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摘要

針對特定編曲家風格的流行鋼琴演奏版（piano cover）進行風格轉換，是符

號化音樂生成領域中的一項獨特挑戰，其核心在於實現穩健的內容與風格解耦。

本研究中，我們將「風格」定義為特定編曲家的伴奏模式——例如其特有的節奏

密度 (rhythmic intensity)、複音織度 (polyphony)、音域（pitch range）等伴奏型態；

而將「內容」定義為核心的旋律及和聲。此任務的一項關鍵困難在於，即使是旋

律本身也可能包含了編曲家的風格變化。本論文旨在解決此問題，我們確立了以

導引譜 (lead sheet)——一種包含旋律與和弦進行的樂譜——作為「內容」的穩固基

礎。透過提供一個明確的核心音樂結構，譜面得以有效去除鋼琴演奏中所附加的

風格變化，為風格轉換提供了更清晰的分離基礎。在此之上，本研究系統性地比

較了數種基於 Transformer的架構，以探究直接基於 token (token-based)的控制方

法與更複雜的基於嵌入 (embedding-based)策略的成效。值得注意的是，本研究框

架的運作無需成對資料。我們的綜合評估顯示，儘管所有實現的方法都能有效捕

捉目標編曲家的特徵，基於 token的模型卻是一個更簡潔且有效的解決方案。它

在風格轉換任務的兩大核心層面——內容保留與風格匹配——的客觀與主觀評估

中，均取得了更優越的表現。這個關鍵發現提供了有力的實證證據：對於此類任

務，利用導引譜來清晰地表示內容，能讓一個簡單的、基於 token的模型實現風

格轉換，為未來的研究提供了一個實際且有效的基準。

關鍵字：音樂風格轉換、鋼琴伴奏、內容－風格解耦、導引譜、Transformer
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Abstract

Arranger-specific style transfer for pop piano covers presents a unique challenge

in achieving robust content-style disentanglement. For this work, we define arranger-

specific style by unique accompaniment patterns, such as characteristic rhythmic inten-

sity, polyphony, and pitch range. Content, conversely, is identified as the core melody

and harmony. A key difficulty is that even performed melodies can contain an arranger’s

stylistic variations. This research addresses this by establishing the lead sheet as a robust

anchor to decouple the musical content from stylistic variations, enabling a cleaner sepa-

ration of style. Building on this foundation, we propose a Transformer-based framework

to systematically compare the efficacy of a direct token-based conditioning approach ver-

sus more complex embedding-based strategies. Notably, this framework operates without

requiring paired data. Our comprehensive evaluations demonstrate that while all imple-

mented approaches successfully transfer the target arranger’s characteristics, the simpler

token-based model consistently proves to be a more effective and efficient solution. It
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achieved superior performance in both objective and subjective evaluations across the

two core dimensions of the task: content preservation and style matching. This key find-

ing highlights a crucial insight: leveraging a lead sheet for clear content representation

allows a simple token-based model to achieve highly effective style transfer, providing a

practical and efficient benchmark for future work.

Keywords: Music Style Transfer, Piano Accompaniment, Content-Style Disentangle-

ment, Lead Sheet, Transformer
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Chapter 1 Introduction

Computational music creation, a vibrant fusion of technology and artistry, empow-

ers machines to compose or transform music, amplifying human creativity. For decades,

symbolic formats likeMIDI have been a cornerstone of this field, encoding musical events

with a precision that offers a structured alternative to audio＇s complexwaveforms [3]. This

clarity makes MIDI ideal for tasks requiring fine-grained control, with research splitting

into two broad categories: from-scratch generation and style transfer.

Our work focuses on style transfer within the specific domain of pop piano covers.

These are instrumental arrangements where different arrangers artistically reinterpret a fa-

miliar melody using a wide variety of distinct accompaniment styles—defined by unique

rhythms, textures, and harmonic choices. This phenomenon, where a consistent melody

(content) is naturally paired with varied accompaniment patterns (style), makes piano cov-

ers a compelling case for computational modeling, particularly for the core challenge of

content-style disentanglement.

While style transfer in symbolic music is a broad field of research encompassing

diverse tasks such as genre adaptation [28], compositional rearrangement [23], expres-

sive performance modification [39], timbre alteration [29], and emotion-driven generation

[21], a significant gap remains when applying these concepts to the nuanced domain of
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piano cover arrangements. Most existing studies tend to focus on either broader style cate-

gories like genre transformation or the orchestrational challenge of multi-track instrumen-

tation [9]. In contrast, the specific task of modeling and transferring the subtle, arranger-

specific styles found within single-track piano MIDI remains relatively underexplored.

This thesis aims to address this gap by developing and evaluating novel deep learning

frameworks designed to achieve effective content-style disentanglement for this specific

task, enabling the generation of accompaniments that reflect distinct arranger identities

while preserving the original melodic and harmonic content.

Early music generation relied on convolutional neural networks (CNNs) and recur-

rent neural networks (RNNs) for melody creation or harmonization, but these models

struggledwith long-range dependencies, producing fragmented outputs [38], [14]. The ad-

vent of Transformers [35], with their self-attention mechanism, revolutionized sequence

modeling by capturing global dependencies, making them ideal for MIDI’s sequential

nature . Transformers excel in generating coherent music over extended sequences, as

demonstrated in tasks like multi-track composition [23] and pop piano performance [22].

Our interest lies in Transformer-based content-style disentanglement, where content (melody,

preserved in lead sheets) is separated from style (arranger-specific accompaniment pat-

terns).

Lead sheets, which encode the core melody and chords of a song, serve as a robust

content anchor in our proposed framework, inspired by their successful use in prior work

[36]. By explicitly defining the musical content, they naturally isolate the melody from the

accompaniment, providing a clear structural foundation for style manipulation that is ab-

sent in entangled full performance representations. Grounded on this principle, our work

investigates the most effective way to represent this lead sheet content and the target style

2
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for Transformer models. We explore and compare two primary conditioning strategies: a

token-based approach, where both content and style are represented as discrete tokens, and

embedding-based approaches, which utilize learned, continuous embeddings to represent

either the lead sheet content or the target style.

Our work addresses the identified gap in arranger-specific style transfer by synthe-

sizing key insights from two highly relevant and influential models: MuseMorphose’s

Transformer-VAE framework, which excels in fine-grained style modeling, and Compose

& Embellish’s lead sheet-based generation, which prioritizes structural clarity [37], [36].

Building on these foundations, this thesis presents a systematic investigation into how con-

tent and style are represented for this specific task. To answer the central research question

of whether token-based or embedding-based strategies are more effective, we implement

and conduct a comparative analysis of three distinct Transformer-based architectures, each

designed to test a different representation approach.

Our results, validated on popmusic datasets, demonstrate that a straightforward token-

based method can deliver simple yet effective arranger-specific style transfer, outperform-

ing the more complex embedding-based variants in our experiments. This key finding

suggests that for transferring between a known, finite set of styles, a strong content rep-

resentation (via lead sheets) combined with direct token-based conditioning is a highly

efficient and potent strategy, potentially obviating the need for complex latent space mod-

eling.

However, we also acknowledge the primary limitation of this token-based approach:

its inability to perform zero-shot style transfer to unseen styles, as it relies on style-specific

tokens learned during training. For such advanced tasks, we posit that the principles be-

3
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hind the embedding-based methods, which learn a continuous representation of style, hold

greater potential and represent a valuable direction for future exploration.

The thesis is structured as follows: Chapter 2 reviews related work. Chapter 3 de-

tails the methodology. Chapter 4 outlines the experimental setup and evaluation metrics.

Chapter 5 presents and discusses the results. Finally, Chapter 6 concludes the thesis and

suggests directions for future work.

4
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Chapter 2 Related Work

This chapter surveys literature on symbolic music generation and style transfer, fo-

cusing on methods and representations relevant to arranger-specific piano accompaniment

style transfer in single-track MIDI for pop piano covers. We explore music generation,

style transfer techniques, content and style representations, and research gaps addressed

by our work.

2.1 Music Generation

Symbolic music generation, leveraging MIDI’s precise encoding of musical events

(notes, durations, velocities), has been revolutionized by deep learning, which processes

discrete tokens to create music automatically [3]. While non-deep learning methods hold

value, neural networks dominate recent advances, particularly for piano-focused tasks.

Early efforts used recurrent neural networks (RNNs), with Todd [33] pioneering mono-

phonic melody generation. However, RNNs struggled with long-range dependencies due

to vanishing gradients, producing fragmented outputs [33], [38]. To address this, long

short-term memory (LSTM) networks enabled better sequence memory, as demonstrated

by Eck and Schmidhuber [12], who generated blues improvisations with coherent rhythm

and structure.

5
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Subsequent models improved polyphonic generation. Boulanger-Lewandowski et al.

introduced RNN-RBM [2], outperforming traditional models but still limited in capturing

long-term structure. The advent of deep generative models marked significant progress.

MusicVAE [31], a hierarchical VAE, captured polyphonic music’s long-term structure

with strong interpolation and reconstruction capabilities. Generative adversarial networks

(GANs) also emerged, with MidiNet [38] generating melodies bar-by-bar using a condi-

tional mechanism based on chords, and MuseGAN [11] creating multi-track polyphonic

music, showcasing GANs’ versatility. Transformers [35], with their self-attention mecha-

nism, excelled at long-sequence modeling, as seen in the Music Transformer [20] and Pop

Music Transformer [22], which generated coherent piano performances and pop music,

respectively .

Despite these advances, music’s hierarchical nature—where melodies, harmonies,

and rhythms combine—poses challenges. Two-stage frameworks simplify generation by

first creating lead sheets (melody and chords) before stylizing them into performances.

Compose & Embellish [36] exemplifies this, using lead sheets as content anchors to en-

sure structural clarity. Emotion-driven harmonization [21] adapts lead sheets for specific

moods, highlighting their flexibility. Commercial tools like Band-in-a-Box and Google’s

Magenta project further demonstrate lead sheets’ practical utility in generating user-driven

music [3]. These insights inspired our token-based style transfer approach, leveraging lead

sheets tokens as content with Transformers for arranger-specific piano covers.

6

http://dx.doi.org/10.6342/NTU202501267


doi:10.6342/NTU202501267

2.2 Music Style Transfer

Style transfer modifies musical attributes while preserving content, with style being

a defining characteristic learned from datasets or model differentiation [8]. We define

style as arranger-specific accompaniment patterns (non-melody notes, e.g., rhythms, chord

textures) in pop piano covers, with content as the melody, encoded in lead sheets. Few

studies address arranger-specific style transfer in single-track piano MIDI, a niche our

work targets.

Early models like RNNs and CNNs, limited by local focus, gave way to generative

adversarial networks (GANs) [13] and variational autoencoders (VAEs) [25]. CycleGAN

[5] enables unpaired genre transfer in symbolic music, producing rich outputs without

note limits. MIDI-VAE [4], a VAE-based model, disentangles style (pitches, dynamics,

instrumentation) in multi-instrument polyphonic music using a shared latent space with

a style classifier, achieving unaligned style transfer for complete works. Transformers

[35] advanced style transfer, with MuseMorphose [37] using a Transformer-VAE for bar-

level fine-grained transfer, allowing user-specified attributes like rhythmic intensity and

polyphony. We explored embedding-based approaches, inspired by MuseMorphose [37],

encoding lead sheet embeddings for content or full performance embeddings for style.

Choi et al. [7] used a transformer autoencoder to derive global style representations from

performances, combining them with temporal embeddings to control melody and style,

also informing our embedding experiments.

Style transfer tasks vary: genre transfer alters broad structures [9], [5], composi-

tional rearrangement [40] modifies harmony, expressive performance adjusts dynamics

[39], and emotion-driven generation targets mood [21]. Homophonic style transfer, as in

7
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Lu and Su [27], focuses on accompaniment, adapting DeepBach [14] with WaveNet [34]

and Gibbs sampling to transfer scores into Bach or jazz styles. Chord-based methods,

like Groove2Groove [9], use synthetic data but focus on genre transfer by modifying the

underlying harmonic structure. Content-style disentanglement is challenging due to un-

aligned data, necessitating unsupervised learning. VAE-based methods and GANs encode

style into latent vectors but require complex tuning [32], [18], [30], [19]. Vector-quantized

VAEs (VQ-VAEs) offer discrete control for timbre or rhythm transfer [10], [29]. These

complexities motivated our token-based approach, detailed in Section 2.3.

2.3 Content and Style Representations

Style transfer hinges on effective representations. Token-based approaches, like REMI

sequences, encode musical events (e.g., note-on, duration) as discrete tokens, offering pre-

cise control, especially for lead sheets, which compactly capture melody and chords [36],

[21]. Embedding-based approaches encode features into continuous latent vectors via

VAEs, enabling nuanced adjustments in rhythm or dynamics, as in MuseMorphose [37]

or MIDI-VAE [4]. Lead sheets are widely used as content anchors in tasks like stylized

accompaniments [36], phrase arrangements [40], and emotion-driven generation [21] .

Our contribution uses lead sheets as a melody-preserving bridge, facilitating content-

style disentanglement without complex embeddings. Our token-based approach, leverag-

ing lead sheets and style tokens, achieves effective arranger-specific style transfer, inspired

by Compose & Embellish’s [36] two-stage framework. We also investigated embedding-

based methods, encoding lead sheet embeddings for content or full performance embed-

dings for style, but found the token-based method simpler and more effective, validated

8
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on pop music datasets.

2.4 Research Gaps

Research on arranger-specific style transfer in single-track pianoMIDI for pop covers

is limited, with most studies targeting broader tasks like genre transfer or multi-track mod-

eling [4]. Transformer-based methods rarely use lead sheets for style transfer, and VAE-

based models often prioritize complex latent spaces over structural clarity [37], [30]. Our

work addresses these gaps by combining MuseMorphose’s Transformer-VAE framework

with Compose & Embellish’s lead sheet-based approach, demonstrating that token-based

leads and style tokens offer a simple, effective solution for arranger-specific style transfer,

as explored in Chapter 3.

9

http://dx.doi.org/10.6342/NTU202501267


doi:10.6342/NTU20250126710

http://dx.doi.org/10.6342/NTU202501267


doi:10.6342/NTU202501267

Chapter 3 Methodology

This chapter outlines the methodology for a Transformer-based model for piano ac-

companiment style transfer in popular music covers. The approach focuses on disentan-

gling content (melody and harmony) from style (rhythmic patterns, textural elements, and

decorative notes) to generate piano accompaniments in varied styles while preserving the

song’s core musical structure. The core concept integrates the lead sheet representation

from Compose & Embellish [36] with the encoder-decoder Transformer VAE architecture

from MuseMorphose [37] to achieve effective content-style disentanglement.

3.1 Content and Style Disentanglement

In piano covers of popular songs, the accompaniment provides harmonic and rhyth-

mic support for the main melody, which is not a direct input but shapes the arrangement.

Style variations across arrangers manifest in:

• Rhythm: Variations in note density, complexity, and syncopation.

• Harmony: Differences in chord selection, voicings (note arrangements within chords)

and progression sequences.

• Texture: The degree of polyphony (simultaneous notes) and balance between sparse

and full arrangements.

11
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• Decorative Notes: Embellishments or counter-melodies distinct from the main melody.

In this study,“accompaniment＂refers to all piano notes excluding the main melody,

flexibly played by either hand. The primary challenge is to transform the accompaniment’s

style while retaining the song’s core content (melody and harmony). Disentanglement

of content and style is critical, enabling independent style manipulation. A lead sheet,

comprising the main melody and chord progression, serves as the content representation,

abstracting stylistic details like rhythm and embellishments. This approach, inspired by

Compose & Embellish, provides a clear foundation for style transfer by separating essen-

tial musical structure from performative elements.

3.2 Model Architecture

This study proposes three Transformer-based models, combining the lead sheet con-

cept from Compose & Embellish [36] with the encoder-decoder Transformer VAE frame-

work from MuseMorphose [37]. Each model processes lead sheets as content and in-

corporates style conditioning to generate stylistically varied accompaniments. Detailed

configurations are provided in Section 3.5.1 and Table A.2.

3.2.1 Model 1: Decoder-Only with Token-Based Content and Style

Model 1 uses a decoder-only Transformer, adapted from Compose & Embellish [36],

to generate a full performance (X) conditioned on a lead sheet (M) containing melody

and chord information. The input sequence interleaves one-bar segments of lead sheet

tokens (M) and performance tokens (X) (e.g., M(1), X(1), M(2), X(2)), with special tokens

[Track_M] and [Track_X] marking each segment (see Figure 3.4 for sequence structure).

12
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A style token at the sequence’s start guides the model to produce X in the target arranger’s

style. The model generates tokens autoregressively, minimizing negative log-likelihood

with a causal attention mask. Ablation studies test alternative style token placements (e.g.,

per bar) and lead sheets without chords. Figure 3.1 illustrates the architectures.

Figure 3.1: Model 1: Decoder-Only Transformer (content: lead sheet tokens, style: Ar-
ranger_ID token)

3.2.2 Model 2: Encoder-DecoderwithEmbedding-BasedContent and

Token-Based Style

Model 2 employs an encoder-decoder Transformer architecture. The encoder pro-

cesses the lead sheet token sequence to generate contextualized content embeddings. The

decoder generates the performance autoregressively, starting with a style token and using

cross-attention to integrate content embeddings, ensuring alignment with the lead sheet

and specified style. The lead sheet and performance are processed as 8-bar segments, as

shown in Figure 3.2.

13
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Figure 3.2: Model 2: Encoder-Decoder Transformer (content: lead sheet embedding,
style: Arranger_ID token)

3.2.3 Model 3: Encoder-DecoderwithToken-BasedContent andEmbedding-

Based Style

Model 3 combines a style encoder and a main decoder, leveraging a β − V AE [15]

framework to enhance content-style disentanglement. The style encoder processes a 8-bar

reference performance token sequence to produce a global style embedding. The main de-

coder uses an interleaved lead sheet and performance token sequence, similar to Model 1,

with the style embedding injected via an in-attention mechanism [37]. The VAE bottle-

neck ensures robust separation of content (lead sheet) and accompaniment style. Ablation

studies compare using identical versus adjacent 8-bar reference segments for style encod-

ing. Figure 3.3 illustrates the sequence structure and style embedding integration.

14
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Figure 3.3: Model 3: Encoder-Decoder Transformer with VAE (content: lead sheet to-
kens, style: reference’s full performance embedding)

3.3 Data Representation and Tokenization

3.3.1 Data Source and Conversion

The dataset comprises piano cover performances from two YouTube channels, se-

lected for consistent quality. Audio recordings are converted to MIDI format for symbolic

processing, enabling lead sheet extraction and tokenization.

3.3.2 Lead Sheet Extraction

Lead sheets capture the main melody and chord progression from MIDI files. The

melody is extracted using the Skyline algorithm, selecting the highest-pitched note per

time step, quantized to 8 positions per bar (sub-beats 0, 2, ..., 14 in a 16-sub-beat bar).

Chords are identified using the Chorder tool, providing bar-level harmonic annotations
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(e.g., C major, G minor).

3.3.3 Symbolic Representation and Tokenization

Music is represented using the REMI framework [22]. For full performances (X_perf,

denoted [Track_Midi]), tokens include:

• Bar and Beat tokens (16th-note resolution).

• Note_Pitch (MIDI note number from 21 to 108), Note_Duration (multiples of 16th

note), and Note_Velocity (from 40 to 114 in steps of 2).

• Tempo (from 32 to 224 BPM in steps of 3) and Chord tokens (root + quality, 132 types).

For lead sheets (M_lead, denoted [Track_Skyline]), the representation omits Note_Velocity,

uses a single global Tempo token (mean of all the Tempo value in full performance), and

aligns melody to an 8-step resolution. The vocabulary, including special tokens ([EOS],

[Arranger_A], [Arranger_B]), totals 363 tokens, mapped to integer IDs. Sequences are

padded or truncated to 1024 tokens. Table 3.1A.1 lists the vocabulary, and Figure 3.4

shows the REMI structure.

Figure 3.4: REMI sequence for lead sheet & full performance.
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3.3.4 Style Representation

Models 1 and 2 use explicit style tokens (e.g., [Arranger_1], [Arranger_2]) within the

vocabulary. Model 3 generates a global style embedding from a reference performance’s

REMI tokens via the style encoder, integrated through in-attention.

3.3.5 Sequence Segmentation

Training samples start at a randomly selected bar, with sequences formatted to 1024

tokens. Model 1 interleaves lead sheet and performance tokens, ensuring content proxim-

ity (Figure 3.1). Model 2 and Model 3 process 8-bar lead sheet and performance segments

(Figure 3.2, Figure 3.3), with padding or truncation as needed.

3.4 Training Objectives

The training objectives are tailored to eachmodel to optimize performance and ensure

content-style disentanglement. For Model 1 and Model 2, the objective is to minimize the

negative log-likelihood (NLL) loss for autoregressive token prediction:

LNLL = −
T∑
t=1

log p(yt|y<t, C)

where yt is the target token and C includes lead sheet and style tokens. Model 3 uses a

β − V AE [15] objective to enhance disentanglement:

LTotal = LReconstruction + β · LKL
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• Reconstruction Loss: An NLL loss for generating performance tokens conditioned on

the lead sheet and style embedding: LReconstruction = −
∑TX

t=1 log p(xt|x<t,M, z)

• KL Divergence Loss: Regularizes the style latent space to a standard normal prior,

using a“free bits＂technique (λ = 0.3) to prevent posterior collapse and ensure robust

disentanglement: LKL = DKL(qϕ(z|Xref)||p(z)). The VAE bottleneck is critical for

Model 3, enabling clear separation of content (lead sheet) and accompaniment style.

3.5 Implementation Details

This section provides the specific details regarding model configurations and the

training procedures employed in this study, ensuring the reproducibility of our experi-

ments.

3.5.1 Model Configurations and Hyper-parameters

The Transformer architecture forms the backbone of all three proposed models. A

consistent set of core hyper-parameters was adopted for all Transformer components across

the models (i.e., the decoder in Model 1; the content encoder and decoder in Model 2; and

the style encoder and decoder in Model 3). These shared architectural parameters are

detailed in Table A.2.

The only model-specific architectural parameter is for Model 3, which is based on a

β − V AE [15] framework. The dimensionality of its latent style embedding (zk) is set to

128.
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3.5.2 Training Procedure

All models were trained using the Adam optimizer with its standard default parame-

ters (β1=0.9, β2=0.999, ϵ = 10−8).

A learning rate schedule combining a linear warmup phase with a subsequent cosine

annealing decay was implemented. For the initial 200 warmup_steps, the learning rate

was linearly increased from a near-zero value to the maximum learning rate of 1.0×10−4.

Following the warmup, a CosineAnnealingLR scheduler decayed the learning rate from

this maximum value down to a minimum of 5.0×10−6 over a cycle of 500,000 steps.

To enhance data diversity and model generalization, an on-the-fly data augmentation

strategy was employed. For each training instance, random pitch transposition was ap-

plied to the entire musical piece, including both melody and chord information, with the

transposition interval uniformly sampled from -6 to +6 semitones.

The batch size was set to 4 for Model 1 and 8 for Model 2 and Model 3. Training for

each model was conducted for approximately 1000 epochs, with the final checkpoints for

evaluation selected based on the best performance on the validation set. To stabilize the

training process, gradient clipping was applied, where the L2 norm of the gradients was

clipped to a maximum value of 0.5.

3.5.3 VAE-Specific Training Details (Model 3)

The training of the β − V AE-based Model 3 incorporated specific regularization

strategies. Cyclical KL annealing was applied to the weight (β) of the KL divergence

term in the loss function. Initially, β was set to 0 for the first 5,000 training steps to
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allow the model to focus on reconstruction. Subsequently, β was linearly increased from

0 to a maximum of 1.0 over repeating 5,000-step cycles. Additionally, the ”free bits”

[24] technique was used with the hyperparameter λ set to 0.3 to encourage more effective

utilization of the latent space.

3.5.4 Software and Hardware

All experiments were conducted using Python 3.8 and the PyTorch framework. Model

training was performed on a single NVIDIA GeForce RTX 3090 GPU, with the training

process for each of the three models taking approximately one to two days to complete.
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Chapter 4 Experiment

This chapter details the dataset specifically compiled and utilized for training, valida-

tion and testing the proposed piano accompaniment style transfer models, along with eval-

uation metrics, experimental setup, and results. The evaluation focuses on style match-

ing (how accurately the generated accompaniments reflect the target arranger’s style) and

melodic fidelity (howwell the coremelodic content from the input lead sheet is preserved).

4.1 Dataset

4.1.1 Dataset Preparation

The foundation of our dataset consists of audio recordings of piano cover perfor-

mances from the Pop2Piano dataset [6], sourced from YouTube channels of two distinct

arrangers, referred to as Arranger A and Arranger B, selected for their distinguishable

stylistic approaches to popular song accompaniment. The initial processing pipeline, in-

spired by the Compound Word Transformer [17], converted audio to symbolic MIDI for-

mat:

• Audio Transcription: Audio clips were transcribed into raw MIDI-like note events

using ByteDance’s GiantMIDI-Piano transcription model [26].
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• Beat and Downbeat Tracking: The madmom library [1] was employed for robust

beat and downbeat detection within the transcribed performances.

• Temporal Alignment: A resolution of 480 ticks per beat, a common setting in mod-

ernDigital AudioWorkstations (DAWs), was established. Absolute timings of notes

were mapped to these ticks, with tempo inferred from beat intervals. Importantly,

at this stage, note timings were not quantized, preserving micro-timing deviations.

• Lead Sheet Extraction: As detailed in Section 3.3.2, lead sheets comprising a main

melody line and bar-level chord progressions were extracted. Melody extraction uti-

lized the Skyline algorithm, and chord recognition was performed using the Chorder

tool.

• Quantization and Event Creation: Then, all relevant musical attributes (e.g., note

durations, note velocities for full performances, BPMs for tempo events) were quan-

tized.

• REMI Conversion: Finally, this processed and quantized musical information was

converted into sequences of REMI tokens [22], following the event vocabulary and

tokenization procedures described in Sections 3.3.3, with an [EOS] token appended.

4.1.2 Dataset Composition and Splitting

The dataset comprises 811 pieces from Arranger A (average 87 bars) and 581 pieces

from Arranger B (average 92 bars), totaling approximately 86 hours. The dataset was split

using an 8:1:1 ratio (training:validation:test), performed independently for each arranger’s

collection to ensure proportional representation. The training set contains 1,113 pieces,

while the validation set consists of 139 pieces, and the test set includes 140 pieces.

22

http://dx.doi.org/10.6342/NTU202501267


doi:10.6342/NTU202501267

4.1.3 Dataset Statistics

To provide a deeper understanding of the musical characteristics of our dataset and

to highlight potential intrinsic stylistic differences between the two arrangers, a compre-

hensive statistical analysis was conducted, presented in Table 4.1 & 4.2.

# Pieces Total Duration # Bars / Piece # Pitches / Bar # REMI Tokens / Piece
Arranger A 811 49.79 hr 87.01 ± 22.07 11.34 ± 6.73 4081.08 ± 1358.68
Arranger B 581 35.72 hr 92.11 ± 21.79 16.02 ± 7.43 5955.39 ± 1304.34

Table 4.1: Dataset Statistics (Overview).

Rhythmic Intensity Polyphony Pitch Range Avg. Inter-Onset Interval (IOI)
Arranger A 0.46 3.98 49.10 ± 10.31 0.24 ± 0.084
Arranger B 0.56 5.76 55.95 ± 5.77 0.14 ± 0.04

Table 4.2: Dataset Statistics (Feature-based analysis).

These statistics offer quantitative insights into the dataset＇s general properties and the

distinct musical tendencies of the two arrangers, forming a baseline for evaluating style

transfer performance.

4.2 Evaluation Metrics

To quantitatively assess the performance of our proposed style transfer models, we

evaluate them based on two primary aspects: style matching and melodic fidelity. All

objective metrics are computed on 8-bar musical segments extracted from both generated

samples and reference pieces.
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4.2.1 Objective Metrics

4.2.1.1 Style Matching

We evaluate style matching by comparing the statistical distributions of several musi-

cal features between the generated samples and reference corpora representing each target

arranger’s style. The following features, as identified by MuseMorphose [37], are consid-

ered:

• Rhythmic Intensity: This metric quantifies the level of rhythmic activity or density

within each bar. It is defined as the percentange of sub-beats with at least one note

onset, i.e.:

srhym =
1

B

B∑
b=1

1(nonset,b,≥ 1)

• Polyphony: This refers to the average number of simultaneously sounding notes,

indicating textural richness. It is measured at the bar-level, the average number of

notes hitting (onset) or holding (not yet released) in a sub-beat, i.e.:

spoly =
1

B

B∑
b=1

(nonset,b + nhold,b)

• Pitch Range: This segment-level metric captures the span between the lowest and

highest pitches used, which can be a stylistic indicator.

To compare the distributions of these features, we employ two statistical measures:

• Kullback-Leibler Divergence (KLD): KLDmeasures the divergence between two

probability distributions. A lower KLD value between the feature distribution of

generated samples (conditioned on a target style, e.g., Arranger A) and the feature
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distribution derived from the corpus of Arranger A’s original pieces (serving as the

ground truth representation of Arranger A’s style distribution) indicates a closer

stylistic match. Conversely, a higher KLD value when compared to Arranger B’s

original pieces would be expected.

• Overlapping Area (OA): OA quantifies the similarity between two probability dis-

tributions by calculating the overlapping area of their estimated probability density

functions. A higher OA value suggests greater similarity. Similar to KLD, we ex-

pect a higher OA when comparing generated samples to their target arranger’s char-

acteristic style distribution (e.g., generationstyleA vs. realstyleA) than when compared

to a non-target style distribution (e.g., generationstyleA vs. realstyleB).

By analyzing these KLD and OA scores across the aforementioned features, we can

quantitatively assess the models’ ability to capture and reproduce the stylistic character-

istics of the target arrangers.

4.2.1.2 Melodic Fidelity

Preserving the core melodic content of the input lead sheet within the generated full

piano performance is a primary objective. However, in the context of piano covers, dif-

ferent arrangers may introduce subtle variations to a given melody, such as slight shifts

in rhythmic placement or minor alterations in note durations, while still retaining the

melody’s essential identity. To account for this, our evaluation of melodic fidelity fo-

cuses on the presence and correct sequential ordering of the pitches from the input lead

sheet’s melody within the corresponding bars of the generated full performance, rather

than requiring exact note-to-note temporal alignment or contiguity.
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We employ the Longest Common Subsequence (LCS) algorithm to quantify this as-

pect of content preservation. The LCS algorithm is applied on a bar-by-bar basis. For

each bar, we compare two sequences of pitches:

• The sequence of pitches constituting the melody in the input lead sheet for that bar.

• The sequence of all pitches present in the generated full performance for the corre-

sponding bar.

The LCS algorithm identifies the longest subsequence of pitches that appears in both

sequences in the same order, though not necessarily contiguously in the generated perfor-

mance (as the performance will contain additional accompaniment notes). The melodic

fidelity for a given bar is then calculated as:

Melodic Fidelitybar =
Length(LCS(LeadSheetPitchesbar,GeneratedPitchesbar))

Number of Pitches in LeadSheetPitchesbar
(4.1)

This ratio, ranging from 0 to 1, indicates the proportion of lead sheet melody pitches

that are present in the correct order within the generated bar. An overall melodic fidelity

score for a generated piece (or an 8-bar segment) can be obtained by averaging these bar-

level fidelity scores.

4.2.2 Subjective Evaluation

To complement the objective metrics, a subjective listening study was designed and

conducted to assess the perceptual quality of the style transfer generated by our models

from human listeners’ perspectives. This study evaluated aspects such as melodic fidelity,
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style matching, and overall musical quality of the generated piano cover arrangements.

Participants: Approximately 38 participants were recruited, encompassing a diverse

range of musical backgrounds, categorized into five groups: (1) No prior music knowl-

edge; (2) Less than 1 year of musical experience (self-taught or formal); (3) 1–3 years

of musical experience; (4) More than 3 years of musical experience; (5) Currently work-

ing in a music-related profession. The listening task was designed to be completed in

approximately 20 minutes.

Musical Excerpts and Experimental Design: The study used eight popular songs, not

included in the training dataset, for which piano cover arrangements by both Arranger A

and Arranger B were available. Two questionnaires were utilized, each containing four

songs (two for A → B style transfer, two for B → A). All excerpts were 8 bars. The

procedure for the listening study was:

• Style Familiarization: Participants listened to representative paired song segments

by Arranger A and B to familiarize themselves with their styles.

• Presentation of Source Piano Cover: An 8-bar excerpt of the source arranger’s

performance (e.g., Arranger A) was presented.

• Evaluation of Transferred Piano Covers: Participants evaluated multiple 8-bar

performances, assessing variations in model-generated outputs and ground truth ref-

erences.

Participants evaluated performances generated by two models, both conditioned on style

tokens: Model 1 (decoder-only) and Model 2 (encoder-decoder with lead sheet embed-

ding), along with the ground truth target performed by the target arranger. Model 3, which

relied on an input reference segment to represent style latent, was excluded from the user
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study, as the reference segment might not reliably capture the intended target arranger’s

stylistic characteristics. To mitigate bias, the presentation order of performances was ran-

domized.

Evaluation Questions and Scale: Participants rated each performance on a 5-point Likert

scale (1 = strong disagreement/poor, 5 = strong agreement/excellent):

• Melodic Fidelity: To what extent does this performance preserve the melody of the

source piano cover?

• Style Matching: To what extent does this performance align with the musical style

of the target arranger’s piano covers?

• Overall Quality: How would you rate the overall quality of this musical perfor-

mance?

4.3 Baseline Models

The primary experimental focus of this thesis is a comparative analysis of the three

proposed model variants (Model 1, Model 2, and Model 3), each designed to explore dif-

ferent strategies for content representation and style conditioning in piano accompaniment

style transfer.

Direct comparisons with existing external baseline models from prior literature were

deemed challenging. As discussed in Chapter 2, the field of music style transfer encom-

passes a wide variety of tasks and musical domains. For instance, Pop2Piano [6] primarily

addresses transcription from audio with style control, differing from our MIDI-to-MIDI

style transfer objective. Similarly, while “Encoding Musical Style with Transformer

Autoencoders＂[7] presents highly relevant concepts in learning style embeddings from
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symbolic data to control generation, it could not be adapted as a direct baseline due to

the lack of a complete open-source implementation for our specific task. Other works fo-

cusing on different genre transfers (e.g., classical to jazz) or multi-track instrumentation

further complicate direct and fair comparisons. Given these variations in task definition,

input modality, and the general lack of adaptable open-source implementations, rigorous

head-to-head comparisons were considered impractical for this study.

Therefore, our evaluation centers on the internal comparison of the three proposed

models. These models were intentionally designed to encapsulate and investigate different

representation strategies (e.g., token-based vs. embedding-based) observed in the litera-

ture. In this sense, they effectively serve as controlled baselines for one another, allowing

us to draw clear conclusions about the efficacy of these specific design choices for our

task.

4.4 Experimental Setup

This section details the procedures for generating musical outputs from our trained

models and preparing reference data, which are used for the objective and subjective eval-

uations described in Section 4.2. All generated and reference musical segments are stan-

dardized to 8 bars.

To create a corpus of generated samples for evaluation, we selected 100 distinct musi-

cal pieces (lead sheets) from the test set. For each piece, 8-bar accompaniments were gen-

erated targeting the styles of both Arranger A and Arranger B. The conditioning method

varied by model:

• Model 1 and Model 2: Conditioned using style tokens, two distinct 8-bar segments
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were generated for each target style per source lead sheet, resulting in 200 segments

per style for each model (100 pieces × 2 samples).

• Model 3: Conditioned using style embeddings, each derived from a different, ran-

domly selected 8-bar reference segment from the target arranger’s training data,

resulting in 200 segments per style. (100 pieces × 2 references).

During generation, nucleus sampling top-p, (p = 0.9), temperature (τ = 1.2) de-

coded output tokens [16]. For Model 3, style embedding (zk) was set to the mean of the

learned posterior distribution (zk = µk), excluding variance for improved quality.
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Chapter 5 Results and Discussion

5.1 Overview

Following the evaluation metrics and sample generation in Sections 4.2 and 4.4,

this section evaluates our arranger-specific style transfer framework for pop piano cov-

ers, comparing three models: Model 1 (token-based, using lead sheets and style tokens),

Model 2 (embedding-based, with lead sheet embeddings and style tokens), and Model

3 (embedding-based, with full performance embeddings). Using 200 8-bar segments

per style (Arranger A, B) from test set, we assess style matching (rhythmic intensity,

polyphony, pitch range) and melodic fidelity objectively, with subjective listener ratings

for Model 1 and Model 2. Ablation studies explore Model 1’s style token placement and

chord usage, and Model 3’s reference segments. Similar objective metrics validate the ro-

bustness of lead sheets, while subjective results and ablations favor Model 1’s simplicity

for music production applications.

5.2 Objective Results: Style Matching

The objective results for style matching, were derived by comparing 200 generated

8-bar segments per style against robust style distributions. To ensure statistical stability,
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these reference distributions were established by averaging results over five independent

random samples of 200 8-bar segments from each arranger’s training data. The following

analysis focuses on verifying whether the models’ generated outputs are statistically closer

to their intended target style distribution than to the non-target distribution across several

key musical features. A feature-by-feature analysis reveals the models’ effectiveness in

style discrimination:

• Polyphony: This feature proved to be a key stylistic differentiator that all models

successfully captured. As shown by the Overlapping Area (OA) scores in Table

5.1, all models generated outputs that were significantly more similar to their tar-

get style distribution than to the non-target one. The difference was clear, with

the OA for matched-style comparisons being substantially higher (e.g., by 20%-

30%) than for mismatched-style comparisons. Model 1 showed a slight advantage

in this regard. A notable observation, however, appeared in the Kullback-Leibler

Divergence (KLD) scores for an ablation version of Model 1 trained without chord

information, as shown in Table 5.4. For this ”chord-less” model, the KLD scores

showed an unusual bias: its generated outputs, regardless of conditioning, consis-

tently had a higher KLD when compared to Arranger B’s data than to Arranger A’s.

This may point to a limitation of the KLDmetric in this specific case, where it might

be sensitive to underlying data artifacts when harmonic guidance is absent.

• Rhythmic Intensity: All models also performed well on this feature. The results

from both OA and KLD (Table 5.2 and Table 5.5) consistently show that the gen-

erated music is statistically closer to the intended target style. While the distinction

between the target and non-target styles is more subtle here compared to polyphony,

this is likely because the two arrangers’ styles are inherently more similar for this
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particular feature in our dataset.

• Pitch Range: The models also successfully captured the distinct pitch range char-

acteristics of each arranger, as clearly demonstrated by the OA scores. As shown

in Table 5.3, all models’ outputs align well with their intended target style distri-

bution. Interestingly, the KLD metric (Table 5.6) did not consistently reflect this

trend, showing a bias towards Arranger A’s distribution in most cases. While this

discrepancy points to potential limitations or different sensitivities of the KLD met-

ric for this specific feature, the strong, positive results from the OA metric confirm

that the models did effectively learn to replicate the target pitch range styles.

Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.92 ± 0.01 0.58 ± 0.01 0.57 ± 0.02 0.95 ± 0.01
bar-level style 0.94 ± 0.01 0.6 ± 0.01 0.64 ± 0.02 0.92 ± 0.01
w/o chord 0.89 ± 0.01 0.56 ± 0.01 0.61 ± 0.02 0.95 ± 0.01

Model 2 0.95 ± 0.01 0.6 ± 0.01 0.65 ± 0.02 0.93 ± 0.01
Model 3 0.94 ± 0.01 0.64 ± 0.01 0.72 ± 0.02 0.88 ± 0.01
adjacent 0.89 ± 0.01 0.71 ± 0.01 0.61 ± 0.02 0.96 ± 0.01

Table 5.1: Objective evaluation results: Overlapping Area - Polyphony.

Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.91 ± 0.01 0.75 ± 0.03 0.8 ± 0.02 0.91 ± 0.02
bar-level style 0.86 ± 0.01 0.72 ± 0.03 0.82 ± 0.02 0.9 ± 0.02
w/o chord 0.88 ± 0.01 0.73 ± 0.03 0.81 ± 0.02 0.91 ± 0.03

Model 2 0.88 ± 0.01 0.81 ± 0.03 0.82 ± 0.02 0.92 ± 0.02
Model 3 0.86 ± 0.01 0.72 ± 0.03 0.83 ± 0.02 0.85 ± 0.03
adjacent 0.86 ± 0.02 0.79 ± 0.03 0.73 ± 0.02 0.91 ± 0.02
Table 5.2: Objective evaluation results: Overlapping Area - Rhythmic intensity.

Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.93 ± 0.02 0.57 ± 0.01 0.56 ± 0.03 0.96 ± 0.01
bar-level style 0.95 ± 0.01 0.59 ± 0.01 0.62 ± 0.03 0.92 ± 0.01
w/o chord 0.91 ± 0.02 0.55 ± 0.01 0.6 ± 0.03 0.95 ± 0.01

Model 2 0.95 ± 0.01 0.59 ± 0.01 0.63 ± 0.02 0.93 ± 0.0
Model 3 0.93 ± 0.02 0.63 ± 0.01 0.7 ± 0.03 0.87 ± 0.01
adjacent 0.88 ± 0.02 0.7 ± 0.01 0.6 ± 0.03 0.96 ± 0.01

Table 5.3: Objective evaluation results: Overlapping Area - Pitch range.
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Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.03 ± 0.02 0.38 ± 0.23 0.72 ± 0.22 0.11 ± 0.1
bar-level style 0.04 ± 0.04 0.62 ± 0.29 0.31 ± 0.13 0.1 ± 0.13
w/o chord 1.39 ± 0.14 2.62 ± 0.27 0.1 ± 0.05 0.62 ± 0.33

Model 2 0.13 ± 0.09 0.17 ± 0.14 0.75 ± 0.22 0.13 ± 0.11
Model 3 0.11 ± 0.07 0.18 ± 0.16 0.6 ± 0.2 0.1 ± 0.07
adjacent 0.25 ± 0.11 0.11 ± 0.09 0.68 ± 0.21 0.09 ± 0.08
Table 5.4: Objective evaluation results: Kullback-Leibler Divergence - Polyphony.

Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.04 ± 0.01 0.21 ± 0.03 0.1 ± 0.03 0.02 ± 0.01
bar-level style 0.06 ± 0.01 0.27 ± 0.04 0.08 ± 0.03 0.03 ± 0.01
w/o chord 0.05 ± 0.01 0.23 ± 0.04 0.08 ± 0.03 0.03 ± 0.01

Model 2 0.04 ± 0.01 0.12 ± 0.03 0.1 ± 0.04 0.03 ± 0.01
Model 3 0.06 ± 0.01 0.19 ± 0.04 0.06 ± 0.02 0.06 ± 0.02
adjacent 0.06 ± 0.02 0.11 ± 0.03 0.18 ± 0.05 0.01 ± 0.0

Table 5.5: Objective evaluation results: Kullback-Leibler Divergence - Rhythmic inten-
sity.

Model Gen A vs. Train A Gen A vs. Train B Gen B vs. Train A Gen B vs. Train B
Model 1 0.07 ± 0.0 0.19 ± 0.0 0.33 ± 0.0 1.02 ± 0.0
bar-level style 0.15 ± 0.0 0.24 ± 0.0 0.39 ± 0.0 1.05 ± 0.0
w/o chord 0.28 ± 0.0 0.89 ± 0.0 0.68 ± 0.0 1.46 ± 0.0

Model 2 0.19 ± 0.0 0.19 ± 0.0 0.41 ± 0.0 1.04 ± 0.0
Model 3 0.17 ± 0.0 0.63 ± 0.0 0.39 ± 0.0 1.11 ± 0.0
adjacent 0.23 ± 0.0 0.11 ± 0.0 0.18 ± 0.0 0.56 ± 0.0
Table 5.6: Objective evaluation results: Kullback-Leibler Divergence - Pitch range.

Model Arranger A Arranger B
Model 1 0.97 ± 0.1 0.91 ± 0.17
bar-level style 0.97 ± 0.1 0.96 ± 0.1
w/o chord 0.95 ± 0.13 0.94 ± 0.13

Model 2 0.91 ± 0.23 0.89 ± 0.23
Model 3 0.92 ± 0.16 0.88 ± 0.2
adjacent 0.93 ± 0.15 0.94 ± 0.15

Table 5.7: Objective evaluation results: Average melodic fidelity.

5.3 Objective Results: Melodic Fidelity

The aggregated results, shown in Table 5.7, indicate that all models achieved high

melodic fidelity in preserving the content from the input lead sheets. Model 1 (token-

based) led with an overall average fidelity of 91%-97%, followed closely by Model 3

(88%-94%) and Model 2 (89%-91%). The slightly lower performance of Model 2 may
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suggest that encoding the entire lead sheet into a single global content embedding can

result in minor information loss. Furthermore, a consistent trend was observed across the

models: melodic fidelity scores were generally slightly lower when targeting Arranger

B’s style compared to when targeting Arranger A’s. A plausible explanation for this is

that Arranger B’s own performance style tends to incorporate more melodic variations and

embellishments. It is likely that our models, in learning to emulate this style, also learned

to introduce similar melodic deviations not present in the original, strict lead sheet, thus

resulting in a marginally lower LCS ratio. This suggests the models not only transferred

the accompaniment style but also subtle aspects of the melodic performance style.

5.4 Subjective Results

Subjective evaluations, conducted with 38 listeners rating Model 1, Model 2, and

ground truth performances on a 5-point Likert scale, revealed clear preferences, with de-

tailed scores presented in Table 5.8 and Table 5.9. Focusing first on Style Matching, the

token-based Model 1 (3.24/5) was rated as significantly more effective at capturing the

target arranger’s style than Model 2 (2.63/5). Beyond just matching style, Model 1 also

excelled at content preservation; for Melodic Fidelity, it again outperformed Model 2

(3.35/5 vs. 2.75/5) and achieved a rating comparable to that of the ground truth human

performances (3.53/5), indicating robust melody preservation. This strong performance

was reflected in the Overall Quality ratings, whereModel 1 (3.28/5) was again clearly pre-

ferred over Model 2 (2.91/5) and its score approached the high standard set by the ground

truth (3.27/5). The consistent underperformance of Model 2 across all subjective criteria

suggests that its content-embedding approach may lead to outputs that are perceived as

less distinctive and faithful. An interesting phenomenon was observed in this criterion
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when targeting Arranger B’s style: listeners rated Model 1’s melodic preservation (3.5/5)

as slightly higher than that of the actual ground truth performance by Arranger B (3.34/5).

This may be because the real performance by Arranger B incorporates more stylistic vari-

ations and embellishments on the core melody; some listeners might have perceived these

artistic choices as a deviation, whereas Model 1’s stricter adherence to the input lead sheet

was perceived as more ”faithful”.

Model Melodic Fidelity Style Matching Overall Quality
Model 1 3.35 ± 0.95 3.24 ± 1.01 3.28 ± 0.97
Model 2 2.75 ± 1.26 2.63 ± 1.23 2.91 ± 1.14
Real Data 3.53 ± 1.04 3.2 ± 1.16 3.27 ± 1.07

Table 5.8: User study MOS results. (Aggregated overall.)

Model Melodic Fidelity Style Matching Overall Quality
Arranger A Arranger B Arranger A Arranger B Arranger A Arranger B

Model 1 3.2 ± 0.95 3.5 ± 0.93 3.21 ± 0.94 3.26 ± 1.08 3.28 ± 0.87 3.28 ± 1.07
Model 2 2.89 ± 1.26 2.61 ± 1.24 2.78 ± 1.2 2.49 ± 1.25 2.95 ± 1.06 2.88 ± 1.23
Real Data 3.72 ± 0.87 3.34 ± 1.15 3.32 ± 1.12 3.09 ± 1.2 3.47 ± 1.01 3.07 ± 1.1

Table 5.9: User study MOS results. (Presented by target arrangers.)

5.5 Discussion

The experimental results present a key insight: while all three models achieved com-

parable performance on objective style-matchingmetrics—validating our lead sheet-based

framework for effective content disentanglement—a clear preference for the simplest,

token-based architecture (Model 1) emerged in human evaluation. Its subjective supe-

riority in style matching, melodic fidelity, and overall quality, combined with its compu-

tational efficiency (faster training, fewer parameters), suggests that for this specific task, a

direct token-based conditioning approach is more effective than compressing content into

a fixed embedding, which may risk information loss as seen in Model 2. Furthermore, our

analysis revealed limitations in the objective metrics themselves, such as a consistent pitch
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range bias across all models. This underscores the critical role of subjective evaluation in

capturing the subtle nuances of musical style that current metrics may miss. While Model

1 proved to be the most practical solution in this study, the robustness of Model 3’s style

encoder indicates that latent space modeling remains a promising, albeit more complex,

paradigm for future exploration.
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Chapter 6 Conclusion

This thesis investigated the challenge of arranger-specific style transfer for single-

track piano accompaniments. We proposed and systematically evaluated a framework

grounded on the use of lead sheets as a robust content anchor, comparing three distinct

Transformer-based architectures to assess the efficacy of token-based versus embedding-

based strategies for representing musical content and style.

Our primary finding is that a straightforward token-based model, built upon a strong

lead sheet content representation, proved to be a highly effective and computationally ef-

ficient solution for this task. While objective metrics indicated comparable performance

across all models, validating the overall framework, the token-based approach was clearly

preferred by human listeners, scoring significantly higher in style matching, melodic fi-

delity, and overall quality. This work’s main contribution is providing empirical evidence

that for transferring between a known set of nuanced styles, an explicit content represen-

tation can be more critical than complex latent space modeling.

The findings from this research open up several promising avenues for future work,

primarily centered on representation learning for content-style disentanglement. A key

direction is to further explore how to best represent content and style for different transfer

tasks. This involves designing representations that are tailored to the specific musical
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characteristics of the target domain, whether it be genre, emotion, or arranger-specific

patterns. For example, the success of the lead sheet anchor motivates further research into

other structured, symbolic representations that can effectively model core musical content.

Furthermore, while our simpler token-based method excelled in this study, the dis-

entangling capabilities of Transformer-VAEs (as explored in Model 3) remain a critical

area for development, especially for enabling more generalized, zero-shot style transfer.

Future research could investigate more advanced techniques to achieve a cleaner sepa-

ration of style and content factors within the latent space. This includes exploring more

sophisticated reference segment designs for style encoders or integrating adversarial ob-

jectives to improve the disentanglement process. In summary, this thesis not only provides

a practical solution for arranger-specific style transfer but also contributes to the broader

understanding of how representation choices impact controllable music generation.
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Appendix A — Experiment

A.1 REMI Vocabulary

Event Type Description # Tokens
Bar Marks the beginning of a new bar. 1
Beat Discrete beat/sub-beat position within a 4/4 bar, in 16th note

resolution. For lead sheet events, quantized to 8th note res-
olution.

16

Tempo Represents quantized BPM values, e.g., from 32 bpm to 224
bpm in steps of 3 bpm.

65

Note_Pitch MIDI note numbers (pitch) from 21 to 108 88
Note_Duration multiples (1-16 times) of 16th note 17
Note_Velocity MIDI velocity (loudness), from 40 to 114 in steps of 2 38
Chord chord markings (root & quality) e.g., G minor seventh 133
EOS End-of-sequence or end-of-segment token. 1
Track_Skyline Identifier for lead sheet data segments. 1
Track_Midi Identifier for full performance data segments. 1
Arranger_A Style token representing Arranger A. 1
Arranger_B Style token representing Arranger B. 1
Table A.1: The REMI vocabulary used to represent piano cover songs in our dataset.
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A.2 Model Configurations

Parameter Value Notes
Common Transformer Architecture
# Self-Attention Layers 12
Token Embedding Dimension 512
Hidden State Dimension 512
# Encoder Layers 12 (For Models 2 & 3’s encoders)
# Decoder Layers 12 (For all models’ decoders)
# Self-Attention Heads (nhead) 8 (For both encoder & decoder)
Feed-forward Dimension (dff ) 2048 (For both encoder & decoder)
Dropout Rate 0.1
VAE Latent Dimension (zk) 128 Model 3
Optimizer & Learning Rate
Optimizer Adam
Adam β1 0.9 (Default)
Adam β2 0.999 (Default)
Adam ϵ 1×10−8 (Default)
Max Learning Rate (max_lr) 1.0×10−4
Min Learning Rate (min_lr for Cosine) 5.0×10−6
Warmup Steps 200 (Linear warmup)
Cosine Annealing T_max / lr_decay_steps 500,000 steps (Steps for one decay cycle)
Training Hyperparameters
Batch Size (Model 1) 4
Batch Size (Model 2 & 3) 8
Gradient Clipping Norm 0.5 (L2 norm)
Total Training Epochs (approx.) 1̃000 (Best checkpoint selected)
VAE-Specific Training (Model 3)
KL Annealing: no_kl_steps 5,000 steps (β=0 during these steps)
KL Annealing: kl_cycle_steps 5,000 steps (For one cycle of β ramp-up)
KL Annealing: kl_max_beta 1
Free Bits λ 0.3

Table A.2: Model configurations for all models in our study.
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