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Abstract

This thesis addresses the problem of talent flow prediction by leveraging historical job

transition data from Online Professional Networks to forecast future talent movements, a

crucial task for human resource teams in developing effective talent management

strategies. Previous approaches used a pair-wise structure for feature engineering and

prediction. However, the pair-wise structure can only provide aggregated features of the

network and does not leverage the distribution from a focal company to other companies.

Additionally, previous studies have used stock data as an additional data source, yet stock

data can be sensitive to many market signals.

To address these limitations, we proposed a deep learning model employs a company

list-wise structure and company rating data as features and feed into a RNN-based model

to learn the time series features. After that, our model's company-aware structure and

embedding layer effectively capture each focal company’s unique talent flow patterns. It

demonstrates a 3-4% improvement in predictive performance over existing models across

various positions.

Keywords: Talent Management, Talent Flow Prediction, Deep Learning, RNN-based

Time Series Learning
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Chapter 1 Introduction

1-1. Background

Talent stands out as a primary source of competitive advantage for contemporary

companies (Hongal & Kinange, 2020). As the global workforce expands, becomes more

diverse, and exhibits higher mobility, organizations must invest increased efforts in

managing their workforce to acquire and sustain global competitive advantages (Tarique

& Schuler, 2010). Consequently, talent management plays a pivotal role for organizations

in today's fiercely competitive and dynamic environment.

According to a research article by McKinsey & Co (2021), the "Great Attrition" in

2019, during which more than 19 million U.S. workers resigned from their jobs since

April, prompted many companies to adopt a talent-first culture to prevent similar

occurrences. Additionally, with regards to company performance, a survey demonstrated

that talent management ability, encompassing the attraction and retention of talent, exerts

a positive influence on a company's total returns to shareholders (TRS) (McKinsey & Co,

2018). It is asserted that companies with effective talent management are six times more

likely than those with ineffective talent management to achieve higher TRS than their

competitors (McKinsey & Co, 2018). Given the compelling evidence, it is evident that,

to maintain a competitive advantage and surpass competitors in this dynamic environment,

talent management emerges as a crucial concern for companies worldwide.
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Within the realm of talent management, talent flow stands out as a significant challenge

in its implementation (Carr et al., 2005). Originally, talent flow denoted a process wherein

valuable workers moved between countries, motivated by factors such as seeking foreign

work experience or returning to their home country to capitalize on economic

development (Carr et al., 2005). Furthermore, talent flow manifests at the organizational

level, signifying employees transitioning from one company to another (Xu et al., 2019),

which can also be referred to as external job hops (Oentaryo et al., 2018).

Based on an article of Harvard Business Review, a real-world example of the talent

flow challenge for organizations is when high-functioning groups within a company are

headhunted by competitors, a phenomenon known as “lift outs” (Groysberg & Abrahames,

2006). One instance of a “lift out” is Conseco Capital Management, which lost its chief

equity investment officer and several department members to a competitor, resulting in

significant client loss. Another example is the investment bank HSBC, which was left

with only a graduate trainee to handle media equities analysis after its entire team of

media analysts departed for ABN AMRO. Such abrupt departures can lead to premature

internal promotions (Groysberg & Abrahams, 2006).

Numerous studies have demonstrated that the analysis of organizational talent flow

holds considerable impact in fields such as human resource planning, global brain drain

analysis, and company recruitment. Talent flow reflects the dynamics of the workforce,
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job market, and employers (Oentaryo et al., 2018; Xu et al., 2019). Beyond these

applications, the examination of talent flow across companies can serve as an indicator

of a company's competitiveness, illustrating its allure to prospective job seekers (Zhang

et al., 2020).

In summary, amid the escalating significance of talent management for companies

seeking to retain, attract, and sustain their competitive advantages, studies of talent flow

emerge as a viable approach to meet these objectives.

1-2. Overview of Previous Studies

In the field of talent flow studies, research can be categorized into two groups: talent

flow analysis and talent flow prediction. Talent flow analysis aims to investigate the

factors influencing talent retention or turnover within an organization or region, as well

as to observe talent flow patterns (Qin et al., 2023). Previous studies exploring the factors

of talent retention or turnover typically utilized surveys as their research method. These

factors include economic, political, and cultural elements that drive high-level talent to

relocate within a country or even migrate internationally (Carr et al., 2005; Zhou et al.,

2018).

However, these studies exhibit three limitations due to their reliance on survey data

(Qin et al., 2023). First, they are costly, as they require substantial time and financial

resources to design, distribute, and analyze surveys. Second, survey studies often have a
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limited scope, focusing primarily on regional levels, which restricts the generalizability

of the findings to broader populations or different geographic areas. Lastly, survey studies

are non-retrospective, meaning they cannot be revisited to analyze additional factors or

adjust the granularity of data once they are completed. This lack of flexibility hinders the

ability to explore new insights or refine the study's focus based on initial findings (Qin et

al., 2023). Consequently, a broader understanding of talent flow across regions may be

obscured by the localized focus of these studies.

On the other hand, previous research on talent flow patterns has fully utilized Online

Professional Networks (OPNs) as data sources. In recent years, OPNs such as LinkedIn

have gained widespread popularity. Millions of job seekers globally have updated their

digital resumes across 200 countries while actively job hunting, as indicated by the

LinkedIn official website (LinkedIn, n.d.). Users willingly share their work experience,

education, and accolades publicly on OPNs for job-seeking purposes and to expand

professional connections. This extensive job transition data provides a unique opportunity

for talent flow quantitative studies, allowing for insights on a larger scale of the talent

pool and facilitating more precise analyses concerning location, organization, and time

(Xu et al., 2019).

As a result, previous research on talent flow patterns has been able to utilize data

mining techniques to extract features from OPN information in order to gain insights into
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talent flow patterns, such as regional or organizational job hopping and job-level talent

flow network connectivity analysis (Qin et al., 2023). These techniques enable a more

comprehensive understanding of how talent moves across different regions and

organizations, providing valuable information for both academic research and practical

applications in human resource management and recruitment strategies.

In addition to talent flow analysis studies, talent flow prediction primarily focuses on

anticipating changes in the labor market by predicting the actual future talent flow amount

or percentage at the organizational level (Xu et al., 2019; Zhang et al., 2019). This

predictive approach provides valuable guidance for developing effective talent strategies

(Qin et al., 2023). Latent variable modeling and time series techniques are employed to

enhance the accuracy and flexibility of such predictions.

To date, only two studies have focused on this problem. Zhang et al. (2019) utilized

normalized talent flow matrices and matrix factorization modeling techniques to predict

future yearly normalized talent flow. In another study, Xu et al. (2019) aimed to use

employed pair talent flow features and stock data to predict future monthly company pair-

wise incremental talent flow amounts. These studies demonstrate the potential of

advanced modeling techniques to forecast talent movements, thereby enabling

organizations to better prepare for and respond to changes in the labor market.

1-3. Motivation

doi:10.6342/NTU202403333



Given the limitations of survey studies, including high costs in terms of time and money,

limited research scope, and lack of retrospective analysis, we aim to leverage Online

Professional Networks (OPN) data in our research. Although talent flow prediction is

crucial for developing detailed talent strategies, there are few studies focused on this issue.

The two existing studies on talent flow prediction have successfully modeled the problem,

yet they present certain limitations.

First, the inner product operation in matrix factorization constrains its ability to

represent the complex relationships between companies, as the predicted value is based

on a linear combination of features (Song & Wang, 2022). Second, pair-wise features

only provide aggregated features of the network and do not leverage the distribution from

a focal company to other companies. Lastly, stock prices are influenced by numerous

market signals, making them sensitive and potentially unreliable for predicting talent flow.

1-4. Research Objective

Our proposed model Company-aware RNN-based Talent Flow Prediction Model

(CAR-TFP) incorporates the following features:

® Deep Learning Approach: The deep learning model structure is capable of capturing

complex interactions between companies and is extendable for multiple tasks. This

approach allows for a more nuanced understanding of the factors influencing talent

flow.
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Company-aware Structure: For a focal company, we incorporate all talent out flow

amounts as data features and predict its talent flow simultaneously. This ensures that

the interactions of each talent flow value are considered. To model this structure, we

use a company embedding awareness approach to capture the unique talent flow

patterns of each target company.

Company Ratings: Online company review websites such as Glassdoor and Indeed

attract millions of unique job seekers who provide reviews. For instance, Glassdoor

boasts over 55 million unique monthly visitors and hosts more than 180 million

reviews shared by employees across 20 countries (Glassdoor n.d.). Compared to

stock prices, company ratings directly reflect the sentiments of former or current

employees about working at the company, making them more relevant to talent flow.
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Chapter 2 Literature Review

As stated in the previous chapter, we categorized related studies into two categories:

talent flow analysis and talent flow prediction. In this chapter, we aim to review the

research that falls within these two topics.

2-1. Talent Flow Analysis

Since talent flow analysis plays an important role in the field of talent management and

human resource management, numerous studies have explored this area using various

topics and approaches (Carr et al., 2005). Research in this domain can be broadly

categorized into two primary areas: factors influencing talent retention and turnover, and

talent flow patterns. These studies often focus on different levels, such as country,

industry, or company.

2-1-1. Factors Influencing Talent Retention and Turnover

Research on factors influencing talent retention and turnover typically employs

qualitative methodologies, using surveys to gather data from targeted groups of talents,

such as immigrants or high-skilled professionals in a specific industry. The primary aim

of these studies is to identify the factors that either retain valuable talent or drive them

away, thereby addressing the issue of "brain drain". These factors include economic,

psychological, and career-related aspects (Mao et al., 2009).
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For instance, two investigations conducted in New Zealand aimed to understand why

high-skilled knowledge workers migrate or leave the targeted region. The studies revealed

that lifestyle and family considerations serve as "pull" factors, encouraging knowledge

workers to return home, while career and economic issues act as the main "push" factors

for those choosing to stay overseas (Carr et al., 2005; Jackson et al., 2005). These factors

can be further categorized into global features and local realities, where political and

career opportunities fall under global features, while cultural values and family traditions

are regarded as local realities (Carr et al., 2005).

Other research focuses on factors influencing the development of specific industries

within cities, such as the challenges faced by Wuhan's automotive sector in China (Mao

et al., 2009). In this case, talent shortages were identified as a significant challenge,

primarily influenced by career and job-related aspects, including income, working

environment, and industry cluster characteristics. Additionally, other crucial factors were

linked to individual and urban environmental aspects (Mao et al., 2009). Another example

is the study on Taipei's fashion industry, which revealed that the creative and cultural

economy environment significantly influences talent retention in the city (Hu & Chen,

2014). This finding shows different factors with the results observed in Wuhan's

automobile industry, illustrating differences attributable to industry and talent

characteristics.
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2-1-2. Talent Flow Patterns

Studies focusing on identifying talent flow patterns have fully utilized information

from Online Professional Networks (OPNs) by extracting data such as resume position

titles, job duration, and working seniority. These studies aggregate information based on

target granularity, such as country, city, or industry, allowing researchers to compare

differences in culture or economic development levels (State et al., 2014, Oentaryo et al.,

2018).

For instance, a study on professional migration in the United States utilized LinkedIn

data to identify migration patterns between the United States and other regions (State et

al., 2014). The findings indicate a decline in employment-based migrants to the United

States, but an increase in students choosing the United States for overseas studies, with

Asia emerging as a major destination for professional migration due to job opportunities.

Another study compared job-hopping patterns within a region, specifically between

Singapore, Hong Kong, and Switzerland (Oentaryo et al., 2018). By extracting attributes

based on job titles, such as average working experience years and average job ages, the

study revealed characteristics of job hops, distinguishing between promotions and

demotions. Notably, workers in Singapore tend to achieve promotions through external

job hops (joining other companies), while more Hong Kong employees experience

promotions through internal job hops (within the same company).

10
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Other studies in this category view talent flow as a graph, employing clustering or

graph learning techniques to identify job-hopping patterns and compare competitiveness

between companies within the defined talent flow network. One study introduced a real-

time system, JobMiner, designed to highlight the most influential companies and

community information within the talent flow network by calculating their closeness and

PageRank (Cheng et al., 2013). Another study developed a talent circle detection

technique based on job transition networks, aiding human resource teams in identifying

talent sources through clustering methods that maximize in-circle edge weights,

representing the volume of talent flow (Xu et al., 2016). For graph learning techniques,

one study adopted these methods to approximately calculate the Personalized PageRank

of each company node in the talent flow graph. By learning the two attraction vectors of

each company, the study demonstrated a comparison of competitiveness between each

company pair (Zhang et al., 2020).

In summary, talent flow analysis of factors influencing talent retention and turnover

predominantly concentrates on the regional level, aiming to identify the factors

influencing high-skilled workers' decisions to stay or leave. The outcomes of these studies

exhibit variations based on the specific industry and region under investigation, resulting

in limited generalizability. Furthermore, these studies often lack large-scale market data,

limiting their capacity to offer predictive insights into talent flow dynamics (Zhang et al.,

11
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2019). On the other hand, talent flow pattern studies fully utilize the large scale of OPN
data for more quantitative analyses. The insights garnered from these studies provide a
more precise understanding of regional and organizational talent flow networks, aiding
in strategic planning for organizational human resources.

2-2. Talent Flow Prediction

As mentioned in the chapter 1, talent flow prediction studies focus on predicting the
actual future talent flow amount or percentage at the organizational level. They also
leverage OPN data to investigate historical labor market changes to predict future trends
in the talent flow network. Only two studies have been found in the field of talent flow
prediction, by Zhang et al. (2019) and Xu et al. (2019).

Zhang et al. (2019) leveraged normalized talent flow matrices and matrix factorization
techniques to predict future yearly normalized talent flow. Figure 1 shows the structure
of their approaches. For data preprocessing, they filtered companies that appear more than
1,000 times in their OPN dataset. They also categorized positions into 26 groups to predict
company-wise talent flow percentages for each position group. The talent flow data was
arranged to form a 3D talent flow adjacency matrix.

From this matrix, they derived two kinds of latent factors: origin company U} and
destination company Vjt at time slice ¢, and a time-independent factor for each position

W, The inner product combination of these three vectors represents the talent flow value

12
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from company i to company j for position k. The authors also applied an evolving tensor
factorization technique to handle dynamic talent flow matrices. At time ¢, the latent
vectors of company i, Uf and V}, evolve through a combination of the previous vectors
at time #-1 (U1, V1) and the vectors of neighboring companies (those with more than
one transition) at time #-1. For initializing the latent factors, they assumed a zero-mean
Gaussian distribution. To avoid overfitting in the matrix factorization method, the authors
applied a company similarity regularizer in their loss function of the training model. This
regularizer ensures that the components of the latent vectors are similar if their
corresponding company attributes are similar. These attributes include the company’s

industry, scale, location, specialties, type, and age.

t-n

positio‘n\ 3 2
©C00 =' 000

Figure 1 . Approach of Zhang et al. (2019)

On the other hand, the study by Xu et al. (2019) utilized company pair-wise talent flow

features and stock data to predict future monthly pair-wise incremental talent flow

amounts. The below Figure 2 shows the model structure of the study. For talent flow data

preprocessing, they filtered public companies as their target and extracted talent flow data

where the start time of the later job must be within £2 months of the end time of the

13
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former job. To predict each talent flow from company ¢; to company ¢; in time slice ¢,
the model features include historical monthly talent flow and historical monthly stock
information. Historical monthly talent flow features include self-loops of ¢; and c;
(fi ™, fjg-_"), in-out flow between the two ( fl-g-_", fjti_”), total in-out flow amount of ¢;
and ¢; itself (i7", fL7" £ f5™), and total in-out flow of ¢; and ¢;’s industry,

where 7 is a list of integers less than 7. Additionally, historical monthly stock information

t—n

i~ and trading volumes v;™",v;™" of the

. ' : t—n
includes ¢; and ¢;'s stock prices p; ™", p :

month’s last trading day.

The model structure contains two bi-directional LSTMs, which learn the time series
trend of the talent flow features and stock price features separately. The hidden states of
the two LSTMs at the same time slice are then concatenated for the prediction module.
The attention-based decoder takes the concatenated hidden states to obtain the attention
weights and combines the hidden states to form h*. After that, the company profiles of
¢; and ¢; are added along with the previous step’s result s*™"', A%, and the previously

predicted talent flow ﬁ-}‘l to form the predicted talent flow flj

14
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Figure 2. Approach of Xu et al. (2019)

The two studies on talent flow prediction employ different model structures to address

the problem. Table 1 provides a general comparison between the two studies.

2-3. Research Gap

This research explores the application of deep neural networks to improve talent flow

prediction. Compare with matrix factorization, deep learning models can effectively

capture the complex non-linear relationships between talent flow values across companies

and time windows but also leverage scalable and extendable features and tasks. This

research aims to provide a more detailed understanding of talent dynamics.

Furthermore, previous study of Xu et al. (2019), have treated all job positions

uniformly in their predictions. While this method provides a general overview of talent

flow, it lacks the granularity necessary for detailed talent management strategies. Our

study proposes grouping similar positions and modeling them separately to derive more

actionable insights for future talent management.
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Additionally, Xu et al. (2019) employed a company pair-wise structure for modeling

talent flow. This approach, however, fails to utilize trends from other companies’ talent

flow data. Our study aims to predict talent flow by leveraging the values of a focal source

company in relation to other companies, thereby capturing the interactions and trends of

outflow talent values more comprehensively.

Table 1 Comparison of Talent Flow Prediction Studies

Prediction Target Data Source Prediction Method

Xu et al., | Pair-wise monthly | Historical OPN data RNN based modeling
2019 incremental talent flow | Company stock price | with encoder-decoder
amount of future m | Company static profile | prediction layer

months

Zhang et | Normalized yearly | Historical OPN data Latent  factor-based

al., 2019 | talent flow rate | Company static profile | Evolving Tensor

grouped by position Factorization model

Lastly, Xu et al. (2019) addressed the sparsity problem in talent flow prediction using

stock price information. However, stock prices are often volatile and influenced by

numerous external factors, potentially introducing noise into the model. We suggest

incorporating company reviews, which reflect employee satisfaction and provide more

stable indicators of a company's attractiveness to potential talent. This adjustment aims

to enhance the accuracy of talent flow predictions by considering the direct experiences

and ratings of current and former employees.

16
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Chapter 3 Methodology
3-1. Problem Formulation

Based on previous research on talent flow prediction, we can form a talent flow
network as follows: At each time 7, a talent flow network G* is formed by company
nodes C and the talent flow amounts between companies F’. The target companies are
static through time. The talent flow amount from company i (¢;) to company j (¢;) is
denoted as flg We also obtain company rating data as a model feature, where 7! is the
average company rating of ¢; at time ¢, and the difference between 7 and rjt is
denoted as Arfj. Each position p has its independent sequence of talent flow networks,
allowing us to model each position's network separately.

Given a sequence of talent flow networks from G'™ to G'™1, where 1 <n<t,
each G'™™ contains company talent flow amounts F‘~™ and review ratings R*~". The
goal of our model is to predict the future talent flow amount F® by modeling the above
features.

3-2. Model Structure

Our model consists of five modules: the time series learning module, the dimension
reduction module, the learnable company embedding, the company embedding aware
layer, and the prediction layer. The following Figure 3 shows a general structure of our

model.

17
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Talent Flow from OPN | Company Rating Data |

Figure 3. Structure of Company-aware RNN-based Talent Flow Prediction Model
(CAR-TFP)

3-3. Input
As mentioned in previous chapters, we consider a company list-wise in-output structure
for prediction, which also incorporates rating data. More precisely, for each time t and
position p, a source company c¢; will have two kinds of features: talent flow amount and
rating difference, forming the input vector x/.
® Talent Flow Amount ( fiS-): This represents the talent outflow amount from ¢; to ¢;,
where j € [1,2...m]. m is the number of target companies considered.
® Rating Difference (Aritj): This is the average rating difference of ¢; compared to
each ¢;, where j € [1,2...m].

Therefore, x{ will contain 2m features.

18
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3-4. Time Series Learning Layer

To predict the next talent flow value, we treat this as a time series problem. We choose
the Gated Recurrent Unit (GRU), which is a Recurrent Neural Network (RNN)-based
model, to learn the talent flow trend. The GRU model will process the input vectors x}
to capture temporal dependencies and trends in the talent flow data, facilitating accurate
predictions for future talent flows.

In our model, the GRU layers are set bi-directional to enhance the prediction ability,
since the model learn the talent flow trend from both sides. Formula 3.1 shows we put a
sequence of input data with window length of n in the GRU layers. After getting the two

final states of bi-directional GRU, we concatenate them together to form h,;.

h; = GRU([x!™*...xt™)), (3.1)

3-5. Dimension Reduction Layer

The dimension reduction layer acts as a buffer between the bi-directional GRU module
and the company embedding aware layer due to the significant dimension difference
between them. We use multiple fully connected linear layers to reduce the high-
dimensional output from the GRU module. The mechanism of a dimension reduction
layer is shown in Formula 3.3.

di = thi + br. (32)
19
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WT is the learnable weight matrix, while b” is the bias vector. W™ € R™@*"s_ where

n, is dimension of h; and n,; is the dimension after dimension reduction. This

9
dimension reduction process ensures that the data is in a suitable form for further

processing in the company embedding aware layer, maintaining computational efficiency

and improving model performance.

3-6. Learnable Company Embedding

In our model, the company embedding aims to capture the distinct talent flow patterns
of different source companies after the shared time series learning and dimension
reduction layers. While the shared layers can learn general talent flow trends over time,
they may not capture the unique patterns of each source company. To address this, we
introduce a time-independent learnable embedding vector e; for each company c;,
where e; € R¥ and k is a hyperparameter that defines the dimensionality of the

embedding.

3-7. Company Embedding Aware Layer

This module is designed to capture the unique talent flow patterns of each source
company by combining e; with the final state of the shared time series learning and
dimension reduction layer, d;. We use a bilinear layer to perform this combination. A
bilinear layer is a 3D matrix that learns the interaction between two input vectors by

performing matrix multiplication with the layer’s learnable weight. The bilinear layer has
20
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been used in vision problems, such as image classification tasks, where two CNN-based
feature extractors need to capture pairwise feature interactions in a translationally
invariant manner (Freeman & Tenenbaum, 1997). Although we considered using a linear
layer, which would concatenate the two vectors and perform linear transformation, we
found that it would only sum the weighted e; and d; to produce the prediction value.
This approach does not capture the interactions between e; and d;. Since our goal is to
model the interaction between these vectors to capture different patterns for each source
company, we chose the bilinear layer.

The bilinear layer can be formulated as the following formula 3.3. W? is the learnable
weight of bilinear layer, b? is the bias of bilinear layer, $} is the layer’s output at time
t, where d; € R™, ¢; € R¥, §f € R™, WP € R™"a** | Expanding Formula 3.3 to
Formula 3.4 illustrates that the n-th matrix of the first dimension multiplies e; with d;
to form the n-th value of the output vector, which m is the output layer’s dimension.

yt =dwhe; + bP. 3.3)
flfz = Z]b=lzlk=1dijwri)jleil + by, (3.4)
n € [1,2,..m].
3-8. Prediction Layer
For the prediction layer, we use the Leaky ReL.U activation function to transform the

results from the Company Embedding Aware Module. This choice helps avoid neurons
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being permanently inactive, which can occur with the standard ReLU activation when the
output is less than zero. The Leaky ReLU function can be described by the Formula 3.6,
where o is a very small number.

{fij. if f;;=20 3.6)

aff. if f5<0
The output ! is a vector representing the talent outflow amounts of the input source
company c¢; at time ¢. This includes outflows from c¢; to itself and to other target
companies, so $¢ can be expressed as [, f5, ... ft.].
3-9. Parameter Learning
The loss function for the model is the Mean Absolute Error (MAE) loss, which
measures the difference between the predicted values 9 and the ground truth yf. Given

one company c;, its loss shown as Formula 3.7.

m
Loss = Zl]% il (3.7)
j=1

The learnable parameters in the model include the layer weights and biases (W*, b*)
as well as the company embeddings (e,). These parameters are optimized using
backpropagation through time. Additionally, hyperparameters such as the number of cells
in the model, the dimensions of the company embeddings, and the learning rate are tuned

through experimental procedures.
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Chapter 4 Data

Our data preprocessing consists of two separate processes due to the two data sources:

OPN data and company review data. After these preprocessing steps, the two types of

features, namely the talent flow amount and the rating score difference, are arranged into

the model's input data and then split into training and testing datasets. A general process

flow chart Figure 4 is shown below:

-I Talent Flow Preprocessing |

1. Data Collection 2. Company 3. Position 4. Talent Flow
& Cleaning Filtering Grouping Extraction

5. Talent Flow
Network
Formation

1

-| Rating Data Preprocessing F

1. Review Data
Collection &

2. Position
Grouping

Model Input
Arrangement

Split
Training/Testing
Data

3. Rating Score 4. Dealing with
Aggregation null values

Figure 4 Data Preprocessing Process

Rating Extraction

4-1. Talent Flow Preprocessing

4-1-1. Data Collection & Cleaning

For OPN data collection, we chose LinkedIn as our target platform because it is one of

the largest OPN platforms, with millions of job seekers updating their digital resumes.

We obtained a dataset of LinkedIn users from The Bright Initiative, a global organization

dedicated to promoting positive change by providing public bodies, non-profit

organizations, and academic institutions with public web data. In this study, we are

interested in the software industry, specifically profiles with the keyword "software
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engineer" in past work experiences. The Bright Initiative provided us with a dataset of

2,032,845 publicly available employee profiles from LinkedIn worldwide.

For the data cleaning process, we followed the procedures outlined by Wang (2023).

Initially, we removed work experiences with abnormal job information, such as jobs

where the end time was earlier than the start time. We also excluded records with

important missing values, including start time, end time, company, and position title.

Additionally, we filtered out jobs that did not meet our requirements, such as internships,

part-time jobs, military jobs, academic experience, and volunteer experience.

4-1-2. Company Filtering

Next, we counted the appearance frequency of companies per resume, ensuring each

company was counted only once per resume. We selected companies with an appearance

frequency of no less than 100 times, resulting in 1,563 companies. Other companies were

coded to the "out of bag company" (OOBC) category. After this transfer, we removed

resumes containing only OOBC experiences, leaving us with 387,464 resumes.

4-1-3. Position Grouping

For position title cleaning, we removed stop words, punctuation, and converted all titles

to lowercase. We then used a predefined dictionary to extract keywords from position

names, allowing us to merge positions with the same keywords (e.g., SSE to senior

software engineer). The predefined dictionary contained domain-specific Named Entity
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tags identifying responsibility or functional words (e.g., engineer, manager, system,

finance) (Liu et al., 2020). For each merged position, the most frequent original position

was selected as the standardized position name, resulting in 106,829 standardized

positions. We selected positions appearing no less than 50 times, resulting in 2,227

positions.

To group positions with similar functions, we applied grouping rules and manual

checks. The detailed grouping rules are shown in Table 2.

Table 2. Position Grouping Rules and Results

Group

Rules (position title w/ or w/0)

Count

Example

Software Developer

w/ software, programmer, developer, engineer

1,116 (50%)

C# Developer,
Principal Firmware

Professional w/o consult Engineer, Mobile
Software Engineer
Management w/ project, product Technical Project Lead,
234 (10.5%) |IT Project Coordinator,
Professional w/o0 engineer Project Analyst
w/ consult, account Sales Consultant,
Consultant 231 (10.3%) Suppoﬁ Consqltant,
w/0 software Associate Business
Consultant

Data Professional

w/ data, etl, machine learning

w/o database, dba

126 (5.6%)

Technical Business
Analyst, Principal Data
Engineer, Data
Scientist

w/ cloud, architect, application

Application Architect,
Java Architect,

w/o consult

H o
Cloud & Architect w/o consult 99 (4.4%) Enterprise Cloud
Architect
Infrastructure w/ network, infra, linux, os Network Consulting
76 (3.4%) |Engineer, Infrastructure
Professional w/o software Specialist
w/ web, front, user, ui, ux Full Stack Web
UI/UX frontend Developer, Senior UI
49 (2.2%) .
Professional w/o consult Engineer, UVUX
Designer
w/ database, dba, tableau, sql, hadoop, sap, Database Developer,
SAP Developer, Oracle
Database Professional oracle 37(1.6%) |pL/ SQL Developer
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The grouping was based on required keywords and the absence of other groups'

required keywords. After rule-based grouping, we manually checked all position titles to

avoid special cases and ensure they fit within the group requirements. This process

resulted in 8 groups containing 1,968 positions, while positions not considered were

transferred to the "out of bag position" (OOBP) category. After the position cleaning and

filtering process, we removed resumes containing only OOBP experiences, resulting in a

final dataset of 195,969 resumes.

4-1-4. Talent Flow Extraction

The remaining resumes are processed by sorting the jobs in each resume by their start

date. If jobs have the same start date, the job with the later end date is placed first, as it

tends to be more primary in an individual's experience. This step ensures the correct order

when extracting talent flow. We then loop through each resume's experiences to extract

talent flows, categorizing them into four types: short blank period, long blank period,

partial overlap, and full overlap. These four types of talent flow can be shown in Figure

5, where prefix F means former job, prefix L means later job, F and L can be same in

company.

For the short blank period, the later job’s start date is later than the former job’s end

date but no more than a year after. We process this type of job transfer at the time of the

former job’s end date. For the long blank period, the later job’s start date is more than a
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year after the former job’s end date. This kind of job transfer has too long a blank period
for a typical job transition, so we insert an "OOBC" experience between the two jobs.

In partial overlap situations, the later job’s start date is earlier than the former job’s end
date, but the later job’s end date is still later than the former job’s end date. This situation
suggests that some employees start a new job while continuing their former job. We
process the talent flow to occur at the time the former job ends. Lastly, for contained
overlap, the later job’s start date is earlier than the former job’s end date, and the later
job’s end date is not later than the former job’s end date. We count only the former jobs

that have longer durations, are ordered first in the resume, or are not OOBC.

tl 2 t3 t4 (OOBC)

Short Blank Period

! H
: !
! !

F_EndDate <L_StartDate <= F_EndDate + 365 days [ L ] EE—am

Long Blank Period

L_StartDate > F_EndDate + 365 days
Partial Overlap

L_EndDate >F_EndDate>L_StartDate
Contained Overlap

L_StartDate & L_EndDate <=F_EndDate

Figure 5. Talent Flow Extraction Types and Preprocessing Rules

4-1-5. Talent Flow Network Formation

To focus on talent flow between a limited number of companies, we select the top 100

companies that appear most frequently by resumes and transfer companies not in the list

of target companies to OOBC. We also combine consecutive OOBC jobs into one job for

easier processing.
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The final step of our talent flow preprocessing is to format our talent flow matrices.

We set our time window size to 6 months, covering the period from January 2008 to

December 2022, because our company review dataset starts from 2008. This results in 30

time windows in our dataset. We then separate valid talent flows into each time window

and position, aggregating these flows within the same group to form an adjacency matrix.

After aggregation, we obtain sequences of adjacency matrices for 8 positions. Each

sequence has a length of 30, and each matrix is in the shape of 101 * 101 (100 target

companies + OOBC).

4-2. Talent Flow Exploration

The following Figure 6 illustrates the aggregated talent flow amount grouped by

position over time. Additionally, Table 3 presents the statistical information of the target

companies' outflow amounts by position groups. The figure shows that, in general, all

positions have increased consistently over time, reflecting the growing number of users

on OPNs. Specifically, the "Software Developer Professional" group has the largest talent

flow amount, followed by "Consultant", "Management Professional", and "Data

Professional". This trend is likely due to our focus on resumes containing software

engineer experiences. The steady increase in talent flow across all positions indicates the

expanding user base and the dynamic nature of job transitions within the software industry.

The detailed statistics in Table 3 further highlight the prominence of software-related
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roles in the dataset, underscoring the relevance

experiences in understanding talent flow patterns.

60k

50k

40k

amount

30k

of our focus on software engineer

position
Cloud & Architect
Consultant

~—— Data Professional

——— Database Professional
Infrastructure Professional
Management Professional
Software Developer Professional
UI/UX frontend Professional

2008 2010 2012

2014

2016

datetime

2018

2020 2022

Figure 6. Talent flow size (sum of cells in each adjacency matrix)

Table 3. Statistics of sum of outflows across time windows by companies and positions

Position Group mean std min max

Software Developer Professional 14,069.61 19,746.19 1,197 134,427
Management Professional 1,242.30 2,578.34 20 20,025
Consultant 1,715.62 4,341.53 3 31,246
Data Professional 594.53 2,081.14 3 20,563
Cloud & Architect 593.00 1,128.17 3 7,028
Infrastructure Professional 221.29 455.10 0 2,959
UI/UX frontend Professional 91.14 209.74 0 1,886
Database Professional 48.09 86.21 0 554

We also present the average talent outflow rate for the company along with the outflow

rates to the top 1 and top 3 competitors. For instance, Table 4 displays the top 10

companies in terms of talent flow size within the "Software Developer Professional"

category and their respective average talent outflow rates. From the data, it is evident that

Google and Microsoft have relatively low outflow rates, indicating that most employees
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tend to remain with these companies. In contrast, Wipro and Tech Mahindra exhibit

higher outflow rates, approximately 6-7% greater than those of the companies with the

lowest outflow rates mentioned previously. Moreover, Tech Mahindra's primary

competitor for talent accounts for 1% of its outflow.

Table 4. Talent outflow rates of the top 10 "Software Developer Professional"

companies
Company Average Average Average
Outflow Rate Outflow Rate to Top1 Outflow Rate to Top3

Accenture 9.36% 0.43% 1.00%
Infosys 11.24% 0.63% 1.38%
IBM 8.92% 0.39% 0.86%
Microsoft 5.40% 0.38% 0.82%
Tata-consultancy-services 11.54% 0.60% 1.30%
Wipro 12.50% 0.80% 1.97%
Tech-mahindra 12.75% 1.02% 2.38%
Hcltech 11.81% 0.81% 1.80%
Capgemini 8.57% 0.53% 1.17%
Google 4.75% 0.43% 0.78%

We also found the talent flow matrices to be sparse. Table 5 shows the sparsity of
company talent flow matrices by position. We observed that the average sparsity of talent
flow matrices for all positions exceeds 90%. The "Software Developer Professional"
group is less sparse, followed by "Consultant", "Management Professional", and "Data
Professional". Due to the high sparsity of other positions, we will focus on these four
positions for our experiments. Figure 7 illustrates the sparsity of the top 30 companies by
appearance frequency. The trend for each company is similar, with the "Software

Developer Professional" group being less sparse. Additionally, some companies exhibit
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less sparsity in specific professions. For instance, the French consulting firm Capgemini

has a lower sparsity in the "Consultant" category than in the "Software Developer

Professional" category.

This analysis highlights the variability in sparsity across different positions and

companies, guiding our focus towards the most relevant and densely populated categories

for further experiments.

Table 5. Sparsity of company talent flow matrix by position

Position Group

Sparsity

Software Developer Professional

90.52%

Consultant

97.11%

Management Professional

97.73%

Data Professional

98.21%

Cloud & Architect

98.41%

Infrastructure Professional

98.84%

UI/UX frontend Professional

99.19%

Database Professional

99.39%
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4-3. Rating Data Preprocessing

We sourced data from Glassdoor, the largest company review platform, founded in
2008. Glassdoor hosts more than 180 million reviews, salary details, and insights shared
by employees across 20 countries. Our data crawler retrieved reviews for all 100 target
companies, extracting rating scores, employee positions, and review dates from these
reviews. Figure 8 shows an example of a company review on Glassdoor, with rating
scores ranging from 1 to 5.

For the position cleaning and grouping process, we followed the same procedure used
for talent flow positions to align the two data sources. Consequently, ratings associated
with positions not considered (OOBP) were removed. All review dates were then
classified into each time window to align with the talent flow network. After grouping
ratings by position groups and time windows, we aggregated the rating scores based on
these components and their respective companies. We calculated the accumulated mean
score for each key group, resulting in a rating score 7 for each position p of company

c; attime ¢.
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Pros
IBM is a place that | love to work because the impact that the things that you get to work on is immeasurable. IBM is so involved ...
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IBM can make various unpopular decisions internally and externally from time to time. Rarely are we caught in serious scandals ...

Show More v

Helpful #~ Share

Figure 8. A Company Review Example from Glassdoor

We observed that some groups had missing values due to a lack of data in certain time
windows and position groups. For instance, Amazon Web Services was not separated
from its parent company Amazon on Glassdoor until 2021, resulting in null values in
earlier time windows. We filled these blanks with the previous time window’s value. For
the first time window with a null value, we assigned a score of the first value that appears
in this company dataset. For OOBC’s rating scores in each position group and time
window, we averaged the ratings of all other companies in the group.

4-4. Rating Data Exploration

Table 6 shows the statistical information on the total review counts for each company,
while Table 7 presents the average rating information. As Table 6 indicates, the top four
groups have the most rating data counts, similar to our talent flow data. A small difference
between the trends in talent flow and rating data is seen in the "Database Professional"

category, where we found a higher percentage of review data on the company review
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website compared to the talent flow amount. This discrepancy may be due to the focus

on software engineers when requesting OPN data. Table 7 provides a general distribution

of company ratings, with average ratings by position ranging from 3.52 to 3.75.

Table 6. Statistic Information of Company’s Total Review Count by Position

Position Group mean std min max
Software Developer Professional 3,361.74 7,146.84 38 47,167
Management Professional 586.88 1,035.72 5 8,108
Consultant 851.97 1,706.83 9 9,002
Data Professional 492.76 1,215.38 2 9,565
Cloud & Architect 134.78 234.58 1 1,438
Infrastructure Professional 178.95 350.68 1 2,660
UI/UX frontend Professional 83.46 207.66 1 1,438
Database Professional 362.78 1,132.84 3 5,910

Table 7. Statistic Information of Company’s Average Rating by Position

Position Group mean std min max
Software Developer Professional 3.52 0.38 2.75 4.88
Management Professional 3.58 0.45 2.46 491
Consultant 3.53 0.54 1.58 4.91
Data Professional 3.56 0.51 2.42 5.0
Cloud & Architect 3.54 0.64 1.48 5.0
Infrastructure Professional 3.54 0.58 2.14 5.0
UI/UX frontend Professional 3.75 0.80 1.0 5.0
Database Professional 3.60 0.73 1.87 5.0
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Chapter 5. Experiment

5-1. Training and Testing Data

As mentioned in the chapter 4, the two types of preprocessed data is used to form the
model input data. For each time ¢ and position p, a source company c¢; has two kinds of
features. One is the talent flow, denoted as flg, where j € [1,2 ... 101]. These values are
obtained from the talent flow adjacency matrix. The other feature is the rating score
difference, denoted as Ari’} , where j € [1,2...101]. These values are calculated by
determining the rating difference between ¢; and ¢; at time ¢ Therefore, each data
instance has 202 features (101 talent flow values+ 101 rating score differences). We then
remove data where the source company belongs to OOBC. For each position p, the dataset
contains 3,000 instances of talent flow and rating information. For splitting the training
and testing data, the dataset is split into approximately 75% training data and 25% testing
data based on the time window. Therefore, the predicted target time of the testing data
will be later than January 2020. This structured approach avoids that the training model
data from information leaking. Additionally, we think that it is not reasonable to apply
temporal validation since the dataset has only 30 time windows, it will lack of training
data for our model in the first or second validation rounds.

5-2. Evaluation matrices

We set three kinds of evaluation metrics to assess our model’s performance:
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® Mean Absolute Error (MAE): MAE provides a measure of the average magnitude
of the prediction errors without considering their direction. It is calculated as formula
5.1, where i means for each source company c;, and m means number of target

company.
1 m
MAE == |5~ £ (5.1)
j=1
® Mean Absolute Percentage Error (MAPE): MAPE provides a measure of prediction

accuracy in percentage terms. It is calculated as formula 5.2, where ¢ is used to

avoid division by zero when f% = 0 (set to 2 in our case).

m ~

100% =15

MAPE = —— E |f”t fil (5.2)
m s fi+te

® Precision @ k (where k=12, 3, 5]): Precision (@ k measures the accuracy of a model's

predictions by considering only the top & predicted values. It is calculated as formula

5.3.

Number of true positive predictions in top k
k

(5.3)

precision@k =

Note that for precision @ k we do not consider the value of talent flow to OOBC since

it has less managerial significance. Therefore, we sort the other 100 talent flow values to

get the top k& companies. If the count of ground truth vector’s zero values is more than £,

we only count the companies of the top non-zero values as our ground truth.
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The purpose of choosing these three metrics is to observe the model’s numeric accuracy
using MAE and MAPE, indicating how close the regression model’s results are to the
ground truth amounts. Precision @ k shows the general order accuracy of the benchmark
models, indicating whether the model can identify the trend of the source company’s
talent flow target. Both MAE and MAPE are separately averaged and calculated for three
kinds of prediction targets: self-loopf;;, outflow amount f£%, and outflow to OOBC’s

talent flow amount f,;.

5-3. Hyperparameter Settings

To ensure optimal performance, we tune several hyperparameters, including the
number of cells in the model, the dimensions of the company embeddings, and the
learning rate. These hyperparameters are adjusted through experimental procedures to
achieve the best possible model performance. We apply Adam as the model training’s
optimizer, and the learning rate is set to 0.00005. Other hyperparameter in our model such
as the hidden dimension of the bi-directional GRU is set to be 2048, so the output
dimension of our time series learning module will be 4096. The dimension reduction layer
number is set to 2 and the corresponding output dimension is set to 1024 and 512. The

learnable company embedding’s vector dimension is set to 200. All the model layer
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dimension and the learning rate is tuned by grid search. Lastly, for the GRU input

sequence length we set to 4.

5-4. Benchmarks

For our experiment’s benchmark models, we chose the following four approaches to
compare with our model:
® Auto Regression (AR)

An AR model predicts future values based on a linear combination of past values. To
align with our model, we set the AR model time window length to 4.
® Vector Auto Regression (VAR)

Unlike univariate autoregressive models, which predict a single time series based on
its own past values, VAR models predict multiple time series simultaneously, considering
the interrelationships between them. For data preprocessing for the VAR model, we
flatten our talent flow adjacency matrix to fit the model. Similar to the AR model, we also
set the VAR model time window length to 4.
® Pair-wise RNN-based Model (Pair-RNN)

Inspired by Xu et al. (2019), we designed a model structure and features using a pair-
wise approach for prediction. Figure 9 shows the model structure. To predict every talent
flow amount from ¢; to ¢; ( flz), the model includes pair-wise talent flow and rating

features from time window #-n to #-1. The talent flow features of the model include self-
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loops of ¢; and ¢; (fi;™", f;™), in-out flow between the two (f;;™", ™), and total in-
n t—n

out flow amount of ¢; and ¢; (fi™", fi™, £, f.5™). For company rating features, we

include self-rating (r} ™"

, rjt_"), rating difference for each pair (Ari’}_"), review counts,
and average self-rating for all positions. These 15 features are then fed into a Bi-

directional GRU model and a fully connected layer to predict the future talent flow value

fi5. The model time window length is also set to 4.

Fully Connected Layer

Input Features

| ‘ Pair-wise rating features

Figure 9. Model Structure of Pair-RNN

® (Company Distance-aware Time Series Prediction Model (CDA-RNN)

This additional model considers the relationship or distance between companies when

predicting talent flow between them. Figure 10 illustrates the model structure. We first

utilize Global Vectors for Word Representation (GloVe) to obtain a company embedding

vector for each company (Pennington et al., 2014). GloVe is initially designed to capture

semantic relationships between words by analyzing word co-occurrence statistics from a

large corpus and obtaining vector representations for words. In this model, we treat each

company as a word and the co-occurrence of words corresponds to the talent flow in and
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out flow amounts. Companies with higher talent flow amounts are considered to have

closer relationships.

Fully Connected Layer

Input Features (t-n)

d:;n @ o df;‘;]l @
L

GloVe(c;) dfj-"
. . C tenation of
Company embedding vector with GloVe (t-n) °‘gf£";£l °
je{1,2..101} 4

Figure 10. Model Structure of CDA-RNN

Technically, we first transform each time ¢'s talent flow adjacency matrix into a non-
directional adjacency matrix, treating it as a co-occurrence matrix input for GloVe to
learn each company’s embedding. After obtaining the embedding of each company, we
use a bilinear layer to capture the interaction between the source company embedding
and other companies’ embeddings, learning the relationships between each company
pair. The relationship result is integrated with each talent flow and rating pair, denoted
as dii™ in Figure 10. The combined result is then fed into a Bi-directional GRU model
and a fully connected layer to predict all future talent outflow values of c;. The model
time window length is set to 4.

5-5. Results
The following tables show the evaluation results for each benchmark model and our

model (CAR-TFP) for the position groups "Software Developer Professional" (Table 8),
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"Consultant" (Table 9), "Management Professional"(Table 10) and "Data Professional"
(Table 11). The results marked in bold represent the best performance for each evaluation
metric, while those underlined indicate the second-best results.

According to the results, we can see that our model outperforms other benchmarks in
most indicators. Specifically, in the “Software Developer Professional” group (Table 8),
our model shows superior performance in all metrics except for precision@5, where it is
slightly lower than the best result. This indicates that our model can effectively predict

talent flow amounts.

Table 8. Results of “Software Developer Professional”

Avg to other o
Self-loop To OOBC Precision
companies

Precision | Precision | Precision
@2 @3 @5
AR 88.4425 | 33.05% | 0.8512 | 24.11% | 22.7065 | 100.06% | 58.66% 49.69% 48.03%
VAR | 257.1529 | 112.66% | 0.2734 | 10.29% | 16.145 | 91.23% | 55.50% 46.86% 44.04%
Pair-RNN | 172.0582 | 24.32% | 3.5084 | 161.58% | 17.4642 | 88.52% | 53.75% 40.86% 32.54%
CDARNN| 134.9162 | 28.06% | 0.7026 | 31.54% | 11.8999 | 69.82% | 58.93% 44.81% 38.52%
CAR-TFP| 73.3302 | 14.07% | 0.2426 | 9.40% | 10.5559 | 56.91% | 61.63% 50.01% 46.17%

MAE MAPE | MAE | MAPE | MAE | MAPE

When comparing the four position groups together, the self-loop’s MAE and MAPE
outperform the second-best benchmark by 11-12%. Similarly, the MAE and MAPE for
talent flow to OOBC are slightly higher than the second-best benchmark by 5%. However,
the MAE and MAPE of the average talent flow to other companies are slightly lower than
the linear regression models in the “Consultant” (Table 9), “Management Professional”

(Table 10) and “Data Professional” (Table 11) position groups. We attribute this to the
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higher sparsity of the talent flow matrices in these position groups. Simpler models tend
to predict values near 0 if the former values in the observed time windows are all 0, while
more complex models might predict higher values due to the influence of other features
or data, increasing the MAE and MAPE of the average talent flow to other companies.
Despite this, our model’s precision @ k indicators mostly outperform other benchmarks,

indicating that our model can still identify the top talent flow values accurately.

Table 9. Results of “Consultant”

Avg to other o
Self-loop ] To OOBC Precision
companies

Precision | Precision | Precision
@2 @3 @5
AR 15.7123 | 39.69% | 0.0465 | 1.70% 3.867 | 56.89% | 81.58% | 78.38% | 77.33%
VAR 25.6199 | 68.09% | 0.0584 | 2.47% | 2.9554 | 55.80% | 73.50% | 70.97% | 70.23%
Pair-RNN | 25.2963 | 35.44% | 0.2244 | 10.35% | 2.5922 | 28.22% | 68.50% | 65.11% | 63.44%
CDA-RNN | 8.6591 | 24.72% | 0.1015 | 4.65% | 1.6966 | 38.13% | 80.27% | 76.93% | 76.34%
CAR-TFP | 3.9191 | 12.96% | 0.0632 | 2.72% | 1.3397 | 26.91% | 83.96% | 81.30% | 79.79%

MAE MAPE | MAE | MAPE MAE MAPE

Table 10. Results of “Management Professional”

Avg to other o
Self-loop To OOBC Precision
companies

Precision | Precision | Precision
@2 @3 @5
AR 10.1722 | 39.47% | 0.0554 | 2.57% 1.8218 | 47.67% | 53.91% | 78.77% 78.40%

MAE MAPE | MAE | MAPE MAE MAPE

VAR 16.726 | 73.53% | 0.0297 | 1.31% 1.7163 | 44.01% | 75.00% | 73.36% | 72.90%

Pair-RNN | 10.0221 | 26.61% | 0.2626 | 12.73% | 2.5806 | 57.25% | 78.08% | 75.75% | 74.75%

CDA-RNN | 7.153 29.72% | 0.0964 | 7.37% 1.3447 | 44.27% | 79.70% | 77.96% | 77.27%

CAR-TFP | 3.3279 | 14.86% | 0.0444 | 2.08% | 0.9734 | 27.18% | 84.93% | 82.91% | 82.20%
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Table 11. Results of “Data Professional”

Avg to other L
Self-loop To OOBC Precision
companies

Precision | Precision | Precision
@2 @3 @5
AR 11.5564 | 51.30% | 0.0195 | 0.73% 39.078 | 186.25% | 56.66% | 76.63% | 75.84%

MAE MAPE | MAE | MAPE MAE MAPE

VAR 12.5042 | 89.80% | 0.0205 | 0.89% 1.5415 | 39.98% | 73.33% | 72.22% | 71.68%

Pair-RNN | 11.4793 | 29.52% | 2.3067 | 81.75% | 2.5213 | 44.05% | 39.66% | 37.22% | 36.30%

CDA-RNN | 5.8071 28.10% | 0.0823 | 3.96% 1.3294 | 42.30% | 70.15% | 67.75% | 67.45%

CAR-TFP | 2.9327 | 17.94% | 0.0415 | 1.92% 1.060 | 29.99% | 80.19% | 77.78% | 77.32%

Comparing other benchmarks, we find that linear combination models, including AR

and VAR, perform better in precision @ k indicators than non-linear benchmark models.

However, in larger numeric predictions such as self-loop and OOBC’s MAE and MAPE,

the non-linear models show higher performance. This suggests that linear models better

capture the general trend of talent flow, while non-linear benchmarks are more effective

at identifying and predicting peak values in a talent flow vector.

5-6. Sensitivity Test

We conducted a sensitivity test over the time window length. The following Table 12,

Table 13, Table 14, Table 15 presents the results for the 4 position groups that we tested

in the chapter 5-5. We found that a window length of 2 provides insufficient information

about the talent flow trend, resulting in worse performance across most indicators.

Conversely, a window length of 6 includes too much noise when predicting talent flow,
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leading to decreased numerical accuracy. However, it maintains the ability to predict the

general trend, as shown by the results of precision @ k.

Table 12. Sensitivity Test of window size by "Software Developer Professional"

Self-loop Avg to other companies To OOBC Precision
Precision | Precision | Precision
MAE MAPE MAE MAPE MAE MAPE
@2 @3 @5
Length=2| 90.6365 | 14.93% | 0.2867 10.72% | 10.9783 | 51.69% | 61.64% | 48.66% | 42.76%
Length=3| 74.1926 | 14.18% | 0.2736 10.48% | 10.2959 | 55.54% | 62.64% | 50.21% | 44.29%
Length=4| 73.3302 | 14.07% | 0.2426 9.40% 10.5559 | 56.91% | 61.63% | 50.01% | 46.17%
Length=5| 73.6780 | 14.16% | 0.2506 9.74% 10.5689 | 57.78% | 61.00% | 49.95% | 44.75%
Length=6| 74.7320 | 14.00% | 0.2570 9.98% 10.7480 | 58.98% | 61.77% | 50.03% | 44.79%
Table 13 Sensitivity Test of window size by "Consultant"
Self-loop Avg to other companies To OOBC Precision
Precision | Precision | Precision
MAE MAPE MAE MAPE MAE MAPE
@2 @3 @5
Length=2| 4.4686 | 14.08% | 0.0747 3.15% 1.4430 | 25.49% | 84.29% | 81.19% | 79.91%
Length=3| 3.9824 | 12.72% | 0.0703 3.01% 1.4310 | 27.49% | 83.47% | 81.02% | 79.40%
Length=4| 3.9191 | 12.96% | 0.0632 2.72% 1.3397 | 26.91% | 83.96% | 81.30% | 79.79%
Length=5| 3.9917 | 13.24% | 0.0629 2.71% 1.4074 | 27.46% | 84.57% | 81.50% | 80.35%
Length=6| 4.144 13.55% | 0.0641 2.76% 1.4201 | 27.38% | 83.90% | 81.52% | 80.40%
Table 14. Sensitivity Test of window size by "Management Professional"
Self-loop Avg to other companies To OOBC Precision
Precision | Precision |Precision
MAE | MAPE MAE MAPE MAE MAPE
@2 @3 @5
Length=2| 3.6566 | 13.43% | 0.0512 2.38% 1.1406 | 29.34% | 83.97% | 81.56% | 80.41%
Length=3| 3.3483 | 14.69% | 0.0473 221% 0.9832 | 26.91% | 85.08% | 82.94% | 82.06%
Length=4| 3.3279 | 14.86% | 0.0444 2.08% 09734 | 27.18% | 84.93% | 82.91% | 82.20%
Length=5| 3.3535 | 15.21% | 0.0452 2.11% 0.9992 | 28.58% | 85.03% | 82.88% | 82.19%
Length=6| 3.4465 | 15.67% | 0.0456 2.13% 0.9901 | 28.19% | 84.93% | 82.73% | 82.09%
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Table 15. Sensitivity Test of window size by "Data Professional"

Self-loop Avg to other companies To OOBC Precision

Precision | Precision | Precision
@2 @3 @5
Length=2| 3.4625 | 16.77% 0.0434 2.00% 1.1254 | 28.80% | 81.47% | 78.91% | 78.36%
Length=3| 3.1734 | 18.40% 0.0407 1.87% | 1.0850 | 29.72% | 80.34% | 77.94% | 77.32%
Length=4| 2.9327 | 17.94% 0.0415 1.92% | 1.0603 | 29.99% | 80.19% | 77.78% | 77.32%
Length=5| 3.2092 | 18.53% 0.0422 1.95% 1.0746 | 30.39% | 80.19% | 77.81% | 77.46%
Length=6( 3.4597 | 19.20% 0.0427 1.98% | 1.0678 | 30.46% | 80.34% | 77.78% | 77.42%

MAE | MAPE MAE MAPE MAE MAPE

5-7. Ablation Test

We also conducted an ablation test to evaluate the effectiveness of each module in our
model. The following Table 16, Table 17, Table 18, Table 19 presents the ablation test
results for the 4 position groups. The experiments included "w/o rating", "w/o dimension
reduction", and "w/o bilinear layer & w/ linear layer".
® Experiment: w/o Rating

This experiment removed the company rating data. We observed that the MAE and
MAPE for self-loop, as well as precision@?2 and precision@?3, were slightly better when
the rating data was included.
® Experiment: w/o Dimension Reduction

In this experiment, we removed the dimension reduction module, causing the hidden
state of the time series learning module to directly feed into the company-aware layer

with the company embedding. This resulted in a significant increase in model parameter
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weight numbers. The results showed that the absence of the dimension reduction layer

caused an average decline of 7% in MAE and MAPE indicators.

® Experiment: w/o Bilinear Layer & w/ Linear Layer

Here, we replaced the bilinear layer in the company-aware layer with a linear layer.

The output from the dimension reduction layer was concatenated with the source

company embedding and fed into the linear layer. All performance indicators worsened

by approximately 10%, with the biggest difference being up to 22% worse than the

original model. This highlights the importance of the interaction between the company

embedding and the shared hidden state results.

Table 16. Ablation Test of "Software Developer Professional"

Avg to other
Self-loop ) To OOBC Precision
companies

Precision | Precision | Precision
@2 @3 @5
CAR-TFP | 73.3302 | 14.07% | 0.2426 | 9.40% | 10.5559 | 56.91% | 61.63% | 50.01% | 46.17%

MAE MAPE | MAE | MAPE | MAE | MAPE

w/o rating | 70.1013 | 13.56% | 0.2367 | 8.89% | 10.3467 | 51.58% | 61.75% | 50.19% | 45.87%

w/o
dimension | 105.4989 | 17.79% | 0.5963 | 27.28% | 11.1084 | 61.68% | 61.49% | 49.53% | 43.47%
reduction

W/Olz’;glear 115.6652 | 28.37% | 0.5274 | 21.92% | 13.3872 | 79.13% | 58.27% | 46.59% | 39.91%
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Table 17 Ablation Test of "Consultant”

Avg to other
Self-loop To OOBC Precision
companies
Precision Precision Precision
MAE | MAPE | MAE | MAPE | MAE | MAPE
@2 @3 @5
CAR-TFP (3.9422|13.06% | 0.0687 | 3.61% | 1.4526| 32.39% 84.43% 81.47% 80.52%
w/o rating |4.1206| 13.09% | 0.0398 | 1.56% | 1.3814 | 26.49% 85.44% 82.40% 80.98%
w/o
dimension |7.7799| 20.90% | 0.4153 | 20.37% | 1.5991 | 37.71% 72.44% 69.40% 68.18%
reduction
W/"l:;l;?ear 6.6878] 29.39% | 0.0829 | 3.62% |2.3642| 61.01% | 79.01% | 76.00% | 74.90%
Table 18 Ablation Test of "Management Professional”
Avg to other )
Self-loop To OOBC Precision
companies
Precision | Precision | Precision
MAE | MAPE | MAE | MAPE | MAE | MAPE
@2 @3 @5
CAR-TFP | 3.3431 | 15.25% | 0.0550 | 2.60% | 0.9830| 27.87% | 84.26% 82.28% 81.52%
w/o rating | 3.3494 | 15.00% | 0.0233 | 1.01% | 0.9741 | 26.71% | 85.07% 83.18% 82.25%
w/o
dimension | 4.8061 | 21.49% | 0.4278 | 21.24% | 1.1251 | 34.24% | 75.44% 73.37% 72.49%
reduction
W/"l:;l;fear 7481 | 32.99% | 0.0559 | 2.63% | 1.3111 | 41.44% | 81.92% | 79.79% | 79.08%
Table 19 Ablation Test of "Data Professional"
Avg to other
Self-loop ) To OOBC Precision
companies
Precision | Precision | Precision
MAE | MAPE | MAE | MAPE | MAE | MAPE
@2 @3 @5
CAR-TFP | 3.1503 | 16.54% | 0.0457 | 2.30% | 1.0511 | 32.55% | 80.48% 77.83% 77.43%
w/o rating | 3.3527 | 18.47% | 0.0212 | 0.91% | 1.049 |28.49% | 80.24% 77.86% 77.32%
w/o
dimension | 4.1649 | 24.08% | 0.4192 | 20.81% | 1.2111 | 37.59% | 71.97% 69.20% 68.79%
reduction
W/"l:;l:ear 53625 | 30.92% | 0.0414 | 1.90% | 1.4848 | 46.16% | 72.93% | 70.60% | 70.30%
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Chapter 6. Conclusion

6-1. Summary

In this study, we focus on the talent flow prediction problem, aiming to utilize historical

company talent flow information to predict future talent flow amounts or percentages.

This problem is crucial for supporting human resource teams in enhancing companies'

talent management strategies and related implications. Despite its importance, few studies

have concentrated on this area. We designed a company list-wise structure with a

company-aware mechanism in a deep learning approach and leveraged company rating

data as model features. Compared to existing models, our approach improved the

predictive performance of each position group by an average of 3-4%.

6-2. Contributions

For model design, the company-aware structure in our model significantly enhances

performance compared to benchmark models. By using company list-wise features and

output structures, our model provides a more detailed distribution of outflow information.

Additionally, the company embedding aware layer captures the unique talent flow

patterns of different source companies after the shared time series learning layer. Notably,

we are the first to incorporate company ratings as a model feature, which reflects

employee satisfaction levels over time.
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As for managerial contributions, our talent flow prediction model offers valuable

guidance for developing effective talent strategies, including recruitment, retention, and

turnover prevention. It also serves as a competitiveness detector, identifying potential

competitors based on human resource dynamics. By accurately predicting talent flow,

companies can better plan and implement strategies to maintain a competitive edge in the

labor market.

6-3. Future Research Directions

®  Optimizing the Current Model

To enhance our current model, increasing the variety of data, particularly for positions

beyond software engineers, is crucial. This expansion will improve generalization and

provide deeper insights across various roles. Another approach is to develop a multi-task

learning framework that simultaneously predicts talent flows for multiple positions within

a company. This framework can leverage shared information across different job

positions, improving prediction accuracy. Additionally, considering the interactions and

dependencies between different job position groups, such as the impact of talent flow

between software professionals and consultant roles, could refine predictions. A deeper

analysis of company reviews is also recommended. While we used company rating scores,

their influence was limited. Analyzing the textual content of reviews through sentiment

analysis could extract new features, such as underlying sentiments and factors influencing
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employee satisfaction. This could involve forming arrays of mentioning factors and

performing cosine similarity between companies.

® Extension Related Topics

Future research could explore the connection between talent flow information and

other company actions, such as predicting new product lines or market entries based on

talent recruitment patterns. This approach could support tasks related to predicting

company actions and understanding market dynamics. By linking talent flow data with

strategic company decisions, we can gain a more comprehensive understanding of how

talent dynamics influence overall business strategies and competitiveness.
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