Overview of our framework

tures to create a comprehensive input for downstream prediction. The concatenated fea-

tures were fed into a Multi-Layer Perceptron (MLP) to predict the popularity score. We

also incorporated our proposed Weighted-Rank Contrastive Regression loss as a regular-

izer and calculated the contrastive regression loss alongside the L1 loss, these two losses

were combined in a multi-task learning approach, with equal weighting assigned to each

loss. This joint optimization process encouraged the feature encoders to learn more robust

representations while simultaneously improving the prediction objective during training.

Figure 3.1 illustrates an overview of our framework.

3.3 Post Representation Extraction

Following the approach of (Kim et al., 2020), we utilized pre-trained models to ex-

tract features from both the visual and textual components of the posts. For the visual

features, the image preprocessing involved the following steps: (1) conversion to RGB

color space, (2) resizing to a 224x224 pixel resolution, (3) subsequent normalization. Af-

ter preprocessing, we employed the Vision Transformer (VIT; (Dosovitskiy et al., 2021))

to extract the visual features fi. As for textual features, we utilized the hashtags within the

social media posts, represented as a list of keywords. By concatenating these keywords,
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we then leveraged the Sentence Transformer (Reimers & Gurevych, 2019) to extract the

textual features ft. Finally, we concatenated fi and ft to obtain the comprehensive post

features fp.

3.4 Dense Features

Besides the visual and textual inputs, we also used the following dense features pro-

vided by the dataset: userIsPro: whether the user belong to pro member. postCount: The

number of posted photo by the user. photoFirstDateTaken: The date of the first photo

taken by the user. postDate: the publish timestamp of the post.

3.5 Weighted-Rank Contrastive Regression

WeproposedWeighted-RankContrastive Regression loss that contrasts negative sam-

ples based on their relative label distance with respect to anchor, while following the rank-

ing process of Rank-N-Contrast. The per sample Weighted-Rank Contrastive Regression

loss can be denoted as:

1

N − 1

N∑
j=1,j ̸=i

− log

(
eτ (vi, vj)∑

vk∈Si,j
wik · eτ (vi, vk)

)
(3.2)

eτ = exp(sim(vi, vj)/τ) (3.3)

We simplified exp(sim(vi, vj)/τ) to eτ , where sim denotes the cosine similarity, and

/tau is a temperature hyperparameter that controls the sensitivity of the relationship be-
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tween embedding similarity and the contrastive loss.

Following the approach in (Zha et al., 2024), for an anchor vector vi and another

sample vj in the batch, we define Si,j as the set of samples that are further away in label

distance from vi compared to vj . In our Weighted-Rank Contrastive Regression loss, we

incorporate a weighting mechanism for negative sample pairs. The weight for a negative

pair {vi, vk} is represented as wi,k.

To validate the effectiveness of our weightingmechanism, we conducted experiments

on a curated dataset derived from the SMP dataset (see section 4.1) characterized by a

skewed training data distribution and a balanced, uniform test set. We evaluated various

weighting strategies including logarithmic, linear, quadratic, and exponential weighting on

the uniform distributed test set. The results, presented in Table 3.1, support our hypothesis

that a stronger emphasis on contrastive signals based on label distance leads to improved

performance. Notably, the exponential weighting strategy, represented by (1+α)d, where

d is the label distance, achieved the best performance. The quadratic weighting strategy,

d2 + 1, followed closely behind. However, the linear weighting (d + 1) and logarithmic

weighting log(d + 1) + 1 did not outperformed the baseline Rank-N-Contrast method.

These findings reinforced our hypothesis that prioritizing distant negative samples in the

contrastive loss can enhance the effectiveness of contrastive regression.

As a result, we required an exponential weighting on label distance to amplify the

contrastive signal frommore distant negative samples. Letwi,k denote the weight assigned

to the negative sample pair {i, k} and d denote the absolute label difference between sam-

ple i and k, Then, wi,k is calculated as in Equation 3.4, where α is a hyperparamter that

controls the slope of wi,k. In our experiment, we chose α = 0.4 so that wi,k is bounded
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Table 3.1: Performance metrics of different weighting strategies.

metrics

Weighting Strategy MAE SRC

RNC (baseline) 2.198 0.838

log(d+ 1) + 1 2.715 0.510

d+ 1 2.642 0.579

d2 + 1 2.175 0.838

(1 + α)d 2.142 0.841

within the range of our label value.

wi,k = (1 + α)d (3.4)

d = |yi − yk| (3.5)

Reflecting on Figure 2.11, withWeighted-Rank Contrastive Regression loss, the neg-

ative pairs {3, 15} and pair {3, 8} will now be assigned weights of (1 + α)|3−15| = 1.412

and (1 + α)|3−8| = 1.45, respectively. Consequently, the post with the higher popular-

ity score of 15 is encouraged to be further away from the anchor post 3 in the feature

space under this weighted scenario. This weighting scheme ensures that negative samples

with larger label distances from the anchor have a stronger influence on the contrastive

loss, leading to more effective learning of feature representations, especially for rare and

extreme labels.

We used a CR projection head to perform contrastive learning on the extracted post

features fp. After feature extraction, fp were passed through the CR projection head. Here
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we denoted the output of CR projection head as f cr
p . The Weighted-Rank Contrastive Re-

gression loss was then computed on f cr
p , enforcing the feature encoders to align the feature

space with the corresponding label distances. In parallel, fp was also fed into a Multi-

Layer Perceptron (MLP) to generate a predicted popularity score. We calculated the L1

loss between this predicted score and the actual popularity score. Finally, we combined

the Weighted-Rank Contrastive Regression loss and the L1 loss in a multi-task learning

framework. Both losses were given equal weight, without emphasizing one over the other.

This approach ensured that the model learns robust feature representations while simulta-

neously optimizing its predictive performance.
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Chapter 4 Empirical Experiments

4.1 Dataset

We utilized the Social Media Prediction Dataset (SMPD) proposed by (B. Wu et al.,

2019), which was collected from Flickr, a major photo-sharing platform. SMPD com-

prises 486K social multimedia posts from 70K users, and incorporates diverse social me-

dia information such as anonymized photo-sharing records, user profiles, web images,

text, timestamps, location data, categories and customize tags provided by users. Table

4.1 provides a detailed overview of the dataset statistics. For post feature extraction in our

experiments, we utilized the post images and the associated customized tags.

Table 4.1: Dataset statistics for SMPD.

Dataset #Post #User #Categories Temporal Range (Months) Avg. Title Length #Customize Tags

SMPD 486k 70k 756 16 29 250k

4.2 Evaluation Metrics

We combined the Spearman Ranking Correlation (SRC) and Mean Absolute Error

(MAE) to assess model performance. SRC quantifies the ordinal association between

predicted and actual popularity rankings, while MAE measures the average prediction

error.
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SRC is calculated as follows:

SRC =
1

k − 1

k∑
i=1

(
Pi − P̄

σP

)(
P̂i − P̃

σP̂

)
(4.1)

where k is the number of samples, Pi is the actual popularity, P̂ i is the predicted

popularity,P̄ and σP are the mean and standard deviation of actual popularity, and P̃ and

σP̂ are the mean and standard deviation of predicted popularity.

MAE is calculated as:

MAE =
1

k

n∑
i=1

∣∣∣P̂i − Pi

∣∣∣ (4.2)

The goal of SMPP is to enhance both ranking accuracy and prediction accuracy by

minimizing the MAE and maximizing the SRC.

4.3 Hyperparameters and Experimental Settings

4.3.1 Hyperparameters

Table 4.2 outlines the training configuration including hardware specifications and

hyperparameters. We fixed these settings in themain experiments discussed in Section 4.4.

Specifically, we chose the largest batch size we can afford under the hardware limitation,

and τ representing the temperature which controls the sensitivity of the feature similarity

during contrastive learning.
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Table 4.2: Training configuration.

hardware RTX 4080
number of epochs 5
learning rate 3e-4
random seed 3407
batch size 128
τ 0.05

4.3.2 Experimental Settings

The detailed experimental settings of our framework is as below:

• Backbone Model: We used a vit checkpoint ”WinKawaks/vit-small-patch16-224”

on huggingface for visual encoder, and a sentence-transformers checkpoint:“sentence-

transformers/paraphrase-multilingual-MiniLM-L12-v2＂for textual encoder.

• Visual and Textual Projection Head: Both the visual and textual projection heads

adhere to the architecture outlined in Figure 4.1a. The input feature tensors, ini-

tially of dimension 384, are first expanded to 1536 dimensions and then subjected

to a non-linear transformation using LeakyReLU activation. Finally a linear layer

project the output tensor to 128 dimensions.

• CR Projection Head: As illustrated in Figure 4.1b, the input size of 256 represents

the concatenated visual and textual features. We then apply a ReLU non-linear

transformation, and finally a linear layer reduce the output tensor to 64 dimensions.

4.4 Evaluation Results

To evaluate our proposed framework, we utilized the test API provided by the SMP

Challenge (B.Wu et al., 2019). This API allows us to upload our prediction results and ob-
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Input (384)

Linear (384→ 1536)

LeakyReLU

Linear (1536→ 128)

Output (128)

(a) Textual and visual projection heads.

Input (256)

Linear (256→ 128)

ReLU

Linear(128→ 64)

Output (64)

(b) The CR projection head.

tain the corresponding performance metrics through an online interface. Our experiments

included three different modalities: text only, image only, and multi-modal inputs. The

evaluation results, presented in Table 4.3, showcase the superior performance ofWeighted-

Rank Contrastive Regression compared to both the vanilla approach (direct fitting on L1

loss) and Rank-N-Contrast. Notably, Weighted-Rank Contrastive Regression (Weighted-

Rank CR) outperformed the other methods in terms of both MAE and SRC across all three

modalities.

Table 4.3: Performance metrics for different training objectives and input types.

Input
Vanilla (L1) Rank-N-Contrast Weighted-Rank CR

MAE SRC MAE↓ SRC↑ MAE↓ SRC↑

Tags 2.040 0.468 1.995 (+0.045) 0.483 (+0.015) 1.925 (+0.115) 0.499 (+0.031)

Image 2.262 0.301 2.214 (+0.048) 0.303 (+0.002) 2.183 (+0.079) 0.310 (+0.009)

Tags + Image 1.955 0.473 2.001 (-0.045) 0.501 (+0.028) 1.901 (+0.054) 0.504 (+0.031)
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4.5 Additional Experiments

4.5.1 Curated Dataset

We curated two datasets with more imbalance distribution to test the robustness of

Weighted-Rank CR. First, we sampled a subset of SMPD training dataset to create a more

skewed distribution, with only few data points at both ends. Figure 4.2 illustrates the

distribution of this sampled dataset.

Figure 4.2: The distribution of the sampled dataset, with very few data points on both
ends.

We visualized the MAE improvement across different label bins in Figure 4.3. The

x-axis represents the label ranges, with the top portion of the figure depicting the data dis-

tribution (y-axis showing the number of posts), and the bottom portion displaying theMAE

improvement (y-axis indicating the MAE difference). Positive values (in green) signify a

lower MAE for that label bin, while negative values (in red) signify a higher MAE. The

results demonstrate that contrastive regression substantially reduces the MAE for rarely

seen data points, particularly at both extremes of the distribution. Furthermore, we vi-
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sualized the MAE improvement of Weighted-Rank CR over Rank-N-Contrast in Figure

4.4. The results demonstrated the superiority of Weighted-Rank Contrastive Regression

compared to Rank-N-Contrast on the skewed-sampled dataset.

(a) The MAE improvement of Rank-N-Contrast
over the Vanilla approach.

(b) The MAE improvement of Weighted-Rank-
CR over the Vanilla approach.

Figure 4.3: The MAE improvement of both Rank-N-Contrast and Weighted-Rank-CR
compared to the Vanilla approach. Positive values (in green) signify a lower MAE on the
label bin, and negative values (in red) signify a higher MAE on the label bin.

Figure 4.4: The MAE improvement of Weighted-Rank-CR over Rank-N-Contrast.

We also curated another more imbalanced dataset by removing data points with popu-

larity scores below 4.0 and above 13.0. The MAE improvement across different label bins
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for this dataset is illustrated in Figure 4.5. Additionally, Figure 4.6 visualizes the MAE

improvement of Weighted-Rank CR compared to Rank-N-Contrast on this more imbal-

anced dataset. The results consistently demonstrate the superiority of Weighted-Rank CR

over Rank-N-Contrast even in this more challenging scenario.

(a) The MAE improvement of Rank-N-Contrast
over the Vanilla approach.

(b) The MAE improvement of Weighted-Rank-
CR over the Vanilla approach.

Figure 4.5: The MAE improvement of both Rank-N-Contrast and Weighted-Rank-CR
compared to the Vanilla approach on a dataset that data points at both extremes are re-
moved.

Figure 4.6: The MAE improvement of Weighted-Rank-CR over Rank-N-Contrast on a
dataset that data points at both extremes are removed.
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Chapter 5 Conclusion

5.1 Conclusion

In this thesis, we delved into the challenges of imbalanced regression in social media

popularity prediction, highlighting the limitations of existing contrastive learning methods

like Rank-N-Contrast. We proposed Weighted-Rank Contrastive Regression loss, a con-

trastive learning loss that incorporates label distance information into the Rank-N-contrast

loss function, thereby enhancing the model’s ability to learn discriminate representations

for rare and extreme labels. We also proposed a simple end-to-end contrastive regression

learning framework for multi-modal representation learning that can be extended to more

complex architecture.

Our experiments on the Social Media Prediction Dataset (SMPD) demonstrated the

effectiveness of Weighted-Rank CR, showcasing significant improvements in both rank-

ing accuracy and prediction accuracy compared to the baseline methods. Notably, our

approach proved particularly effective in handling imbalanced datasets, where rare labels

are often underrepresented. Through extensive evaluation, we validated the superiority

of Weighted-Rank CR across two curated datasets and various weighting strategies. Our

findings highlight the importance of incorporating label distance information into con-

trastive learning for imbalanced regression tasks.

37



doi:10.6342/NTU202403142

This research contributes to the growing body of work addressing the challenges

of imbalanced learning in Social Media Popularity Prediction (SMPP). The proposed

Weighted-Rank CR method offers a promising avenue for future research, with potential

applications in various domains where data imbalance poses a significant challenge.

5.2 Limitations and Future Works

Our current implementation employs a relatively simple weighting strategy that em-

phasizes contrastive signals based solely on label distance. However, more sophisticated

weighting mechanisms could potentially further improve performance. For instance, in-

corporating additional factors like neighborhood density or feature similarity into the

weighting function might lead to more nuanced and effective learning. There are several

directions for future research emerged from this work:

• Evaluation on Diverse SMPPDatasets: Evaluating the performance ofWeighted-

Rank CR on a broader range of SMPP datasets with varying characteristics would

provide a more comprehensive understanding of its generalization capabilities.

• Application to Downstream Tasks: Testing the learned representations on various

downstream tasks, such as influencer classification and influencer recommendation.

This could help determine the effectiveness of Weighted-Rank CR in real-world

applications beyond popularity prediction.

• Exploration of AdvancedWeighting Strategies: Investigating more sophisticated

weighting mechanisms that incorporate additional information beyond label dis-

tance. This could involve incorporating feature similarity, sample density, or other
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relevant factors into the weighting function.

By addressing these limitations and pursuing these future directions, we believe that

Weighted-Rank CR can be further enhanced and extended to a wider range of imbalanced

regression problems.
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Appendix A—Qualitative Visualization

A.1 Feature Similarity

We visualized the feature similarities across label bins relative to an anchor point

for the vanilla approach (Figure A.1), Rank-N-Contrast (Figure A.2), and our proposed

Weighted-Rank CR (Figure A.3). The visualization reveals greater uniformity (a larger

utilized feature space) in our Weighted-Rank CR method compared to both the vanilla

approach (Figure A.4) and Rank-N-Contrast (A.5).

Figure A.1: The feature similarities relative to anchor 1.0 of the vanilla approach.
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Figure A.2: The feature similarities relative to anchor 1.0 of Rank-N-Contrast.

Figure A.3: The feature similarities relative to anchor 1.0 of Weighted-Rank-CR.

A.2 Feature Visualization

We employed UMAP (McInnes et al., 2018) to visualize the post features in a 2-

dimensional space for both the vanilla approach and the Weighted-Rank CR method.
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Figure A.4: The UMAP of the post features fit on the vanilla approach.

Figure A.5: The UMAP of the post features fit on Weighted-Rank CR.
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