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摘要	

人才流動預測是協助企業人力資源團隊制定有效的人才管理策略的關鍵任務。

此問題可以透過線上專業網絡的歷史工作轉換資料來分析與預測企業間未來的人

才流動。過去的研究方法使用成對的公司資料結構進行特徵工程和預測。然而，成

對的公司資料結構只能提供整體人才流動網絡的聚合特徵，並不能利用從焦點公

司到其他公司的分佈。此外，先前的研究也使用股票數據作為額外的數據來源，但

股票數據容易被眾多市場訊號影響，並不一定能反應一間公司對人才的吸引力。	

為了解決這些限制，我們提出了一個深度學習模型，採用了公司列式的資料結構

和公司評價網站的評分資料作為特徵，並使用遞迴式神經網路以擷取人才流動時

間序列的特徵。此外，我們模型加入了公司感知結構和嵌入層去有效地捕捉了各焦

點公司的人才流動模式。與現有模型相比，不同職位的預測表現提高了	3-4%。	

	

關鍵字:人才管理、人才流動預測、深度學習、遞迴式神經網路	

	

  



doi:10.6342/NTU202403333

 iii 

Abstract 

This thesis addresses the problem of talent flow prediction by leveraging historical job 

transition data from Online Professional Networks to forecast future talent movements, a 

crucial task for human resource teams in developing effective talent management 

strategies. Previous approaches used a pair-wise structure for feature engineering and 

prediction. However, the pair-wise structure can only provide aggregated features of the 

network and does not leverage the distribution from a focal company to other companies. 

Additionally, previous studies have used stock data as an additional data source, yet stock 

data can be sensitive to many market signals. 

To address these limitations, we proposed a deep learning model employs a company 

list-wise structure and company rating data as features and feed into a RNN-based model 

to learn the time series features. After that, our model's company-aware structure and 

embedding layer effectively capture each focal company’s unique talent flow patterns. It 

demonstrates a 3-4% improvement in predictive performance over existing models across 

various positions. 

Keywords: Talent Management, Talent Flow Prediction, Deep Learning, RNN-based 

Time Series Learning 
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Chapter 1 Introduction 

1-1. Background 

Talent stands out as a primary source of competitive advantage for contemporary 

companies (Hongal & Kinange, 2020). As the global workforce expands, becomes more 

diverse, and exhibits higher mobility, organizations must invest increased efforts in 

managing their workforce to acquire and sustain global competitive advantages (Tarique 

& Schuler, 2010). Consequently, talent management plays a pivotal role for organizations 

in today's fiercely competitive and dynamic environment. 

According to a research article by McKinsey & Co (2021), the "Great Attrition" in 

2019, during which more than 19 million U.S. workers resigned from their jobs since 

April, prompted many companies to adopt a talent-first culture to prevent similar 

occurrences. Additionally, with regards to company performance, a survey demonstrated 

that talent management ability, encompassing the attraction and retention of talent, exerts 

a positive influence on a company's total returns to shareholders (TRS) (McKinsey & Co, 

2018). It is asserted that companies with effective talent management are six times more 

likely than those with ineffective talent management to achieve higher TRS than their 

competitors (McKinsey & Co, 2018). Given the compelling evidence, it is evident that, 

to maintain a competitive advantage and surpass competitors in this dynamic environment, 

talent management emerges as a crucial concern for companies worldwide. 



doi:10.6342/NTU202403333

 2 

  Within the realm of talent management, talent flow stands out as a significant challenge 

in its implementation (Carr et al., 2005). Originally, talent flow denoted a process wherein 

valuable workers moved between countries, motivated by factors such as seeking foreign 

work experience or returning to their home country to capitalize on economic 

development (Carr et al., 2005). Furthermore, talent flow manifests at the organizational 

level, signifying employees transitioning from one company to another (Xu et al., 2019), 

which can also be referred to as external job hops (Oentaryo et al., 2018). 

  Based on an article of Harvard Business Review, a real-world example of the talent 

flow challenge for organizations is when high-functioning groups within a company are 

headhunted by competitors, a phenomenon known as “lift outs” (Groysberg & Abrahams, 

2006). One instance of a “lift out” is Conseco Capital Management, which lost its chief 

equity investment officer and several department members to a competitor, resulting in 

significant client loss. Another example is the investment bank HSBC, which was left 

with only a graduate trainee to handle media equities analysis after its entire team of 

media analysts departed for ABN AMRO. Such abrupt departures can lead to premature 

internal promotions (Groysberg & Abrahams, 2006). 

  Numerous studies have demonstrated that the analysis of organizational talent flow 

holds considerable impact in fields such as human resource planning, global brain drain 

analysis, and company recruitment. Talent flow reflects the dynamics of the workforce, 
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job market, and employers (Oentaryo et al., 2018; Xu et al., 2019). Beyond these 

applications, the examination of talent flow across companies can serve as an indicator 

of a company's competitiveness, illustrating its allure to prospective job seekers (Zhang 

et al., 2020). 

  In summary, amid the escalating significance of talent management for companies 

seeking to retain, attract, and sustain their competitive advantages, studies of talent flow 

emerge as a viable approach to meet these objectives. 

1-2. Overview of Previous Studies 

  In the field of talent flow studies, research can be categorized into two groups: talent 

flow analysis and talent flow prediction. Talent flow analysis aims to investigate the 

factors influencing talent retention or turnover within an organization or region, as well 

as to observe talent flow patterns (Qin et al., 2023). Previous studies exploring the factors 

of talent retention or turnover typically utilized surveys as their research method. These 

factors include economic, political, and cultural elements that drive high-level talent to 

relocate within a country or even migrate internationally (Carr et al., 2005; Zhou et al., 

2018). 

  However, these studies exhibit three limitations due to their reliance on survey data 

(Qin et al., 2023). First, they are costly, as they require substantial time and financial 

resources to design, distribute, and analyze surveys. Second, survey studies often have a 
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limited scope, focusing primarily on regional levels, which restricts the generalizability 

of the findings to broader populations or different geographic areas. Lastly, survey studies 

are non-retrospective, meaning they cannot be revisited to analyze additional factors or 

adjust the granularity of data once they are completed. This lack of flexibility hinders the 

ability to explore new insights or refine the study's focus based on initial findings (Qin et 

al., 2023). Consequently, a broader understanding of talent flow across regions may be 

obscured by the localized focus of these studies. 

  On the other hand, previous research on talent flow patterns has fully utilized Online 

Professional Networks (OPNs) as data sources. In recent years, OPNs such as LinkedIn 

have gained widespread popularity. Millions of job seekers globally have updated their 

digital resumes across 200 countries while actively job hunting, as indicated by the 

LinkedIn official website (LinkedIn, n.d.). Users willingly share their work experience, 

education, and accolades publicly on OPNs for job-seeking purposes and to expand 

professional connections. This extensive job transition data provides a unique opportunity 

for talent flow quantitative studies, allowing for insights on a larger scale of the talent 

pool and facilitating more precise analyses concerning location, organization, and time 

(Xu et al., 2019). 

  As a result, previous research on talent flow patterns has been able to utilize data 

mining techniques to extract features from OPN information in order to gain insights into 
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talent flow patterns, such as regional or organizational job hopping and job-level talent 

flow network connectivity analysis (Qin et al., 2023). These techniques enable a more 

comprehensive understanding of how talent moves across different regions and 

organizations, providing valuable information for both academic research and practical 

applications in human resource management and recruitment strategies. 

In addition to talent flow analysis studies, talent flow prediction primarily focuses on 

anticipating changes in the labor market by predicting the actual future talent flow amount 

or percentage at the organizational level (Xu et al., 2019; Zhang et al., 2019). This 

predictive approach provides valuable guidance for developing effective talent strategies 

(Qin et al., 2023). Latent variable modeling and time series techniques are employed to 

enhance the accuracy and flexibility of such predictions. 

To date, only two studies have focused on this problem. Zhang et al. (2019) utilized 

normalized talent flow matrices and matrix factorization modeling techniques to predict 

future yearly normalized talent flow. In another study, Xu et al. (2019) aimed to use 

employed pair talent flow features and stock data to predict future monthly company pair-

wise incremental talent flow amounts. These studies demonstrate the potential of 

advanced modeling techniques to forecast talent movements, thereby enabling 

organizations to better prepare for and respond to changes in the labor market. 

1-3. Motivation 
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  Given the limitations of survey studies, including high costs in terms of time and money, 

limited research scope, and lack of retrospective analysis, we aim to leverage Online 

Professional Networks (OPN) data in our research. Although talent flow prediction is 

crucial for developing detailed talent strategies, there are few studies focused on this issue. 

The two existing studies on talent flow prediction have successfully modeled the problem, 

yet they present certain limitations. 

First, the inner product operation in matrix factorization constrains its ability to 

represent the complex relationships between companies, as the predicted value is based 

on a linear combination of features (Song & Wang, 2022). Second, pair-wise features 

only provide aggregated features of the network and do not leverage the distribution from 

a focal company to other companies. Lastly, stock prices are influenced by numerous 

market signals, making them sensitive and potentially unreliable for predicting talent flow. 

1-4. Research Objective 

Our proposed model Company-aware RNN-based Talent Flow Prediction Model 

(CAR-TFP) incorporates the following features: 

l Deep Learning Approach: The deep learning model structure is capable of capturing 

complex interactions between companies and is extendable for multiple tasks. This 

approach allows for a more nuanced understanding of the factors influencing talent 

flow. 
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l Company-aware Structure: For a focal company, we incorporate all talent out flow 

amounts as data features and predict its talent flow simultaneously. This ensures that 

the interactions of each talent flow value are considered. To model this structure, we 

use a company embedding awareness approach to capture the unique talent flow 

patterns of each target company. 

l Company Ratings: Online company review websites such as Glassdoor and Indeed 

attract millions of unique job seekers who provide reviews. For instance, Glassdoor 

boasts over 55 million unique monthly visitors and hosts more than 180 million 

reviews shared by employees across 20 countries (Glassdoor n.d.). Compared to 

stock prices, company ratings directly reflect the sentiments of former or current 

employees about working at the company, making them more relevant to talent flow. 
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Chapter 2 Literature Review 

As stated in the previous chapter, we categorized related studies into two categories: 

talent flow analysis and talent flow prediction. In this chapter, we aim to review the 

research that falls within these two topics. 

2-1. Talent Flow Analysis 

Since talent flow analysis plays an important role in the field of talent management and 

human resource management, numerous studies have explored this area using various 

topics and approaches (Carr et al., 2005). Research in this domain can be broadly 

categorized into two primary areas: factors influencing talent retention and turnover, and 

talent flow patterns. These studies often focus on different levels, such as country, 

industry, or company. 

2-1-1. Factors Influencing Talent Retention and Turnover 

  Research on factors influencing talent retention and turnover typically employs 

qualitative methodologies, using surveys to gather data from targeted groups of talents, 

such as immigrants or high-skilled professionals in a specific industry. The primary aim 

of these studies is to identify the factors that either retain valuable talent or drive them 

away, thereby addressing the issue of "brain drain". These factors include economic, 

psychological, and career-related aspects (Mao et al., 2009). 
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  For instance, two investigations conducted in New Zealand aimed to understand why 

high-skilled knowledge workers migrate or leave the targeted region. The studies revealed 

that lifestyle and family considerations serve as "pull" factors, encouraging knowledge 

workers to return home, while career and economic issues act as the main "push" factors 

for those choosing to stay overseas (Carr et al., 2005; Jackson et al., 2005). These factors 

can be further categorized into global features and local realities, where political and 

career opportunities fall under global features, while cultural values and family traditions 

are regarded as local realities (Carr et al., 2005). 

  Other research focuses on factors influencing the development of specific industries 

within cities, such as the challenges faced by Wuhan's automotive sector in China (Mao 

et al., 2009). In this case, talent shortages were identified as a significant challenge, 

primarily influenced by career and job-related aspects, including income, working 

environment, and industry cluster characteristics. Additionally, other crucial factors were 

linked to individual and urban environmental aspects (Mao et al., 2009). Another example 

is the study on Taipei's fashion industry, which revealed that the creative and cultural 

economy environment significantly influences talent retention in the city (Hu & Chen, 

2014). This finding shows different factors with the results observed in Wuhan's 

automobile industry, illustrating differences attributable to industry and talent 

characteristics. 
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2-1-2. Talent Flow Patterns 

Studies focusing on identifying talent flow patterns have fully utilized information 

from Online Professional Networks (OPNs) by extracting data such as resume position 

titles, job duration, and working seniority. These studies aggregate information based on 

target granularity, such as country, city, or industry, allowing researchers to compare 

differences in culture or economic development levels (State et al., 2014, Oentaryo et al., 

2018). 

For instance, a study on professional migration in the United States utilized LinkedIn 

data to identify migration patterns between the United States and other regions (State et 

al., 2014). The findings indicate a decline in employment-based migrants to the United 

States, but an increase in students choosing the United States for overseas studies, with 

Asia emerging as a major destination for professional migration due to job opportunities. 

Another study compared job-hopping patterns within a region, specifically between 

Singapore, Hong Kong, and Switzerland (Oentaryo et al., 2018). By extracting attributes 

based on job titles, such as average working experience years and average job ages, the 

study revealed characteristics of job hops, distinguishing between promotions and 

demotions. Notably, workers in Singapore tend to achieve promotions through external 

job hops (joining other companies), while more Hong Kong employees experience 

promotions through internal job hops (within the same company). 
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Other studies in this category view talent flow as a graph, employing clustering or 

graph learning techniques to identify job-hopping patterns and compare competitiveness 

between companies within the defined talent flow network. One study introduced a real-

time system, JobMiner, designed to highlight the most influential companies and 

community information within the talent flow network by calculating their closeness and 

PageRank (Cheng et al., 2013). Another study developed a talent circle detection 

technique based on job transition networks, aiding human resource teams in identifying 

talent sources through clustering methods that maximize in-circle edge weights, 

representing the volume of talent flow (Xu et al., 2016). For graph learning techniques, 

one study adopted these methods to approximately calculate the Personalized PageRank 

of each company node in the talent flow graph. By learning the two attraction vectors of 

each company, the study demonstrated a comparison of competitiveness between each 

company pair (Zhang et al., 2020). 

In summary, talent flow analysis of factors influencing talent retention and turnover 

predominantly concentrates on the regional level, aiming to identify the factors 

influencing high-skilled workers' decisions to stay or leave. The outcomes of these studies 

exhibit variations based on the specific industry and region under investigation, resulting 

in limited generalizability. Furthermore, these studies often lack large-scale market data, 

limiting their capacity to offer predictive insights into talent flow dynamics (Zhang et al., 
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2019). On the other hand, talent flow pattern studies fully utilize the large scale of OPN 

data for more quantitative analyses. The insights garnered from these studies provide a 

more precise understanding of regional and organizational talent flow networks, aiding 

in strategic planning for organizational human resources. 

2-2. Talent Flow Prediction 

As mentioned in the chapter 1, talent flow prediction studies focus on predicting the 

actual future talent flow amount or percentage at the organizational level. They also 

leverage OPN data to investigate historical labor market changes to predict future trends 

in the talent flow network. Only two studies have been found in the field of talent flow 

prediction, by Zhang et al. (2019) and Xu et al. (2019). 

  Zhang et al. (2019) leveraged normalized talent flow matrices and matrix factorization 

techniques to predict future yearly normalized talent flow. Figure 1 shows the structure 

of their approaches. For data preprocessing, they filtered companies that appear more than 

1,000 times in their OPN dataset. They also categorized positions into 26 groups to predict 

company-wise talent flow percentages for each position group. The talent flow data was 

arranged to form a 3D talent flow adjacency matrix. 

From this matrix, they derived two kinds of latent factors: origin company 𝑈!" and 

destination company 𝑉#" at time slice t, and a time-independent factor for each position 

𝑊$. The inner product combination of these three vectors represents the talent flow value 
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from company i to company j for position k. The authors also applied an evolving tensor 

factorization technique to handle dynamic talent flow matrices. At time t, the latent 

vectors of company i, 𝑈!" and 𝑉!", evolve through a combination of the previous vectors 

at time t-1 (𝑈!"%&, 𝑉!"%&) and the vectors of neighboring companies (those with more than 

one transition) at time t-1. For initializing the latent factors, they assumed a zero-mean 

Gaussian distribution. To avoid overfitting in the matrix factorization method, the authors 

applied a company similarity regularizer in their loss function of the training model. This 

regularizer ensures that the components of the latent vectors are similar if their 

corresponding company attributes are similar. These attributes include the company’s 

industry, scale, location, specialties, type, and age. 

 

Figure 1 . Approach of Zhang et al. (2019) 

  On the other hand, the study by Xu et al. (2019) utilized company pair-wise talent flow 

features and stock data to predict future monthly pair-wise incremental talent flow 

amounts. The below Figure 2 shows the model structure of the study. For talent flow data 

preprocessing, they filtered public companies as their target and extracted talent flow data 

where the start time of the later job must be within ±2 months of the end time of the 
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former job. To predict each talent flow from company 𝑐! to company 𝑐# in time slice t, 

the model features include historical monthly talent flow and historical monthly stock 

information. Historical monthly talent flow features include self-loops of 𝑐!  and 𝑐# 

(𝑓!!"%', 𝑓##"%'), in-out flow between the two (𝑓!#"%', 𝑓#!"%'), total in-out flow amount of 𝑐! 

and 𝑐#  itself (𝑓!∗"%', 𝑓#∗"%', 𝑓∗!"%', 𝑓∗#"%' ), and total in-out flow of 𝑐!  and 𝑐#’s industry, 

where n is a list of integers less than t. Additionally, historical monthly stock information 

includes 𝑐!  and 𝑐# 's stock prices 𝑝!"%', 𝑝#"%' and trading volumes 𝑣!"%', 𝑣#"%' of the 

month’s last trading day. 

The model structure contains two bi-directional LSTMs, which learn the time series 

trend of the talent flow features and stock price features separately. The hidden states of 

the two LSTMs at the same time slice are then concatenated for the prediction module. 

The attention-based decoder takes the concatenated hidden states to obtain the attention 

weights and combines the hidden states to form ℎ). After that, the company profiles of 

𝑐! and 𝑐# are added along with the previous step’s result 𝑠)%&, ℎ), and the previously 

predicted talent flow 𝑓+!#)%& to form the predicted talent flow 𝑓+!#). 
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Figure 2. Approach of Xu et al. (2019) 

The two studies on talent flow prediction employ different model structures to address 

the problem. Table 1 provides a general comparison between the two studies. 

2-3. Research Gap 

This research explores the application of deep neural networks to improve talent flow 

prediction. Compare with matrix factorization, deep learning models can effectively 

capture the complex non-linear relationships between talent flow values across companies 

and time windows but also leverage scalable and extendable features and tasks. This 

research aims to provide a more detailed understanding of talent dynamics. 

Furthermore, previous study of Xu et al. (2019), have treated all job positions 

uniformly in their predictions. While this method provides a general overview of talent 

flow, it lacks the granularity necessary for detailed talent management strategies. Our 

study proposes grouping similar positions and modeling them separately to derive more 

actionable insights for future talent management. 
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Additionally, Xu et al. (2019) employed a company pair-wise structure for modeling 

talent flow. This approach, however, fails to utilize trends from other companies’ talent 

flow data. Our study aims to predict talent flow by leveraging the values of a focal source 

company in relation to other companies, thereby capturing the interactions and trends of 

outflow talent values more comprehensively. 

Table 1 Comparison of Talent Flow Prediction Studies 

 Prediction Target Data Source Prediction Method 

Xu et al., 
2019 

Pair-wise monthly 
incremental talent flow 
amount of future m 
months 

Historical OPN data  
Company stock price 
Company static profile 

RNN based modeling 
with encoder-decoder 
prediction layer 

Zhang et 
al., 2019 

Normalized yearly 
talent flow rate 
grouped by position 

Historical OPN data 
Company static profile 

Latent factor-based 
Evolving Tensor 
Factorization model 

Lastly, Xu et al. (2019) addressed the sparsity problem in talent flow prediction using 

stock price information. However, stock prices are often volatile and influenced by 

numerous external factors, potentially introducing noise into the model. We suggest 

incorporating company reviews, which reflect employee satisfaction and provide more 

stable indicators of a company's attractiveness to potential talent. This adjustment aims 

to enhance the accuracy of talent flow predictions by considering the direct experiences 

and ratings of current and former employees. 
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Chapter 3 Methodology 

3-1. Problem Formulation 

Based on previous research on talent flow prediction, we can form a talent flow 

network as follows: At each time t, a talent flow network 𝐺" is formed by company 

nodes 𝐶 and the talent flow amounts between companies 𝐹". The target companies are 

static through time. The talent flow amount from company i (𝑐!) to company j (𝑐#) is 

denoted as 𝑓!#" . We also obtain company rating data as a model feature, where 𝑟!" is the 

average company rating of 𝑐!  at time t, and the difference between 𝑟!" and 𝑟#" is 

denoted as ∆𝑟!#" . Each position p has its independent sequence of talent flow networks, 

allowing us to model each position's network separately. 

Given a sequence of talent flow networks from 𝐺"%'  to 𝐺"%& , where 1 < 𝑛 < 𝑡, 

each 𝐺"%' contains company talent flow amounts 𝐹"%' and review ratings 𝑅"%'. The 

goal of our model is to predict the future talent flow amount 𝐹" by modeling the above 

features. 

3-2. Model Structure 

Our model consists of five modules: the time series learning module, the dimension 

reduction module, the learnable company embedding, the company embedding aware 

layer, and the prediction layer. The following Figure 3 shows a general structure of our 

model.  
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Figure 3. Structure of Company-aware RNN-based Talent Flow Prediction Model 
(CAR-TFP) 

3-3. Input 

As mentioned in previous chapters, we consider a company list-wise in-output structure 

for prediction, which also incorporates rating data. More precisely, for each time t and 

position p, a source company 𝑐! will have two kinds of features: talent flow amount and 

rating difference, forming the input vector 𝑥!". 

l Talent Flow Amount (𝑓!#" ): This represents the talent outflow amount from 𝑐! to 𝑐#, 

where 𝑗 ∈ [1,2…𝑚]. m is the number of target companies considered. 

l Rating Difference (∆𝑟!#" ): This is the average rating difference of 𝑐! compared to 

each 𝑐#, where 𝑗 ∈ [1,2…𝑚]. 

Therefore, 𝑥!" will contain 2m features. 
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3-4. Time Series Learning Layer 

To predict the next talent flow value, we treat this as a time series problem. We choose 

the Gated Recurrent Unit (GRU), which is a Recurrent Neural Network (RNN)-based 

model, to learn the talent flow trend. The GRU model will process the input vectors 𝑥!" 

to capture temporal dependencies and trends in the talent flow data, facilitating accurate 

predictions for future talent flows. 

  In our model, the GRU layers are set bi-directional to enhance the prediction ability, 

since the model learn the talent flow trend from both sides. Formula 3.1 shows we put a 

sequence of input data with window length of n in the GRU layers. After getting the two 

final states of bi-directional GRU, we concatenate them together to form ℎ!. 

ℎ>⃗ ! = 𝐺𝑅𝑈([𝑥!"%' …𝑥!"%&]),)	

ℎ⃖>! 	 = 𝐺𝑅𝑈([𝑥!"%&…𝑥!"%']), (3.1) 

ℎ! = Gℎ
>⃗ !
ℎ⃖>!
H.	 

3-5. Dimension Reduction Layer 

The dimension reduction layer acts as a buffer between the bi-directional GRU module 

and the company embedding aware layer due to the significant dimension difference 

between them. We use multiple fully connected linear layers to reduce the high-

dimensional output from the GRU module. The mechanism of a dimension reduction 

layer is shown in Formula 3.3.  

𝑑! = 𝑊*ℎ! + 𝑏* . (3.2) 
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𝑊* is the learnable weight matrix, while 𝑏* is the bias vector. 𝑊* ∈ ℝ'!∗'", where 

𝑛+  is dimension of ℎ!  and 𝑛,  is the dimension after dimension reduction. This 

dimension reduction process ensures that the data is in a suitable form for further 

processing in the company embedding aware layer, maintaining computational efficiency 

and improving model performance. 

3-6. Learnable Company Embedding 

In our model, the company embedding aims to capture the distinct talent flow patterns 

of different source companies after the shared time series learning and dimension 

reduction layers. While the shared layers can learn general talent flow trends over time, 

they may not capture the unique patterns of each source company. To address this, we 

introduce a time-independent learnable embedding vector 𝑒!  for each company 𝑐! , 

where 𝑒! ∈ 	ℝ$  and k is a hyperparameter that defines the dimensionality of the 

embedding. 

3-7. Company Embedding Aware Layer 

This module is designed to capture the unique talent flow patterns of each source 

company by combining 𝑒! with the final state of the shared time series learning and 

dimension reduction layer, 𝑑!. We use a bilinear layer to perform this combination. A 

bilinear layer is a 3D matrix that learns the interaction between two input vectors by 

performing matrix multiplication with the layer’s learnable weight. The bilinear layer has 
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been used in vision problems, such as image classification tasks, where two CNN-based 

feature extractors need to capture pairwise feature interactions in a translationally 

invariant manner (Freeman & Tenenbaum, 1997). Although we considered using a linear 

layer, which would concatenate the two vectors and perform linear transformation, we 

found that it would only sum the weighted 𝑒! and 𝑑! to produce the prediction value. 

This approach does not capture the interactions between 𝑒! and 𝑑!. Since our goal is to 

model the interaction between these vectors to capture different patterns for each source 

company, we chose the bilinear layer. 

The bilinear layer can be formulated as the following formula 3.3. 𝑊- is the learnable 

weight of bilinear layer, 𝑏- is the bias of bilinear layer, 𝑦O!" is the layer’s output at time 

t, where 𝑑! 	 ∈ ℝ'! , 	𝑒! ∈ ℝ$ , 	𝑦O!" ∈ ℝ., 	𝑊- ∈ ℝ.∗'!∗$ . Expanding Formula 3.3 to 

Formula 3.4 illustrates that the n-th matrix of the first dimension multiplies 𝑒! 	with 𝑑! 

to form the n-th value of the output vector, which m is the output layer’s dimension. 

𝑦O!"	 = 𝑑!/𝑊-𝑒! + 𝑏- . (3.3) 

𝑓+!'" 	 = 𝛴#0&- 𝛴10&$ 𝑑!#𝑊'#1
- 𝑒!1 + 𝑏'- , (3.4) 

𝑛	 ∈ 	 [1,2, …𝑚]. 

3-8. Prediction Layer 

For the prediction layer, we use the Leaky ReLU activation function to transform the 

results from the Company Embedding Aware Module. This choice helps avoid neurons 
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being permanently inactive, which can occur with the standard ReLU activation when the 

output is less than zero. The Leaky ReLU function can be described by the Formula 3.6, 

where α is a very small number.  

S	
𝑓+!#" . 					𝑖𝑓	𝑓+!#" ≥ 0
𝛼𝑓+!#" . 		𝑖𝑓	𝑓+!#" < 0

(3.6) 

The output 𝑦O!" is a vector representing the talent outflow amounts of the input source 

company 𝑐! at time t. This includes outflows from 𝑐!  to itself and to other target 

companies, so 𝑦O!" can be expressed as [𝑓+!&" , 𝑓+!2" , … 𝑓+!." ]. 

3-9. Parameter Learning 

The loss function for the model is the Mean Absolute Error (MAE) loss, which 

measures the difference between the predicted values 𝑦O!" and the ground truth 𝑦!". Given 

one company 𝑐!, its loss shown as Formula 3.7.  

𝐿𝑜𝑠𝑠 = 	[\𝑓!#" − 𝑓+!#" \
.

#0&

	 (3.7) 

The learnable parameters in the model include the layer weights and biases (𝑊∗, 𝑏∗) 

as well as the company embeddings (𝑒∗). These parameters are optimized using 

backpropagation through time. Additionally, hyperparameters such as the number of cells 

in the model, the dimensions of the company embeddings, and the learning rate are tuned 

through experimental procedures. 
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Chapter 4 Data 

Our data preprocessing consists of two separate processes due to the two data sources: 

OPN data and company review data. After these preprocessing steps, the two types of 

features, namely the talent flow amount and the rating score difference, are arranged into 

the model's input data and then split into training and testing datasets. A general process 

flow chart Figure 4 is shown below: 

 

Figure 4 Data Preprocessing Process 

4-1. Talent Flow Preprocessing 

4-1-1. Data Collection & Cleaning 

For OPN data collection, we chose LinkedIn as our target platform because it is one of 

the largest OPN platforms, with millions of job seekers updating their digital resumes. 

We obtained a dataset of LinkedIn users from The Bright Initiative, a global organization 

dedicated to promoting positive change by providing public bodies, non-profit 

organizations, and academic institutions with public web data. In this study, we are 

interested in the software industry, specifically profiles with the keyword "software 
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engineer" in past work experiences. The Bright Initiative provided us with a dataset of 

2,032,845 publicly available employee profiles from LinkedIn worldwide. 

  For the data cleaning process, we followed the procedures outlined by Wang (2023). 

Initially, we removed work experiences with abnormal job information, such as jobs 

where the end time was earlier than the start time. We also excluded records with 

important missing values, including start time, end time, company, and position title. 

Additionally, we filtered out jobs that did not meet our requirements, such as internships, 

part-time jobs, military jobs, academic experience, and volunteer experience. 

4-1-2. Company Filtering 

  Next, we counted the appearance frequency of companies per resume, ensuring each 

company was counted only once per resume. We selected companies with an appearance 

frequency of no less than 100 times, resulting in 1,563 companies. Other companies were 

coded to the "out of bag company" (OOBC) category. After this transfer, we removed 

resumes containing only OOBC experiences, leaving us with 387,464 resumes. 

4-1-3. Position Grouping 

  For position title cleaning, we removed stop words, punctuation, and converted all titles 

to lowercase. We then used a predefined dictionary to extract keywords from position 

names, allowing us to merge positions with the same keywords (e.g., SSE to senior 

software engineer). The predefined dictionary contained domain-specific Named Entity 
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tags identifying responsibility or functional words (e.g., engineer, manager, system, 

finance) (Liu et al., 2020). For each merged position, the most frequent original position 

was selected as the standardized position name, resulting in 106,829 standardized 

positions. We selected positions appearing no less than 50 times, resulting in 2,227 

positions. 

To group positions with similar functions, we applied grouping rules and manual 

checks. The detailed grouping rules are shown in Table 2. 

Table 2. Position Grouping Rules and Results 
Group Rules (position title w/ or w/o) Count Example 

Software Developer 

Professional 

w/ software, programmer, developer, engineer 
1,116 (50%) 

C# Developer, 
Principal Firmware 
Engineer, Mobile 
Software Engineer 

w/o consult 

Management 

Professional 

w/ project, product 
234 (10.5%) 

Technical Project Lead, 
IT Project Coordinator, 
Project Analyst w/o engineer 

Consultant 
w/ consult, account 

231 (10.3%) 

Sales Consultant, 
Support Consultant, 
Associate Business 
Consultant 

w/o software 

Data Professional 
w/ data, etl, machine learning 

126 (5.6%) 

Technical Business 
Analyst, Principal Data 
Engineer, Data 
Scientist 

w/o database, dba 

Cloud & Architect 
w/ cloud, architect, application 

99 (4.4%) 

Application Architect, 
Java Architect, 
Enterprise Cloud 
Architect 

w/o consult 

Infrastructure 

Professional 

w/ network, infra, linux, os 
76 (3.4%) 

Network Consulting 
Engineer, Infrastructure 
Specialist w/o software 

UI/UX frontend 

Professional 

w/ web, front, user, ui, ux 
49 (2.2%) 

Full Stack Web 
Developer, Senior UI 
Engineer, UI/UX 
Designer 

w/o consult 

Database Professional 

w/ database, dba, tableau, sql, hadoop, sap, 

oracle 37 (1.6%) 

Database Developer, 
SAP Developer, Oracle 
PL/SQL Developer 

w/o consult 
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The grouping was based on required keywords and the absence of other groups' 

required keywords. After rule-based grouping, we manually checked all position titles to 

avoid special cases and ensure they fit within the group requirements. This process 

resulted in 8 groups containing 1,968 positions, while positions not considered were 

transferred to the "out of bag position" (OOBP) category. After the position cleaning and 

filtering process, we removed resumes containing only OOBP experiences, resulting in a 

final dataset of 195,969 resumes. 

4-1-4. Talent Flow Extraction 

The remaining resumes are processed by sorting the jobs in each resume by their start 

date. If jobs have the same start date, the job with the later end date is placed first, as it 

tends to be more primary in an individual's experience. This step ensures the correct order 

when extracting talent flow. We then loop through each resume's experiences to extract 

talent flows, categorizing them into four types: short blank period, long blank period, 

partial overlap, and full overlap. These four types of talent flow can be shown in Figure 

5, where prefix F means former job, prefix L means later job, F and L can be same in 

company.  

For the short blank period, the later job’s start date is later than the former job’s end 

date but no more than a year after. We process this type of job transfer at the time of the 

former job’s end date. For the long blank period, the later job’s start date is more than a 
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year after the former job’s end date. This kind of job transfer has too long a blank period 

for a typical job transition, so we insert an "OOBC" experience between the two jobs. 

In partial overlap situations, the later job’s start date is earlier than the former job’s end 

date, but the later job’s end date is still later than the former job’s end date. This situation 

suggests that some employees start a new job while continuing their former job. We 

process the talent flow to occur at the time the former job ends. Lastly, for contained 

overlap, the later job’s start date is earlier than the former job’s end date, and the later 

job’s end date is not later than the former job’s end date. We count only the former jobs 

that have longer durations, are ordered first in the resume, or are not OOBC. 

 

Figure 5. Talent Flow Extraction Types and Preprocessing Rules 

4-1-5. Talent Flow Network Formation 

To focus on talent flow between a limited number of companies, we select the top 100 

companies that appear most frequently by resumes and transfer companies not in the list 

of target companies to OOBC. We also combine consecutive OOBC jobs into one job for 

easier processing. 
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The final step of our talent flow preprocessing is to format our talent flow matrices. 

We set our time window size to 6 months, covering the period from January 2008 to 

December 2022, because our company review dataset starts from 2008. This results in 30 

time windows in our dataset. We then separate valid talent flows into each time window 

and position, aggregating these flows within the same group to form an adjacency matrix. 

After aggregation, we obtain sequences of adjacency matrices for 8 positions. Each 

sequence has a length of 30, and each matrix is in the shape of 101 * 101 (100 target 

companies + OOBC). 

4-2. Talent Flow Exploration 

The following Figure 6 illustrates the aggregated talent flow amount grouped by 

position over time. Additionally, Table 3 presents the statistical information of the target 

companies' outflow amounts by position groups. The figure shows that, in general, all 

positions have increased consistently over time, reflecting the growing number of users 

on OPNs. Specifically, the "Software Developer Professional" group has the largest talent 

flow amount, followed by "Consultant", "Management Professional", and "Data 

Professional". This trend is likely due to our focus on resumes containing software 

engineer experiences. The steady increase in talent flow across all positions indicates the 

expanding user base and the dynamic nature of job transitions within the software industry. 

The detailed statistics in Table 3 further highlight the prominence of software-related 
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roles in the dataset, underscoring the relevance of our focus on software engineer 

experiences in understanding talent flow patterns. 

 

 
Figure 6. Talent flow size (sum of cells in each adjacency matrix) 

 

Table 3. Statistics of sum of outflows across time windows by companies and positions 
Position Group mean std min max 

Software Developer Professional 14,069.61 19,746.19 1,197 134,427 

Management Professional 1,242.30 2,578.34 20 20,025 

Consultant 1,715.62 4,341.53 3 31,246 

Data Professional 594.53 2,081.14 3 20,563 

Cloud & Architect 593.00 1,128.17 3 7,028 

Infrastructure Professional 221.29 455.10 0 2,959 

UI/UX frontend Professional 91.14 209.74 0 1,886 

Database Professional 48.09 86.21 0 554 

We also present the average talent outflow rate for the company along with the outflow 

rates to the top 1 and top 3 competitors. For instance, Table 4 displays the top 10 

companies in terms of talent flow size within the "Software Developer Professional" 

category and their respective average talent outflow rates. From the data, it is evident that 

Google and Microsoft have relatively low outflow rates, indicating that most employees 
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tend to remain with these companies. In contrast, Wipro and Tech Mahindra exhibit 

higher outflow rates, approximately 6-7% greater than those of the companies with the 

lowest outflow rates mentioned previously. Moreover, Tech Mahindra's primary 

competitor for talent accounts for 1% of its outflow. 

Table 4. Talent outflow rates of the top 10 "Software Developer Professional" 
companies 

Company 
Average  

Outflow Rate 

Average  

Outflow Rate to Top1 

Average  

Outflow Rate to Top3 

Accenture 9.36% 0.43% 1.00% 

Infosys 11.24% 0.63% 1.38% 

IBM 8.92% 0.39% 0.86% 

Microsoft 5.40% 0.38% 0.82% 

Tata-consultancy-services 11.54% 0.60% 1.30% 

Wipro 12.50% 0.80% 1.97% 

Tech-mahindra 12.75% 1.02% 2.38% 

Hcltech 11.81% 0.81% 1.80% 

Capgemini 8.57% 0.53% 1.17% 

Google 4.75% 0.43% 0.78% 

We also found the talent flow matrices to be sparse. Table 5 shows the sparsity of 

company talent flow matrices by position. We observed that the average sparsity of talent 

flow matrices for all positions exceeds 90%. The "Software Developer Professional" 

group is less sparse, followed by "Consultant", "Management Professional", and "Data 

Professional". Due to the high sparsity of other positions, we will focus on these four 

positions for our experiments. Figure 7 illustrates the sparsity of the top 30 companies by 

appearance frequency. The trend for each company is similar, with the "Software 

Developer Professional" group being less sparse. Additionally, some companies exhibit 
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less sparsity in specific professions. For instance, the French consulting firm Capgemini 

has a lower sparsity in the "Consultant" category than in the "Software Developer 

Professional" category. 

This analysis highlights the variability in sparsity across different positions and 

companies, guiding our focus towards the most relevant and densely populated categories 

for further experiments. 

Table 5. Sparsity of company talent flow matrix by position 
Position Group Sparsity 

Software Developer Professional 90.52% 

Consultant 97.11% 

Management Professional 97.73% 

Data Professional 98.21% 

Cloud & Architect 98.41% 

Infrastructure Professional 98.84% 

UI/UX frontend Professional 99.19% 

Database Professional 99.39% 

 

Figure 7. Sparsity of top 30 companies 
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4-3. Rating Data Preprocessing 

We sourced data from Glassdoor, the largest company review platform, founded in 

2008. Glassdoor hosts more than 180 million reviews, salary details, and insights shared 

by employees across 20 countries. Our data crawler retrieved reviews for all 100 target 

companies, extracting rating scores, employee positions, and review dates from these 

reviews. Figure 8 shows an example of a company review on Glassdoor, with rating 

scores ranging from 1 to 5. 

For the position cleaning and grouping process, we followed the same procedure used 

for talent flow positions to align the two data sources. Consequently, ratings associated 

with positions not considered (OOBP) were removed. All review dates were then 

classified into each time window to align with the talent flow network. After grouping 

ratings by position groups and time windows, we aggregated the rating scores based on 

these components and their respective companies. We calculated the accumulated mean 

score for each key group, resulting in a rating score 𝑟!" for each position p of company 

𝑐! at time t. 
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Figure 8. A Company Review Example from Glassdoor 

We observed that some groups had missing values due to a lack of data in certain time 

windows and position groups. For instance, Amazon Web Services was not separated 

from its parent company Amazon on Glassdoor until 2021, resulting in null values in 

earlier time windows. We filled these blanks with the previous time window’s value. For 

the first time window with a null value, we assigned a score of the first value that appears 

in this company dataset. For OOBC’s rating scores in each position group and time 

window, we averaged the ratings of all other companies in the group. 

4-4. Rating Data Exploration 

Table 6 shows the statistical information on the total review counts for each company, 

while Table 7 presents the average rating information. As Table 6 indicates, the top four 

groups have the most rating data counts, similar to our talent flow data. A small difference 

between the trends in talent flow and rating data is seen in the "Database Professional" 

category, where we found a higher percentage of review data on the company review 
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website compared to the talent flow amount. This discrepancy may be due to the focus 

on software engineers when requesting OPN data. Table 7 provides a general distribution 

of company ratings, with average ratings by position ranging from 3.52 to 3.75. 

Table 6. Statistic Information of Company’s Total Review Count by Position 
Position Group mean std min max 

Software Developer Professional 3,361.74 7,146.84 38 47,167 

Management Professional 586.88 1,035.72 5 8,108 

Consultant 851.97 1,706.83 9 9,002 

Data Professional 492.76 1,215.38 2 9,565 

Cloud & Architect 134.78 234.58 1 1,438 

Infrastructure Professional 178.95 350.68 1 2,660 

UI/UX frontend Professional 83.46 207.66 1 1,438 

Database Professional 362.78 1,132.84 3 5,910 

 

Table 7. Statistic Information of Company’s Average Rating by Position 
Position Group mean std min max 

Software Developer Professional 3.52 0.38 2.75 4.88 

Management Professional 3.58 0.45 2.46 4.91 

Consultant 3.53 0.54 1.58 4.91 

Data Professional 3.56 0.51 2.42 5.0 

Cloud & Architect 3.54 0.64 1.48 5.0 

Infrastructure Professional 3.54 0.58 2.14 5.0 

UI/UX frontend Professional 3.75 0.80 1.0 5.0 

Database Professional 3.60 0.73 1.87 5.0 
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Chapter 5. Experiment 

5-1. Training and Testing Data 

As mentioned in the chapter 4, the two types of preprocessed data is used to form the 

model input data. For each time t and position p, a source company 𝑐! has two kinds of 

features. One is the talent flow, denoted as 𝑓!#" , where	𝑗 ∈ [1,2…101]. These values are 

obtained from the talent flow adjacency matrix. The other feature is the rating score 

difference, denoted as ∆𝑟!#" , where 𝑗 ∈ [1,2…101] . These values are calculated by 

determining the rating difference between 𝑐!  and 𝑐# at time t. Therefore, each data 

instance has 202 features (101 talent flow values+ 101 rating score differences). We then 

remove data where the source company belongs to OOBC. For each position p, the dataset 

contains 3,000 instances of talent flow and rating information. For splitting the training 

and testing data, the dataset is split into approximately 75% training data and 25% testing 

data based on the time window. Therefore, the predicted target time of the testing data 

will be later than January 2020. This structured approach avoids that the training model 

data from information leaking. Additionally, we think that it is not reasonable to apply 

temporal validation since the dataset has only 30 time windows, it will lack of training 

data for our model in the first or second validation rounds. 

5-2. Evaluation matrices 

We set three kinds of evaluation metrics to assess our model’s performance: 
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l Mean Absolute Error (MAE): MAE provides a measure of the average magnitude 

of the prediction errors without considering their direction. It is calculated as formula 

5.1, where i means for each source company 𝑐! , and m means number of target 

company.  

𝑀𝐴𝐸 =
1
𝑚
[\𝑓!#" − 𝑓+!#" \
.

#0&

(5.1) 

l Mean Absolute Percentage Error (MAPE): MAPE provides a measure of prediction 

accuracy in percentage terms. It is calculated as formula 5.2, where 𝜀 is used to 

avoid division by zero when 𝑓!#" = 0 (set to 2 in our case). 

𝑀𝐴𝑃𝐸 =
100%
𝑚

[
\𝑓!#" − 𝑓+!#" \
𝑓!#" + 𝜀

.

#0&

(5.2) 

l Precision @ k (where k = [2, 3, 5]): Precision @ k measures the accuracy of a model's 

predictions by considering only the top k predicted values. It is calculated as formula 

5.3. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝑘 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑡𝑟𝑢𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑡𝑜𝑝	𝑘		

𝑘
(5.3) 

Note that for precision @ k we do not consider the value of talent flow to OOBC since 

it has less managerial significance. Therefore, we sort the other 100 talent flow values to 

get the top k companies. If the count of ground truth vector’s zero values is more than k, 

we only count the companies of the top non-zero values as our ground truth. 



doi:10.6342/NTU202403333

 37 

The purpose of choosing these three metrics is to observe the model’s numeric accuracy 

using MAE and MAPE, indicating how close the regression model’s results are to the 

ground truth amounts. Precision @ k shows the general order accuracy of the benchmark 

models, indicating whether the model can identify the trend of the source company’s 

talent flow target. Both MAE and MAPE are separately averaged and calculated for three 

kinds of prediction targets: self-loop𝑓!!", outflow amount 𝑓!#" , and outflow to OOBC’s 

talent flow amount 𝑓!&3&" . 

5-3. Hyperparameter Settings 

To ensure optimal performance, we tune several hyperparameters, including the 

number of cells in the model, the dimensions of the company embeddings, and the 

learning rate. These hyperparameters are adjusted through experimental procedures to 

achieve the best possible model performance. We apply Adam as the model training’s 

optimizer, and the learning rate is set to 0.00005. Other hyperparameter in our model such 

as the hidden dimension of the bi-directional GRU is set to be 2048, so the output 

dimension of our time series learning module will be 4096. The dimension reduction layer 

number is set to 2 and the corresponding output dimension is set to 1024 and 512. The 

learnable company embedding’s vector dimension is set to 200. All the model layer 
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dimension and the learning rate is tuned by grid search. Lastly, for the GRU input 

sequence length we set to 4. 

5-4. Benchmarks 

For our experiment’s benchmark models, we chose the following four approaches to 

compare with our model: 

l Auto Regression (AR) 

An AR model predicts future values based on a linear combination of past values. To 

align with our model, we set the AR model time window length to 4. 

l Vector Auto Regression (VAR) 

Unlike univariate autoregressive models, which predict a single time series based on 

its own past values, VAR models predict multiple time series simultaneously, considering 

the interrelationships between them. For data preprocessing for the VAR model, we 

flatten our talent flow adjacency matrix to fit the model. Similar to the AR model, we also 

set the VAR model time window length to 4. 

l Pair-wise RNN-based Model (Pair-RNN) 

Inspired by Xu et al. (2019), we designed a model structure and features using a pair-

wise approach for prediction. Figure 9 shows the model structure. To predict every talent 

flow amount from 𝑐!  to 𝑐# 	(𝑓!#"), the model includes pair-wise talent flow and rating 

features from time window t-n to t-1. The talent flow features of the model include self-
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loops of 𝑐! and 𝑐# (𝑓!!"%', 𝑓##"%'), in-out flow between the two (𝑓!#"%', 𝑓#!"%'), and total in-

out flow amount of	𝑐! and 𝑐# (𝑓!∗"%', 𝑓#∗"%', 𝑓∗!"%', 𝑓∗#"%'). For company rating features, we 

include self-rating (𝑟!"%', 𝑟#"%'), rating difference for each pair (∆𝑟!#"%'), review counts, 

and average self-rating for all positions. These 15 features are then fed into a Bi-

directional GRU model and a fully connected layer to predict the future talent flow value 

𝑓!#" . The model time window length is also set to 4. 

 
Figure 9. Model Structure of Pair-RNN 

l Company Distance-aware Time Series Prediction Model (CDA-RNN) 

This additional model considers the relationship or distance between companies when 

predicting talent flow between them. Figure 10 illustrates the model structure. We first 

utilize Global Vectors for Word Representation (GloVe) to obtain a company embedding 

vector for each company (Pennington et al., 2014). GloVe is initially designed to capture 

semantic relationships between words by analyzing word co-occurrence statistics from a 

large corpus and obtaining vector representations for words. In this model, we treat each 

company as a word and the co-occurrence of words corresponds to the talent flow in and 
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out flow amounts. Companies with higher talent flow amounts are considered to have 

closer relationships. 

 
Figure 10. Model Structure of CDA-RNN 

Technically, we first transform each time t's talent flow adjacency matrix into a non-

directional adjacency matrix, treating it as a co-occurrence matrix input for GloVe to 

learn each company’s embedding. After obtaining the embedding of each company, we 

use a bilinear layer to capture the interaction between the source company embedding 

and other companies’ embeddings, learning the relationships between each company 

pair. The relationship result is integrated with each talent flow and rating pair, denoted 

as 𝑑4&5%6 in Figure 10. The combined result is then fed into a Bi-directional GRU model 

and a fully connected layer to predict all future talent outflow values of 𝑐!. The model 

time window length is set to 4. 

5-5. Results 

The following tables show the evaluation results for each benchmark model and our 

model (CAR-TFP) for the position groups "Software Developer Professional" (Table 8), 
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"Consultant" (Table 9), "Management Professional"(Table 10) and "Data Professional" 

(Table 11). The results marked in bold represent the best performance for each evaluation 

metric, while those underlined indicate the second-best results. 

According to the results, we can see that our model outperforms other benchmarks in 

most indicators. Specifically, in the “Software Developer Professional” group (Table 8), 

our model shows superior performance in all metrics except for precision@5, where it is 

slightly lower than the best result. This indicates that our model can effectively predict 

talent flow amounts. 

Table 8. Results of “Software Developer Professional” 

 
Self-loop 

Avg to other 

companies 
To OOBC Precision 

MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

AR 88.4425 33.05% 0.8512 24.11% 22.7065 100.06% 58.66% 49.69% 48.03% 

VAR 257.1529 112.66% 0.2734 10.29% 16.145 91.23% 55.50% 46.86% 44.04% 

Pair-RNN 172.0582 24.32% 3.5084 161.58% 17.4642 88.52% 53.75% 40.86% 32.54% 

CDARNN 134.9162 28.06% 0.7026 31.54% 11.8999 69.82% 58.93% 44.81% 38.52% 

CAR-TFP 73.3302 14.07% 0.2426 9.40% 10.5559 56.91% 61.63% 50.01% 46.17% 

When comparing the four position groups together, the self-loop’s MAE and MAPE 

outperform the second-best benchmark by 11-12%. Similarly, the MAE and MAPE for 

talent flow to OOBC are slightly higher than the second-best benchmark by 5%. However, 

the MAE and MAPE of the average talent flow to other companies are slightly lower than 

the linear regression models in the “Consultant” (Table 9), “Management Professional”  

(Table 10) and “Data Professional” (Table 11) position groups. We attribute this to the 
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higher sparsity of the talent flow matrices in these position groups. Simpler models tend 

to predict values near 0 if the former values in the observed time windows are all 0, while 

more complex models might predict higher values due to the influence of other features 

or data, increasing the MAE and MAPE of the average talent flow to other companies. 

Despite this, our model’s precision @ k indicators mostly outperform other benchmarks, 

indicating that our model can still identify the top talent flow values accurately. 

Table 9. Results of “Consultant” 

  

  

Self-loop 
Avg to other 

companies 
To OOBC Precision 

MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

AR 15.7123 39.69% 0.0465 1.70% 3.867 56.89% 81.58% 78.38% 77.33% 

VAR 25.6199 68.09% 0.0584 2.47% 2.9554 55.80% 73.50% 70.97% 70.23% 

Pair-RNN 25.2963 35.44% 0.2244 10.35% 2.5922 28.22% 68.50% 65.11% 63.44% 

CDA-RNN 8.6591 24.72% 0.1015 4.65% 1.6966 38.13% 80.27% 76.93% 76.34% 

CAR-TFP 3.9191 12.96% 0.0632 2.72% 1.3397 26.91% 83.96% 81.30% 79.79% 

 

Table 10. Results of “Management Professional” 

  

  

Self-loop 
Avg to other 

companies 
To OOBC Precision 

MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

AR 10.1722 39.47% 0.0554 2.57% 1.8218 47.67% 53.91% 78.77% 78.40% 

VAR 16.726 73.53% 0.0297 1.31% 1.7163 44.01% 75.00% 73.36% 72.90% 

Pair-RNN 10.0221 26.61% 0.2626 12.73% 2.5806 57.25% 78.08% 75.75% 74.75% 

CDA-RNN 7.153 29.72% 0.0964 7.37% 1.3447 44.27% 79.70% 77.96% 77.27% 

CAR-TFP 3.3279 14.86% 0.0444 2.08% 0.9734 27.18% 84.93% 82.91% 82.20% 
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Table 11. Results of “Data Professional” 

  Self-loop 
Avg to other 

companies 
To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

AR 11.5564 51.30% 0.0195 0.73% 39.078 186.25% 56.66% 76.63% 75.84% 

VAR 12.5042 89.80% 0.0205 0.89% 1.5415 39.98% 73.33% 72.22% 71.68% 

Pair-RNN 11.4793 29.52% 2.3067 81.75% 2.5213 44.05% 39.66% 37.22% 36.30% 

CDA-RNN 5.8071 28.10% 0.0823 3.96% 1.3294 42.30% 70.15% 67.75% 67.45% 

CAR-TFP 2.9327 17.94% 0.0415 1.92% 1.060 29.99% 80.19% 77.78% 77.32% 

Comparing other benchmarks, we find that linear combination models, including AR 

and VAR, perform better in precision @ k indicators than non-linear benchmark models. 

However, in larger numeric predictions such as self-loop and OOBC’s MAE and MAPE, 

the non-linear models show higher performance. This suggests that linear models better 

capture the general trend of talent flow, while non-linear benchmarks are more effective 

at identifying and predicting peak values in a talent flow vector. 

5-6. Sensitivity Test 

We conducted a sensitivity test over the time window length. The following Table 12, 

Table 13, Table 14, Table 15 presents the results for the 4 position groups that we tested 

in the chapter 5-5. We found that a window length of 2 provides insufficient information 

about the talent flow trend, resulting in worse performance across most indicators. 

Conversely, a window length of 6 includes too much noise when predicting talent flow, 
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leading to decreased numerical accuracy. However, it maintains the ability to predict the 

general trend, as shown by the results of precision @ k. 

Table 12. Sensitivity Test of window size by "Software Developer Professional" 

  

  

Self-loop Avg to other companies To OOBC Precision 

MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

Length=2 90.6365 14.93% 0.2867 10.72% 10.9783 51.69% 61.64% 48.66% 42.76% 

Length=3 74.1926 14.18% 0.2736 10.48% 10.2959 55.54% 62.64% 50.21% 44.29% 

Length=4 73.3302 14.07% 0.2426 9.40% 10.5559 56.91% 61.63% 50.01% 46.17% 

Length=5 73.6780 14.16% 0.2506 9.74% 10.5689 57.78% 61.00% 49.95% 44.75% 

Length=6 74.7320 14.00% 0.2570 9.98% 10.7480 58.98% 61.77% 50.03% 44.79% 

 
Table 13 Sensitivity Test of window size by "Consultant" 

  

  

Self-loop Avg to other companies To OOBC Precision 

MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

Length=2 4.4686 14.08% 0.0747 3.15% 1.4430 25.49% 84.29% 81.19% 79.91% 

Length=3 3.9824 12.72% 0.0703 3.01% 1.4310 27.49% 83.47% 81.02% 79.40% 

Length=4 3.9191 12.96% 0.0632 2.72% 1.3397 26.91% 83.96% 81.30% 79.79% 

Length=5 3.9917 13.24% 0.0629 2.71% 1.4074 27.46% 84.57% 81.50% 80.35% 

Length=6 4.144 13.55% 0.0641 2.76% 1.4201 27.38% 83.90% 81.52% 80.40% 

 

Table 14. Sensitivity Test of window size by "Management Professional" 

  Self-loop Avg to other companies To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

Length=2 3.6566 13.43% 0.0512 2.38% 1.1406 29.34% 83.97% 81.56% 80.41% 

Length=3 3.3483 14.69% 0.0473 2.21% 0.9832 26.91% 85.08% 82.94% 82.06% 

Length=4 3.3279 14.86% 0.0444 2.08% 0.9734 27.18% 84.93% 82.91% 82.20% 

Length=5 3.3535 15.21% 0.0452 2.11% 0.9992 28.58% 85.03% 82.88% 82.19% 

Length=6 3.4465 15.67% 0.0456 2.13% 0.9901 28.19% 84.93% 82.73% 82.09% 

 

mailto:Precision@5
mailto:Precision@5
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Table 15. Sensitivity Test of window size by "Data Professional" 

  Self-loop Avg to other companies To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

Length=2 3.4625 16.77% 0.0434 2.00% 1.1254 28.80% 81.47% 78.91% 78.36% 

Length=3 3.1734 18.40% 0.0407 1.87% 1.0850 29.72% 80.34% 77.94% 77.32% 

Length=4 2.9327 17.94% 0.0415 1.92% 1.0603 29.99% 80.19% 77.78% 77.32% 

Length=5 3.2092 18.53% 0.0422 1.95% 1.0746 30.39% 80.19% 77.81% 77.46% 

Length=6 3.4597 19.20% 0.0427 1.98% 1.0678 30.46% 80.34% 77.78% 77.42% 

 

5-7. Ablation Test 

  We also conducted an ablation test to evaluate the effectiveness of each module in our 

model. The following Table 16, Table 17, Table 18, Table 19 presents the ablation test 

results for the 4 position groups. The experiments included "w/o rating", "w/o dimension 

reduction", and "w/o bilinear layer & w/ linear layer". 

l Experiment: w/o Rating 

This experiment removed the company rating data. We observed that the MAE and 

MAPE for self-loop, as well as precision@2 and precision@3, were slightly better when 

the rating data was included. 

l Experiment: w/o Dimension Reduction 

In this experiment, we removed the dimension reduction module, causing the hidden 

state of the time series learning module to directly feed into the company-aware layer 

with the company embedding. This resulted in a significant increase in model parameter 
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weight numbers. The results showed that the absence of the dimension reduction layer 

caused an average decline of 7% in MAE and MAPE indicators. 

l Experiment: w/o Bilinear Layer & w/ Linear Layer 

Here, we replaced the bilinear layer in the company-aware layer with a linear layer. 

The output from the dimension reduction layer was concatenated with the source 

company embedding and fed into the linear layer. All performance indicators worsened 

by approximately 10%, with the biggest difference being up to 22% worse than the 

original model. This highlights the importance of the interaction between the company 

embedding and the shared hidden state results. 

Table 16. Ablation Test of "Software Developer Professional" 

  Self-loop 
Avg to other 

companies 
To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

CAR-TFP 73.3302 14.07% 0.2426 9.40% 10.5559 56.91% 61.63% 50.01% 46.17% 

w/o rating 70.1013 13.56% 0.2367 8.89% 10.3467 51.58% 61.75% 50.19% 45.87% 

w/o 
dimension 
reduction 

105.4989 17.79% 0.5963 27.28% 11.1084 61.68% 61.49% 49.53% 43.47% 

w/o bilinear 
layer 115.6652 28.37% 0.5274 21.92% 13.3872 79.13% 58.27% 46.59% 39.91% 
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Table 17 Ablation Test of "Consultant" 

  Self-loop 
Avg to other 

companies 
To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

CAR-TFP 3.9422 13.06% 0.0687 3.61% 1.4526 32.39% 84.43% 81.47% 80.52% 

w/o rating 4.1206 13.09% 0.0398 1.56% 1.3814 26.49% 85.44% 82.40% 80.98% 

w/o 
dimension 
reduction 

7.7799 20.90% 0.4153 20.37% 1.5991 37.71% 72.44% 69.40% 68.18% 

w/o bilinear 
layer 6.6878 29.39% 0.0829 3.62% 2.3642 61.01% 79.01% 76.00% 74.90% 

 
Table 18 Ablation Test of "Management Professional" 

  Self-loop 
Avg to other 

companies 
To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

CAR-TFP 3.3431 15.25% 0.0550 2.60% 0.9830 27.87% 84.26% 82.28% 81.52% 

w/o rating 3.3494 15.00% 0.0233 1.01% 0.9741 26.71% 85.07% 83.18% 82.25% 

w/o 
dimension 
reduction 

4.8061 21.49% 0.4278 21.24% 1.1251 34.24% 75.44% 73.37% 72.49% 

w/o bilinear 
layer 7.481 32.99% 0.0559 2.63% 1.3111 41.44% 81.92% 79.79% 79.08% 

 
Table 19 Ablation Test of "Data Professional" 

  Self-loop 
Avg to other 

companies 
To OOBC Precision 

  MAE MAPE MAE MAPE MAE MAPE 
Precision 

@2 

Precision 

@3 

Precision 

@5 

CAR-TFP 3.1503 16.54% 0.0457 2.30% 1.0511 32.55% 80.48% 77.83% 77.43% 

w/o rating 3.3527 18.47% 0.0212 0.91% 1.049 28.49% 80.24% 77.86% 77.32% 

w/o 
dimension 
reduction 

4.1649 24.08% 0.4192 20.81% 1.2111 37.59% 71.97% 69.20% 68.79% 

w/o bilinear 
layer 5.3625 30.92% 0.0414 1.90% 1.4848 46.16% 72.93% 70.60% 70.30% 
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Chapter 6. Conclusion 

6-1. Summary 

In this study, we focus on the talent flow prediction problem, aiming to utilize historical 

company talent flow information to predict future talent flow amounts or percentages. 

This problem is crucial for supporting human resource teams in enhancing companies' 

talent management strategies and related implications. Despite its importance, few studies 

have concentrated on this area. We designed a company list-wise structure with a 

company-aware mechanism in a deep learning approach and leveraged company rating 

data as model features. Compared to existing models, our approach improved the 

predictive performance of each position group by an average of 3-4%. 

6-2. Contributions 

For model design, the company-aware structure in our model significantly enhances 

performance compared to benchmark models. By using company list-wise features and 

output structures, our model provides a more detailed distribution of outflow information. 

Additionally, the company embedding aware layer captures the unique talent flow 

patterns of different source companies after the shared time series learning layer. Notably, 

we are the first to incorporate company ratings as a model feature, which reflects 

employee satisfaction levels over time. 



doi:10.6342/NTU202403333

 49 

As for managerial contributions, our talent flow prediction model offers valuable 

guidance for developing effective talent strategies, including recruitment, retention, and 

turnover prevention. It also serves as a competitiveness detector, identifying potential 

competitors based on human resource dynamics. By accurately predicting talent flow, 

companies can better plan and implement strategies to maintain a competitive edge in the 

labor market. 

6-3. Future Research Directions 

l Optimizing the Current Model 

To enhance our current model, increasing the variety of data, particularly for positions 

beyond software engineers, is crucial. This expansion will improve generalization and 

provide deeper insights across various roles. Another approach is to develop a multi-task 

learning framework that simultaneously predicts talent flows for multiple positions within 

a company. This framework can leverage shared information across different job 

positions, improving prediction accuracy. Additionally, considering the interactions and 

dependencies between different job position groups, such as the impact of talent flow 

between software professionals and consultant roles, could refine predictions. A deeper 

analysis of company reviews is also recommended. While we used company rating scores, 

their influence was limited. Analyzing the textual content of reviews through sentiment 

analysis could extract new features, such as underlying sentiments and factors influencing 
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employee satisfaction. This could involve forming arrays of mentioning factors and 

performing cosine similarity between companies. 

l Extension Related Topics 

Future research could explore the connection between talent flow information and 

other company actions, such as predicting new product lines or market entries based on 

talent recruitment patterns. This approach could support tasks related to predicting 

company actions and understanding market dynamics. By linking talent flow data with 

strategic company decisions, we can gain a more comprehensive understanding of how 

talent dynamics influence overall business strategies and competitiveness. 
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