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摘要

本篇論文旨在解決文本監督式語義分割問題。在這個任務中，我們希望能僅

透過影像-文字配對而無需密集標註，訓練出一個語義分割模型，在圖像中對任意

視覺概念進行分割。現有方法顯示，透過圖像-文字配對進行對比學習，可以有效

地將影像局部與文字含義對齊。我們注意到此學習方式存在問題：一段文字通常

包含多個語義概念，而語義分割則傾向於針對單一物件進行分割。為解決此問題，

我們提出了一個新框架，名為 Image-Text Co-Decomposition（CoDe），在此框架

中，配對的圖像與文字被共同分解為一組影像區域和文字片段的配對，並透過對

比學習來強化影像區域與文字片段之間的對齊。此外，我們提出了一種提示學習

機制，目的是強調影像和文字中分割出的影像區段或文字片段，從而使視覺語言

模型能夠對這些影像區域和文字片段提取出更有效的特徵。實驗結果顯示，我們

的方法在六個數據集上相較於現有的文本監督式語義分割方法較為有效。我們將

程式碼公開在 https://github.com/072jiajia/image-text-co-decomposition。

關鍵字：文本監督式學習、語意分割、多模態學習、提示學習、視覺-語言模型
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Abstract

This paper addresses text-supervised semantic segmentation, aiming to learn a model

capable of segmenting arbitrary visual concepts within images by using only image-text

pairs without dense annotations. Existing methods have demonstrated that contrastive

learning on image-text pairs effectively aligns visual segments with the meanings of texts.

We notice that there is a discrepancy between text alignment and semantic segmenta-

tion: A text often consists of multiple semantic concepts, whereas semantic segmentation

strives to create semantically homogeneous segments. To address this issue, we propose

a novel framework, Image-Text Co-Decomposition (CoDe), where the paired image and

text are jointly decomposed into a set of image regions and a set of word segments, re-

spectively, and contrastive learning is developed to enforce region-word alignment. To

work with a vision-language model, we present a prompt learning mechanism that de-

rives an extra representation to highlight an image segment or a word segment of inter-

est, with which more effective features can be extracted from that segment. Comprehen-

sive experimental results demonstrate that our method performs favorably against existing

text-supervised semantic segmentation methods on six benchmark datasets. The code is

available at https://github.com/072jiajia/image-text-co-decomposition.

Keywords: Text-supervised learning, Semantic segmentation,Multi-modal learning, Prompt learn-

ing, Vision-language model
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Chapter 1 Introduction

1.1 Background and Motivation

Semantic segmentation is essential to various applications [11, 15, 51] in computer

vision but is hindered by several critical challenges. First, the expensive cost of acquiring

pixel-level annotations limits the applicability of fully supervised semantic segmentation

methods. Second, most existing methods [40, 44, 53] are developed to work on prede-

fined categories and leave themselves inapplicable to rare or unseen concepts described

by free-form text. To address these obstacles, a new research direction has emerged in

vision-language models, referred to as text-supervised semantic segmentation [5, 28, 45–

47, 50]. This task develops segmentation models capable of assigning labels across large

vocabularies of concepts and supporting semantic segmentation model training without

pixel-wise annotations.

fig. 1.1 compares existing methods for text-supervised semantic segmentation by

grouping their cross-domain alignmentmechanisms into three categories, including image-

text, region-text, and region-word alignment. Despite the differences, most of these meth-

ods compensate for the lack of pixel-wise annotations on broad semantic concepts by

exploring abundant image-text pairs on the internet. The textual descriptions bring ex-

tensive knowledge across diverse categories. Thus, existing methods typically apply a

1
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image
encoder

text
encoder
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loss
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segmenter
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loss
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pubcars
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Red cars in 
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(a) image-text alignment (b) region-text alignment (c) region-word alignment  (ours)

Figure 1.1: Existing methods perform text-supervised semantic segmentation by learning either
(a) image-text alignment or (b) region-text alignment. This paper presents (c) region-word align-
ment via image-text co-decomposition, where the image and the text are decomposed into object
regions and word segments, respectively, while contrastive learning is used to establish cross-
modal correspondences between these image and word segments.

vision-language model such as CLIP [34] to textual descriptions to acquire the semantic

context of the corresponding images for segmentation model learning.

The image-text alignment is widely adopted in the literature e.g. [28, 45, 46]. As

depicted in fig. 1.1a, methods of this group derive an image encoder and a text encoder

by aligning them in a joint embedding space. They then use their proposed zero-shot

transfer techniques to enable the two encoders to predict segmentation output. Despite

the simplicity, they introduce unfavorable discrepancies between the training and testing

phases since we aim to match the semantic features from the text to the corresponding

image segments rather than the whole image during testing.

To mitigate this issue, the region-text alignment is explored. As shown in fig. 1.1b,

methods of this group such as [5] utilize a pre-trained visual-language model to derive an

additional image segmenter that discovers concepts described by the text. They enforce

the consistency between the segmented region and the text but suffer from the discrep-

ancy between the region-text alignment and semantic segmentation: A text may consist

of multiple concepts, such as pub and car in fig. 1.1b, while semantic segmentation aims

to identify regions of the same concept.

To address the aforementioned issues in the image-text and region-text alignments,

we propose a novel framework, Image-TextCo-Decomposition (CoDe), to achieve region-

2
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word alignment. As illustrated in fig. 1.1c, we utilize a visual-language model to construct

an image segmenter and a text segmenter: The former decomposes an image into image

segments, while the latter decomposes a text into word segments. In addition, there exist

one-to-one correspondence between image and word segments. This way, the discrep-

ancy between training and testing is alleviated since each image segment is derived from

a single concept given by the corresponding word segment.

The proposed CoDe framework comprises four components: an image segmenter,

a text segmenter, a region-word alignment module, and a prompt learning module. We

randomly select nouns in the text. For each selected noun e.g., “car”, the image segmenter

identifies the image segment that matches the noun, i.e., the region of the car, while the text

segmenter discovers the corresponding word segment, i.e., “red cars.” The region-word

alignment is developed to enforce the consensus between the image and word segments.

To better work with a vision-language model, we present a prompt learning module to

derive an extra representation, enabling more effective feature extraction.

1.2 Contributions

The main contributions of this work are as follows:

• We propose a new framework, Image-Text Co-Decomposition (CoDe), to learn the

region-word alignment for eliminating train-test and image-text discrepancies, fa-

cilitating text-supervised semantic segmentation.

• We propose a prompt learning method to address domain shift issues arising from

blank areas during the highlighting process and enhance the alignment between

3
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highlighted regions and highlighted words.

• Our method effectively carries out zero-shot semantic segmentation and performs

favorably against the state-of-the-art methods on six benchmark datasets.

1.3 Publication

The core of this thesis builds upon the following peer-reviewed publication:

• Ji-Jia Wu, Andy Chia-Hao Chang, Chieh-Yu Chuang, Chun-Pei Chen, Yu-Lun Liu,

Min-Hung Chen, Hou-Ning Hu, Yung-Yu Chuang, and Yen-Yu Lin. “Image-Text

Co-Decomposition for Text-Supervised Semantic Segmentation.” In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

2024. [42]

4
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Chapter 2 Related Works

2.1 Open-Vocabulary Semantic Segmentation

Open-vocabulary semantic segmentation focuses on segmenting any concepts within

images, even those unseen during training, based solely on textual descriptions. Its three

important branches are discussed as follows:

Semi-supervised setting with mask-annotations. Methods of this group such as [16,

17, 24, 26, 31, 48] learn from dense annotations to produce high-quality segmentation

masks, and then utilize image-text pairs and pre-trained vision-language models to ex-

tend the segmentation capability to a larger target vocabulary. Despite the remarkable

results, these methods are hindered by their reliance on costly dense annotations, posing

a challenge in cases where such annotations are difficult to obtain.

Training-free methods. Another line of research e.g. [38, 41, 55] makes the most of

large pre-trainedmodels for open-vocabulary segmentationwithout training. MaskCLIP [55]

introduces a modification to the final layer of the CLIP image encoder, yielding dense

feature maps that could be employed as initial segmentation maps for further refinement.

ReCo [38] constructs an image archive and makes use of retrieval and co-segmentation to

identify co-occurrence regions among a specific category. Although these methods elim-

5
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inate the process of training, the results exhibit significant room for improvement, which

shows the need for additional supervision to accomplish this task.

Text-supervised semantic segmentation. It strikes a balance between the two afore-

mentioned branches. Methods of this group are discussed in detail in the following be-

cause our method belongs to this group.

2.2 Text-Supervised Semantic Segmentation

Text-supervised semantic segmentation [4, 5, 28, 33, 36, 43, 45–47, 50] decomposes

an image into semantic regions according to text descriptions. Unlike semi-supervised

methods relying on a few images with mask annotations during training, methods of this

group aim to learn semantic masks solely from text-based guidance. We roughly divide

existing methods into two categories based on their cross-modal alignment between the

image and text domains.

Image-text alignment. These methods train an image encoder alongside a text encoder

to align pairs of image and text in a joint embedding space. They use zero-shot trans-

fer to enable the encoders to produce segmentation results. GroupViT [46] introduces a

bottom-up approach within Transformers, grouping image patches into regions and utiliz-

ing object semantics derived from texts to guide training. SimSeg [50] further introduces

a pretraining method that densely aligns visual and language representations, enabling the

trained image encoder to generate segmentation masks in a zero-shot manner.

Region-text alignment. Another line of research targets at aligning the embedding of a

region, instead of the whole image, with text descriptions. For instance, TCL [5] learns

6
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to segment specific regions within an image while ensuring consistency between the seg-

mented region and the original text. It enables the model to segment the relevant region

described in the text.

These methods for text-supervised semantic segmentation have shown that employ-

ing vision-language models and contrastive learning on image-text pairs enables align-

ing visual concepts with the meaning of the whole text. We notice that a text is usu-

ally a mix of multiple semantic concepts, but semantic segmentation aims to discover

semantically homogeneous segments. To address this issue, inspired by the region-word

matching techniques [8, 21, 22, 39] for cross-modal retrieval, we introduce image-text co-

decomposition, where the image and the text are decomposed into image and word seg-

ments, respectively, and contrastive learning is adopted to enforce cross-modal consensus

between these image and word segments. It turns out that image-text co-decomposition

results in consistent performance gains on multiple benchmarks.

2.3 Prompt Tuning for Vision-Language Models

Emerged from natural language processing [23, 25, 27], prompt tuning focuses on

parameter-efficient adaptation of large pre-trained models to new tasks. In computer vi-

sion [20, 56–58], pioneering work such as CoOp [56, 57] incorporates learnable tokens

into the CLIP text encoder, enhancing the classification task performance. Recent studies

e.g. [12, 14, 35] leverage prompt tuning in the text modality for extending CLIP’s capa-

bilities to various applications such as detection and segmentation tasks. Notably, prompt

learning methods are also applicable to the visual domain. VPT [19] employs prompt tun-

ing in the visual modality by inserting learnable vectors into Vision Transformers. Further

7
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studies [18, 26] explore tuning methods that directly incorporate learnable prompts into

the input image within the RGB domain to address downstream tasks.

Drawing inspiration from the success of these methods, our method leverages the

capabilities of prompt tuning on segment feature extraction in both the visual and text

domains. Prompt learning is beneficial in this work when applying contrastive learning to

the visual and textual features extracted by a vision-language model.

8
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Chapter 3 Methodology

In this section, we first provide an overview of ourmethod for image-text co-decomposition

and define the notations in section 3.1. Then, we specify the three major modules of our

method, including 1) the image-text co-segmentation module in section 3.2, 2) the region-

word highlighting module in section 3.3, and 3) the region-word alignment module in

section 3.4. These modules work harmoniously to address the region-word alignment for

text-supervised semantic segmentation and enhance model performances. Finally, imple-

mentation details are given in section 3.5.

3.1 Method Overview

Image-text co-decomposition enables text-supervised segmenters to learn region-

word consensus when segmenting an imageXv with a paired textX t. Our method aims to

jointly learn an image segmenter F v and a text segmenter F t with solely the supervision

from a set of K image-text pairs, D = {Xv
k , X

t
k}Kk=1, where no annotations are given. In

addition, we optimize two learnable prompts, including a region prompt P v and a word

prompt P t, to alleviate the unfavorable effect of blank embeddings caused by applying a

vision-language model to masked images or texts for feature extraction.

fig. 3.1 illustrates the pipeline of our method, consisting of three modules, includ-

9
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(b) Region-Word Highlighting

PM
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encoder

image
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text
Segmenter Hot air balloon takes to the skies

word mask text
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word prompt

highlighted image

highlighted text 

region mask

prompt
highlighting

Hot air balloon P4 P5 P6 P7

noun
selection

Figure 3.1: Training pipeline of our method for image-text co-decomposition. Our method
consists of three major modules, including (a) the image-text co-segmentation module where the
image and text segmenters estimate the region and word masks according to a selected noun, re-
spectively, (b) the region-word highlighting module where the estimated masks together with two
learnable prompts produce the highlighted image and text, and (c) the region-word alignment mod-
ule where contrastive learning is applied to the embedded object regions and word segments to
accomplish region-word alignment.

ing the image-text co-segmentation, region-word highlighting, and region-word alignment

modules. For an input image-text pair (Xv, X t), we initiate the process by randomly se-

lecting a noun N , e.g., balloon in the figure, from the textX t using the noun selector [2].

This selected noun serves as a query. We take the query N along with the image Xv as

input to the image segmenter F v to generate the region mask M v showing the estimated

object region specified by the query. Similarly, a text segmenter F t takes the query N

and the text X t as input and estimates the word mask M t indicating the associated word

segment.

Subsequently, we apply the region mask M v to the image Xv to crop the estimated

object region. For the estimated background, i.e., the region outside the mask M v, we

crop the corresponding region from the learned region prompt P v. The highlighted image

Hv is yielded by combining the cropped object and background regions. Similarly, the

highlighted text H t is generated by combining the text X t inside the mask M t and the

word prompt P t outside the maskM t. We extract features from the highlighted image and

text by using the image encoder Ev and the text encoder Et of CLIP [34], respectively.

The procedure is repeated for each image-text pair and each selected noun. It follows

that the region-word alignment is accomplished by contrastive learning [7]. Four loss
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functions, including Lkg, Lv
seg, Lt

seg, and Lhcl, are used for network optimization, and will

be elaborated in the following.

3.2 Image-Text Co-Segmentation

The image-text co-segmentation module comprises a noun selector, an image seg-

menter, and a text segmenter, as shown in fig. 3.1a. Taking an image-text pair (Xv, X t)

as input, this module aims at jointly identifying an object region in image Xv and its ac-

companying word segment in text X t according to a randomly selected noun.

To begin with, we employ the noun selector [2], which takes the textX t as input and

extracts a set of J nouns, {Nj}Jj=1, in X t. For each noun Nj , we carry out region mask

generation, where the image segmenter F v predicts a region maskM v specifying the area

in image Xv relevant to noun Nj . A similar task word mask generation is performed by

the text segmenter F t, which seeks a word mask M t matching noun Nj . The tasks of

region and word mask generation are depicted as follows.

Region mask generation. The image segmenter F v takes image Xv and noun Nj as

input. It encodes the image into a pixel-wise embedding xv ∈ RH×W×C , where H ×

W is the image resolution and C is the channel dimension. We also compute the noun

embedding nj ∈ RC for noun Nj . The image segmenter generates a region mask M v ∈

RH×W by performing the dot product between the noun embedding nj and every location

of the image embedding xv.

In this work, we use the image segmentation model in [5] to serve as the image seg-

menter F v, and employ its corresponding loss, denoted by Lv
seg here, to help derive the

11
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image segmenter. This loss considers segment regularization and contrastive learning

that can be directly applied to the segmentation results along with the noun embedding.

We use the KgCoOp method [49] to obtain the noun embedding nj , as it avoids the pitfalls

of improper prompt selection. It appends learnable context tokens to the noun, forming

pseudo-sentences for optimal prompt tuning. The noun embedding loss Lkg [49] is in-

cluded to improve the accuracy of these embeddings, i.e.,

Lkg = ||nj − n′j||22, (3.1)

where the n′j ∈ RC represents the knowledge-guided noun embedding generated from

hand-crafted prompts such as “a photo of a Nj” using the text encoder.

Word mask generation. The text segmenter F t takes the text X t and the noun Nj as

input. For text feature extraction, we consider the CLIP text encoder appended with two

learnable multi-head attention layers. With the resultant feature extractor Ẽt, the word-

wise features of textX t are obtained via xt = Ẽt(X t) ∈ RL×C , where L is the text length,

i.e., the number of word tokens. The word-specific logits ℓj = [ℓj,i]
L
i=1 ∈ RL for noun Nj

are computed via

ℓj = w · xtnj + b, (3.2)

where w and b are two learnable parameters, and nj ∈ RC is the noun embedding.

Since each word in text X t belongs to either one of the J word segments associated

with nouns {Nj}Jj=1 or none of them, the word mask M t = [mt
i]
L
i=1 ∈ RL for noun Nj is

obtained by applying the softmax function over all the J noun-associated segments, i.e.,

mt
i =

exp(ℓj,i)
1 +

∑J
j′=1 exp(ℓj′,i)

, for 1 ≤ i ≤ L, (3.3)
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where the additional 1 in the denominator is included for the case where word i does not

belong to any noun-associated segments. The word maskM t for noun Nj is produced.

According to the softmax function defined in Eq. 3.3, we get the probabilities of word

i over J + 1 cases, namely belonging to one of the J noun-associated segments or none

of them. We compile a pseudo label vector p = {pi} ∈ {0, 1}L, where pi takes value 1

if word i belonging to the jth noun-associated segment gets the highest probability, and 0

otherwise. We develop the text segmentation loss Lt
seg, which is the cross-entropy loss on

the word mask M t with respect to the pseudo label vector p, and can help learn the text

segmenter F t.

3.3 Region-Word Highlighting

We present a prompt learning method to reliably extract features from an image re-

gion or a word segment using a vision-language model. Specifically, we propose a region-

highlighting prompt learning method and a word-highlighting prompt learning method, as

shown in fig. 3.1b.

Region highlighting prompt. When the regionmaskM v is directly applied to the image

Xv via M v ∗ Xv, where ∗ denotes the element-wise multiplication operation, it makes

specific regions of the image being zeroed out, resulting in what we refer to as blank

areas. When a pre-trained vision-language model like CLIP is applied to these areas, the

domain distribution may shift due to the introduction of zero tokens, which are unseen in

natural images. To mitigate this issue, we introduce a region highlighting prompt, which

is a learnable, universal image representation, denoted by P v. This representation is used

alongside the original image in the process of feature extraction. The highlighted image
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is then obtained via

Hv = Xv ∗M v + P v ∗ (1−M v). (3.4)

In this way, the blank areas are filled with the corresponding areas of the region prompt

P v alleviating the unfavorable effect of domain shift.

Word highlighting prompt. A similar challenge arises in the text domain when apply-

ing the word mask M t to text X t. The resultant zero tokens in the masked part uninten-

tionally carry meanings of specific words, leading to potential inaccuracies. To mitigate

this issue, we introduce a word highlighting prompt, represented as a learnable, universal

text representation P t. The highlighted text H t is obtained by

H t = X t ∗M t + P t ∗ (1−M t). (3.5)

Since the masked part is filled with content from P t, the risk of including unexpected text

meanings is reduced.

3.4 Region-Word Alignment

In the following, we describe how our method achieves region-word alignment. Our

objective is to optimize mutual evidence between the highlighted object regions and the

highlighted word segments, as illustrated in fig. 3.1c.

Contrastive loss on highlighted region-word pairs. To achieve region-word align-

ment, we compute the highlighted region embedding ev and highlighted word segment

embedding et from the highlighted region-word pair by using the image and text encoders
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of CLIP by

ev = Ev(Hv) and et = Et(H t), (3.6)

where Ev and Et are the CLIP image and text encoders, respectively.

We adopt batch optimization for model training. Each batch has several triplets, each

of which is composed of an image, its paired text, and a randomly selected noun from the

text. Each triplet yields a region embedding and a word embedding via Eq. 3.6. Suppose

that there are B triplets in this batch. We create a similarity matrix S = [Si,j] ∈ RB×B ,

where Si,j stores the cosine similarity between the ith region embedding evi and the jth

word segment embedding etj . We adopt the symmetric version of InfoNCE loss to develop

the highlighted region-word pair contrastive loss, which enhances the similarity of related

region-word pairs while reducing it for unrelated pairs:

Lhcl =− 1

2B

B∑
i=1

log
exp(Si,i/τ)∑B
j=1 exp(Si,j/τ)

− 1

2B

B∑
i=1

log
exp(Si,i/τ)∑B
j=1 exp(Sj,i/τ)

, (3.7)

where τ is a learnable temperature. Notably, even though nouns may be selected multiple

times across image-caption pairs, the corresponding highlighted regions Hv and high-

lighted texts H t vary, ensuring the effectiveness of the InfoNCE loss in precise region-

word alignment.

Loss functions and optimization. In sum, the proposed network for image-text co-

decomposition is optimized using a composite loss that combines the knowledge-guided,

image segmentation, text segmentation, and highlighted region-word pair contrastive losses,
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defined as follows:

L = λkgLkg + λv
segLv

seg + λt
segLt

seg + λhclLhcl. (3.8)

3.5 Implementation Details

We utilize NLTK’s [2] part-of-speech tagging algorithm for noun selection. For im-

age segmentation, we utilize TCL’s image segmenter [5] to generate image masks, and

we adopt the training loss in TCL, which relies solely on the image-caption pairs to yield

Lv
seg. For text segmentation, we use a CLIP text encoder appended with two multi-head

attention layers as the text segmenter Ẽt. Our model is trained on the CC3M and CC12M

datasets. The resolution of input images is set to 224 × 224. For each forward pass of

an image-text pair, we randomly select 2 nouns from the text. The loss weights are set

as follows: λkg = 8.0, λv
seg = 1.0, λt

seg = 1.0, and λhcl = 0.5 in the experiments. We

train the model with a batch size of 64 on four NVIDIA 2080Ti GPUs and with a learning

rate of 5× ∗10−6 for a total of 50, 000 iterations with 15, 000 warmup steps and a cosine

schedule. AdamW optimizer [29] is used with a weight decay of 0.05. To improve the

quality of the predicted mask during the evaluation phase, we adopt the post-processing

approach described in TCL [5], which uses pixel-adaptive mask refinement (PAMR) [1]

for mask refinement.
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Chapter 4 Experiments

4.1 Datasets and Evaluation Settings

We utilize image-text datasets to train our proposed model and perform extensive

experiments on six commonly used semantic segmentation benchmarks to validate our

method.

Training datasets. We trained our model on two image-text datasets, Conceptual Cap-

tions 3M (CC3M) [37] and Conceptual 12M (CC12M) [6] containing 3M and 12M image-

text pairs respectively. They have been widely adopted for training text-supervised seman-

tic segmentation methods.

Evaluation datasets. We used six zero-shot semantic segmentation benchmarks to vali-

date the zero-shot transfer capability of our model on categories that were not specifically

trained. As in previous work [5], the benchmarks can be categorized into two groups,

with and without background classes. Benchmarks with a background generally label ar-

eas that do not belong to any predefined categories as “background,” which is usually re-

moved by considering a probability threshold in text-supervised semantic segmentation.

For this category, we use the validation split of the following datasets: PASCAL VOC

2012 [13], PASCAL Context [32], and COCO-Object [3]. They each contain 20, 59, and

80 foreground classes, respectively, with an additional background class. For the “without
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background category,” we evaluated our model with the validation split of COCO-Stuff

[3], Cityscapes [10], and ADE20K [54] datasets. Each of them contains 171, 19, and 150

classes, respectively. In this category, all images are fully annotated, which is exception-

ally challenging. Using datasets in this category, our model can be tested for its ability to

recognize a variety of concepts. We employ mean intersection-over-union (mIoU) as our

evaluation metric.

For zero-shot semantic segmentation evaluation, we rely solely on the image seg-

menter. The image segmenter processes the input image in conjunction with class names

from each dataset to produce segmentation predictions. In accordance with the settings of

prior work [5], we adopt the class names provided by the default version of MMSegmen-

tation [9] and adhere to its post-processing methodology.

4.2 Quantitative Comparisons

We compare the proposed method with nine text-supervised semantic segmentation

methods on the six datasets. ?? reports the mIoU values. The numbers have been taken

directly from the original papers. All methods were tested on the three datasets of the “with

background class,” but only three methods (GroupViT [46], CoCu [45] and TCL [5]) were

tested on the dataset of the “without background class.” For those three methods, we also

report their average mIoU values across all six datasets. It is also worth noting that these

methods use different combinations of training datasets, as indicated in the dataset column

of ??.

Our method achieves the best performance in all six datasets, while TCL [5] and

SimSeg [50] are the runners-up. In terms of average mIoU, our method (CoDe) achieves
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Figure 4.1: Qualitative comparisons. The proposed method is compared with the two
most competitive methods, TCL [5] and SimSeg [50], on PASCAL VOC, PASCAL Con-
text, and COCO Object datasets. Our method provides more precise object boundaries
and effectively localizes objects within images without misclassification, leading to more
accurate segmentation.

31.8 whereas TCL achieves 30.1, resulting in a 5.65% improvement. The result demon-

strates the effectiveness of our image-text co-decomposition method in addressing the

alignment-level train-test discrepancy that exists in previous methods by directly learning

the region-word alignment.

4.3 Qualitative Results

Visual comparison with existingmethods. fig. 4.1 visually compares the segmentation

results of our methods and two runners-up, TCL [5] and SimSeg [50], on the PASCAL

VOC, PASCAL Context, and COCO Object datasets.

This figure illustrates the fundamental benefit of our approach, which involves the

direct learning of region-word alignments. Our model effectively establishes a strong

connection between object regions and word segments, allowing a better understanding

of how objects are represented in images. Through this enhanced understanding, both seg-
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Figure 4.2: Visualization of the results of our image-text co-decomposition method. The first
two rows display text and images, representing input image-text pairs. In each text, nouns are
underlined with different colors. Our method uses these nouns as queries for performing image-
text co-decomposition. Using our image-text co-decomposition method, the last two rows depict
the method’s output, where regions and word segments associated with different nouns appear in
corresponding colors.

mentation quality and localization capabilities can be improved. As a result, our method

provides more accurate classification and more precise masks than other methods.

The SimSeg[50] model, which learns from image-text alignments, occasionally as-

signs objects to the wrong classes. On the other hand, TCL [5], which is based on region-

text alignment, produces coarser semantic masks. Accordingly, these observed limitations

aremost likely a result of the alignment-level discrepancy between the train and test, which

may lead to suboptimal performance.

Visualization of image-text co-segmentation results. fig. 4.2 presents a visualization

of the results obtained by our model. We denote regions and word segments associated

with the different nouns in the corresponding colors. It demonstrates that our method

effectively segments object regions within images based on various input nouns. It simul-

taneously segments corresponding word segments within the associated text, creating a

harmonious alignment between the object region and the word segment.
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C. W. R. VOC Context Object Stuff City ADE Avg.

54.4 27.6 32.7 22.5 25.0 16.6 29.8
✓ 56.2 29.2 32.9 23.3 27.5 17.0 31.0
✓ ✓ 56.1 29.3 32.6 23.6 29.0 17.3 31.3
✓ ✓ ✓ 57.7 30.5 32.3 23.9 28.9 17.7 31.8

Table 4.2: Ablation study. The baseline model is augmented with the image-text co-
decomposition method (C.), the word highlighting prompt (W.), and the region highlight-
ing prompt (R.), one at a time. We report the mIoU values of the resultant models on the
six datasets and their averages.

The region-word alignment plays a pivotal role in our approach, serving as a super-

visory signal for the model. By taking advantage of this alignment, our model not only

performs visual localization but also captures correlations within the language domain.

It indicates that our trained model possesses a more comprehensive understanding of the

segmentation task.

4.4 Ablation Study

Contributions of individual components. The ablation study in table 4.2 assesses the

contribution of the proposed components, including the image-text co-decompositionmethod,

theword highlighting prompt, and the region highlighting prompt. Without the co-decomposition

method, our baseline model only trains the image segmenter, resulting in an average mIoU

of 29.8. Afterward, each proposed component is added to the baseline model one at a

time to verify its contribution. As a result of adding the image-text co-decomposition

module alone, the average mIoU has been increased to 31.0. It suggests that the image-

text co-decomposition method can achieve region-word alignment and enhance localiza-

tion capability. The model is further enhanced with the addition of word highlighting

prompts and image highlighting prompts, resulting in further performance improvement.
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λhcl 0.05 0.1 0.25 0.5 0.75 1.0

Avg. 30.6 31.2 31.7 31.8 31.5 30.8
Table 4.3: Sensitivity analysis on the hyperparameter λhcl. By varying λhcl, we examine
the corresponding average mIoU values of all six datasets.

It demonstrates that the highlighting prompt learning method enhances feature extraction

and strengthens alignment between regions and words.

Hyperparameter sensitivity analysis. table 4.3 investigates the impact of the lossweight

for the highlighted region-word pair contrastive loss, denoted as λhcl in eq. (3.8). We ob-

serve that, when we apply the highlighted region-word pair contrastive loss in our training

phase, the performance consistently outperforms our baseline model. The method is ro-

bust to the parameter to some degree as it achieves reasonable performance for a wide

range of values. When λhcl is set to 0.5, our model achieves a peak score of 31.8. It is

evident from these results that the image-text co-decomposition method is superior to the

image-text decomposition method for achieving region-word alignment.

Effectiveness of jointly decomposing text. We validate the effectiveness of decompos-

ing text by assessing the performance enhancement achieved by generating word masks,

as opposed to simply using extracted nouns. This experiment is conducted by modifying

the calculation of Lhcl. Instead of using word segment embeddings as mentioned in sec-

tion 3.4, we opt to compute the similarity matrix S using region embeddings with the em-

beddings of individual nouns. The average mIoU across all benchmarks is 30.2%, which

is below our method’s 31.8%. This indicates the benefits of using word segments en-

compassing extra words associated with each noun. The contextual information encoded

in these additional words can serve as valuable supervisory signals, thereby improving
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Figure 4.3: Ablation studies. We improve the baseline model by incrementally including
(C.) the image-text co-decomposition module, (W.) the word highlighting prompt, and
(R.) the region highlighting prompt. We present the segmentation results of the resulting
models on the images of the PASCAL VOC [13] dataset.

performance.

4.5 Ablation Study Visualization

In the following, we conduct ablation studies by visualizing the effects of the pro-

posed components in our method, including the image-text co-decomposition method, the

word highlighting prompt, and the region highlighting prompt. To this end, fig. 4.3 offers

the visual comparison of segmentation results produced by the variants of our method on

five images of the PASCAL VOC [13] dataset.

The image-text co-decomposition module equips the model with the region-word

alignment ability to localize objects in the images accurately. This module aligns words
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with corresponding regions in the image, leading to more precise segmentation results.

Furthermore, both the word and region highlighting prompts contribute to feature ex-

traction, improving the model’s ability to capture the details of the objects. Hence, the

resultant model is more effective in segmenting the whole objects of interest.

Figure 4.4: Examples in the wild. We show predictions on wild images with free-form
text queries. Texts used as target classes are shown at the bottom of the images.

4.6 Multi-Noun Queries

Fig. 4.4 shows predictions on wild web images with various text queries using the

same images and queries selected from Fig. 5 of TCL [5]. Although our method is primar-
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ily designed and trained for single-noun queries, the figure demonstrates its effectiveness

in processing more complex queries.

4.7 Failure case visualization

In fig. 4.5, we show several failure cases of our method and two competing methods,

TCL [5] and SimSeg [50], on the images of the PASCAL VOC [13] dataset.

The first example in fig. 4.5a shows a common limitation of existing methods: When

segmenting the “person” class, most methods focus on the most distinctive areas, namely

the face in this example, and suffer from the variations in the clothes, resulting in the

segment that does not cover the entire person. The second example in fig. 4.5b depicts

a scenario, where unexpected variations are present, i.e., people showing in a television

monitor. All three methods segment the outer borders of the monitor. Compared to TCL

and SimSeg, our method can further segment the individuals within the monitor. Although

the ground truth covers the entire TV monitor, this example validates the effectiveness of

our model in localizing the individuals present on the screen.

fig. 4.5c, fig. 4.5d, and fig. 4.5e showcase instances where co-occurrent objects, such

as trains and tracks, airplanes and contrails, and boats and water, tend to be segmented

together even though they are of different semantic categories. This is a challenge for

our method and the two competing methods TCL [5] and SimSeg [50]. These visualiza-

tion examples emphasize the difficulties of accurate segmentation and the challenges in

aligning model predictions with ground truth annotations. They provide insights into the

limitations of current segmentation approaches and suggest future research directions.
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(a) (e)(d)(c)(b)

Figure 4.5: Failure cases. The proposed method is compared with the two most competi-
tive methods, TCL [5] and SimSeg [50], on the images of the PASCAL VOC [13] dataset.

Training Time. On four NVIDIA 2080Ti GPUs, it takes eight hours to train the baseline

model with only the image segmenter. On the same devices, it takes twelve hours to

train our image-text co-decomposition method, which requires training an additional text

segmenter. In light of the improved performance as described above, the longer training

period can be justified.
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Chapter 5 Conclusions

We propose Image-Text Co-Decomposition (CoDe) to address cross-domain align-

ment discrepancies in the existing methods for text-supervised semantic segmentation.

First, our method decomposes image-text pairs into corresponding regions and word seg-

ments to enforce the region-word alignment. CoDe, underpinned by contrastive learning,

alleviates the train-test discrepancy by unifying image-text and region-text alignments to

region-word alignment. Then, we introduce a region-highlighting prompt learningmethod

to enhance feature extraction on masked images or texts for precise region-word align-

ment. Moreover, CoDe surpasses state-of-the-art methods in zero-shot semantic segmen-

tation across six benchmark datasets. This novel approach opens new possibilities for

research in vision-language models and their broader applications in computer vision.
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