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摘要

在函數型資料中的轉折點檢測方法引起了廣泛關注並持續發展，從早期的

“CUSUM”衍生到越來越複雜的損失函數。而先前的方法往往需仰賴動差估計量，

對於函數型資料來說既耗時且實用性也較低。為了提高研究方法的可行性，本篇

提出利用資料深度來建立一個統計量並將其應用在判定轉折點發生位置，最後再

結合樣本分割的方法來確認數據中是否確實發生變化。文章後續的模擬也演示了

我們方法的可行性，並突顯了不同參數設置的影響。且在文章的最後，我們會針

對研究結果做簡單總結並提出一些可改進的方向。

關鍵字：函數型資料、資料深度、轉折點分析、CUSUM、樣本分割
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Abstract

Methods for change-point detection in functional data have garnered significant at-

tention and continue to evolve, from the early derivation of “CUSUM” to the emergence

of increasingly complex loss functions. However, previous methods often rely on moment

estimators which may be time-consuming and impractical for functional data, especially

in estimating higher-order moments. To enhance the feasibility, we propose utilizing data

depth to establish a statistical measure for identifying change point locations and com-

bine this statistic with the sample splitting method to confirm whether a change has truly

occurred in the data. The simulation results demonstrate the feasibility of our method

and highlight the impact of different parameter settings. In the conclusion, we provide a

summary of our findings and suggest potential directions for future improvements.

Keywords: Functional Data, Data Depth, Change-Point Analysis, CUSUM, Sample

Splitting
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Chapter 1 Introduction

Change point analysis is a subject with a long history and still an active area of re-

search, primarily utilized across a variety of fields such as market stock volatility [An-

dreou and Ghysels, 2002], engineering quality control and fault detection [Lai, 1995],

identification of hazardous factors within genetic sequences [Muggeo and Adelfio, 2011],

short-term climate variations [Beaulieu et al., 2012], and even image data [Horváth and

Hušková, 2012]. The cases above focus on simple forms of data. With the progress of tech-

nology in sampling techniques and data storage methods, the forms of data have become

increasingly complex, with high-dimensional and even functional data formats gradually

being explored and becomingmore common. As s result, datasets in the form of functional

data are more common, such as different temperatures in different locations of weather sta-

tions, growth curves for boys and girls [Ramsay and Silverman, 2005] and fMRI scan data

[Aston et al., 2017] etc. With the increasing number of these datasets, there has been a

subsequent emergence and growing importance of analysis methods for functional data.

In particular, functional change point analysis is one of the classic and increasingly pop-

ular research topics.

Talking about research on functional change point analysis, it’s an issue trying to

spot the moments when some significant shifts occurred in the data. In the case of mean

1
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change, numerous methods have been developed, whereas there is not as much literature

on covariance change. Additionally, to the best of our knowledge, there is no method of

exploring distributional differences currently.

The location shift, or alternatively, change in mean function represents the average

behavior of the function over its defined interval. A significant change in the mean results

in an obvious deviation in the entire function’s location. From best of our knowledge, the

earliest study in the case of the mean function has been proposed by Berkes et al. [2009], a

statistic generated by integrating the concepts of Functional Principal Component Analy-

sis (FPCA)with CUSUMhas also been developed, and they also show the null distribution

converges asymptotically to square of a Brownian bridge under the hypothesisH0, which

indicates a scenario where no change has occurred. Additionally, an asymptotic theory

for an estimator constructed by estimated scores of detecting mean change has also been

developed, and the finite sample behavior for this estimator has been shown in Aue et al.

[2009]. However, the assumption of independence for functional data is often too strong.

To address the issue of data dependency, Hörmann and Kokoszka [2010] and Aston and

Kirch [2012] construct a statistical measure by considering a long-run covariance matrix

instead of the ordinary covariance matrix in the proposed statistics under the AMOC (at

most one change or no change occurred in our samples) and epidemic change scenarios,

respectively. All the methods mentioned above used functional principal component anal-

ysis to reduce dimension without considering the information lost by the step. Aue et al.

[2018] introduced a method for detecting mean change but without a dimension reduction

step. The methods mentioned above focus on a single parameter variable. On the other

hand, Gromenko et al. [2017] proposed a test statistics combined with additional weight

2
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to deal with the case of observations consist of time and spatial location simultaneously.

Compared to the literature for mean change, research on covariance change is rather

less extensive. To the best of our knowledge, the first skill to address the detection of

functional covariance change has been proposed by Jarušková [2013], utilizing FPCA to

identify covariance change. Their statistic also follows the square of a Brownian bridge

under the condition that no change occurred. Aue et al. [2020] proposed another method

for detecting covariance change, which uses the fluctuations of sample eigenvalues or

traces of the sample covariance matrix. Dette and Kokot [2022] construct a method for

detecting relevant differences in covariance by establishing a null hypothesis in which the

form states that the distance between covariances is small. Such a method can also be

applied to functional time series cases. Methods mentioned above focus on the AMOC

model, but research on multiple changes in covariance has also been proposed. For exam-

ple, Harris et al. [2022] introduced a Multiple Changepoint Isolation (MCI) method with

an augmented fused lasso procedure after data projection. Another case worth discussing

is the scenario of high-dimensional functions, Santo and Zhong [2020] proposed homo-

geneity tests for covariance by computing the trace of the sample covariance matrix and

some feasible computation methods. To avoid missing information by using functional

principal component analysis, Jiao et al. [2023] introduced a method without dimension

reduction for a general situation for weakly dependent observations.

However, all the above ideas must be implemented with moment estimators. There-

fore, if we aim to detect covariance changes by using CUSUM, it would necessitate consid-

ering four arguments of the operator, which would pose numerous difficulties and render

3
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the verification of hypotheses or practical computations infeasible. To circumvent this

dilemma, we attempt to employ another statistical measure to achieve our objective. In

doing so, we opt to utilize an alternative index known as“data depth” to circumvent com-

plex computation so that we are able to avoid the aforementioned challenges associated

with using moment estimation. Additionally, data depth has the advantage of capturing

the relative position of data within the distribution.

The remainder of this article is organized as follows: In Section 2, we will introduce

some common functional depths. Following that, we will propose another novel statistic

that can be applied to change point detection and explain how we arrived at this idea. In

Section 3, a brief simulation study will be conducted to examine the performance of our

method under various alternative settings.

4
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Chapter 2 Data Depth and

Methodology

In this article, we assume that we obtained independent continuous random function

sequence, x1(t), x2(t), x3(t),..., xn−1(t), xn(t) belong to L2-space with domain T = [0,1].

In other words,

xi(t) ∈ L2(T ),

∫
T
x2
i (t) dt < ∞, for i ∈ {1, 2, ..., n} (2.1)

Furthermore, among these functions, there will be at most one change point, denoted as θ∗

such that x1(t),..., xθ∗(t) remains the same distribution while xθ∗+1(t),..., xn(t) also share

another distribution but distinct from the preceding one. (above well-known for AMOC

assumption).

From the basic concept of change-point analysis, it can be elucidated that there will

be a certain dissimilarity in the data before and after a certain change occurs. Taking

functional data as an example, there may exist differences in the mean function or het-

erogeneity in scale, or even both simultaneously. Moreover, the difference in shape is

also worthy of consideration. From an alternative perspective, this heterogeneity can be

conceptualized as the functions preceding a particular change are considered outliers with

5
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respect to the data following that change. Within this framework, a popular nonparametric

index, data depth, serves as an appropriate choice as well as a practical tool for identifying

outliers.

2.1 Review of Functional Data Depth

To the best of our knowledge, the earliest study in data depth can be traced back to Liu

[1990], which starts from the concept of simplices. The core idea of data depth measures

is to assess the relative positions of data points within a dataset and identify outliers or

provide an overall summary of the dataset.

However, the utilization of data depth for change point detection is not a brand-new

idea. According to our comprehension, methods utilizing data depth for change point

analysis have been previously introduced by Chenouri et al. [2020], Ramsay and Chenouri

[2021] retrospectively, albeit less commonly in the context of functional data [Ramsay

and Chenouri, 2021]. They proposed a nonparametric method that utilizes the CUSUM-

based statistic of ranks based on functional depth to detect covariance change. In contrast

to Ramsay and Chenouri [2021], this article aims to accurately detect various types of

changes. To address the issues we aim to resolve in this article, we would prefer to employ

functional data depth intuitively. Hence, a brief review of some commonly used functional

data depth measures will be conducted below.

2.1.1 FM-depth

Fraiman and Muniz [2001] introduced a functional data depth, which is called FM-

depth. Assume x1(t),...,xn(t) be some independent stochastic process defined on the in-

6
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terval [a,b], and [a,b] will be set in [0,1], generally. We also define Fn,t(xi(t)) as the

empirical distribution for curves x1(t),...,xn(t) (i = 1,2,...,n) at a fixed time-point t and t ∈

[a,b]. Then empirical FM-depth is defined as

FMDn(xi) =

∫ b

a

Dn(xi(t))dt, (2.2)

where Dn(xi(t)) = 1 - |1
2
− Fn,t(xi(t))| and Fn,t(xi(t)) = 1

n

∑n
j=1 I(xj(t) ≤ xi(t)) and

I(·) is an indicator function.

Due to functional setting, time-points within defined intervals are inherently con-

sidered to be of infinite dimension, in (2.2) we consider integral rather than summation

consequently.

The underlying intuitive meaning can be explained as first contemplating the cen-

trality of these curves at different time points, followed by extending from a certain time

point to encompass the entire interval where the functions are defined.

2.1.2 Random projection depth

Another method for utilizing random projection to construct functional data depth

has also been proposed in Cuevas et al. [2007]. Given some continuous functions x1,...,xn

well defined on Hilbert-space L2[0,1], and a random direction u (independent from all

xi) will be taken to produce data projection. The result of projecting xi onto v can be

obtained using the inner product in the function space, namely ⟨u, xi⟩ =
∫ 1

0
u(t)xi(t)dt.

Similar rules have also been applied on the projection for the first derivative of obser-

vations ⟨u, x′
i⟩ =

∫ 1

0
u(t)x

′
i(t)dt. Assume we now construct projection on Q direction

{u1, ..., uQ} (often generated by Gaussian Process in [0,1]), then sample version of ran-

7
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dom projection depth obtained by

RPDn(xi) =
1

Q

Q∑
q=1

Dn(⟨uq, xi⟩, ⟨uq, x
′

i⟩), (2.3)

where Dn(·) refers to a depth function defined onR2 such as zonoid depth, Mahalanobis

depth, etc. Further options and definitions of data depth are introduced in Mosler [2013].

The computation of Dn(·) can utilize previously introduced depth measures or another

option called the h-model depth (detail in Cuevas et al. [2006]).

In simple terms, the concept ofRPDn(x) can be explained as that if a curve exhibits

lower outlieness among all the original observations, meaning it’s closer to the median of

all observations, then even after being projected in multiple different directions, although

it may have relatively lower depthDn compared to other observations in some directions,

overall it should have a higher depth since we still consider the performance across all

projection directions.

2.1.3 Band depth and modified band depth

López-Pintado and Romo [2009] established a definition of data depth with the con-

cept of “band” to measure the “centrality” of curves in a functional setting. With a col-

lection of continuous functions x1,x2,...,xn defined on the compact interval T , they first

constructed the concept of a band which can be denoted as

B(x1, x2, ..., xn) = {(t, s) : t ∈ T , min
i=1,2,...,n

xi(t) < s < max
i=1,2,...,n

xi(t)}, (2.4)

The above definition represents that at each time point, we identify the range covered

by its maximum and minimum values, extending to the entire interval. The union of these

8
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ranges constitutes the “band”. Then, empirical band depth could be defined as

BDn,J(x
′) =

J∑
j=2

BD(j)
n (x′), (2.5)

where

BD(j)
n (x′) =

(
n

j

)−1 ∑
1≤a1<a2<...<aj≤n

I{x′ ⊆ B(xa1 , xa2 , ..., xaj)}. (2.6)

An intuitive exposition of band depth of x′ can be described as the frequency with a certain

curve x′ resides in the band formed by other curves within a defined function domain.

However, employing an indicator-based approach to determine the depth of data can

be somewhat extreme. For instance, if among n curves x1,...,xn defined in the interval

[0,1], a particular curve x′ predominantly aligns with the average of other functions across

most intervals but deviating only in the interval [0,0.01] outside the band formed by other

curves. A scenario like that may conclude this curve as an outlier when using the previ-

ously definedmethod to calculate its band depth. Hence, an alternative flexible calculation

method, termed “modified band depth”, has also been proposed to address this issue.

We first let

Sj(x
′) = S(x′; xa1 , xa2 , ..., xaj) = {t ∈ T ; min

i=1,2,...,n
xi(t) < x′ < max

i=1,2,...,n
xi(t)}, (2.7)

be the set in the interval T where x′ locate in the band defined with xa1 , xa2 , ..., xaj , and

1 ≤ a1 < a2 < ... < aj ≤ n . Then “modified band depth” proposed to be constructed

with

MBDn,J(x
′) =

J∑
j=2

MBD(j)
n (x′), (2.8)

9
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where

MBD(j)
n x′ =

(
n

j

)−1 ∑
1≤a1<a2<...<aj≤n

Λ(Sj(x
′))

Λ(T )
(2.9)

where Λ() is Lebesgue measure on the interval T .

From the definition above, the disparities in shapes between curves can dramatically

influence the magnitude of Band Depth (BD), whereas Modified Band Depth (MBD), in

contrast to focusing on the shapes of curves, places greater emphasis on the magnitudes

between curves.

2.2 Method Proposed

With the foundational understanding of functional data depths (FMD, RPD, BD,

MBD), we now assume a change occurred at θ∗ ∈ {1, 2, ..., n}. Our original idea stems

from a tool for assessing outliers called DD-plot proposed by Liu et al. [1999]. Assume

Y = {y1, ..., yn1} and Z = {z1, ..., zn2} be random samples from F1 and F2 respectively,

and these samples can include univariate data, multivariate or even functional. Then a

two-dimensional DD-plot can be built with d(F1n1 ,F2n2) where

d(F1n1 ,F2n2) = {(DF1n1
(x), DF2n2

(x)), x ∈ {Y ∪ Z}} (2.10)

{F1n1 ,F2n2} is the empirical distribution of {F1,F2} and various types of data depth can be

used for computing empirical depth DF1n1
(·). For instance, simplicial depth [Liu, 1990]

can be applied to the multivariate case, while modified band depth [López-Pintado and

Romo, 2009] is suitable for functional samples.

Upon completion of the DD-plot construction described above, in Li and Liu [2004],

10
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a test statistic constructed from the concept of DD-plot is employed to determine if there is

heterogeneity in the distributions of two datasets. Although multivariate data rather than

functional data are used, it can be observed that when there is heterogeneity present in

the data (including centrality, dispersion, and even skewness and kurtosis), the resulting

DD-plot exhibits various specific patterns but share a common characteristic of slightly

deviating from the 45-degree line. From the perspective of change point analysis, the

existence of heterogeneity can be interpreted as a shift in the data before and after θ∗.

Specifically, the data {x1, ..., xθ∗} will serve as extreme values relative to {xθ∗+1, ..., xn},

and vice versa. Then, a significant deviation from the 45-degree line must be expected if

a DD-plot is constructed with these two groups segmented by θ∗.

For this reason, the total distances of all points on the DD-plot to the 45-degree line

will increase significantly as the heterogeneity in the data becomes stronger. We have

developed a statistic to detect whether a change has occurred in our datasets. The statistic

can be formulated as:

T0(θ) =
n∑

i=1

|DB
θ (xi)−DA

θ (xi)| (2.11)

whereDB
θ (xi) represents the data depth ofxiwith respect to dataset combinedwith {x1, x2, ..., xθ−1, xθ},

DA
θ (xi) represents the data depth ofxiwith respect to the remaining samples {xθ+1, ..., xn−1, xn}

and θ is our change point predictor.

After fully defining the aforementioned statistic, as previously discussed, we expect

that the statistic will be significantly higher at the actual change point than at a location

without a change. Consequently, we define the location where this statistic reaches its

maximum value as our change point estimator intuitively. Finally, due to the lack of clear

understanding regarding the theoretical properties and true distribution of this statistic, we

11

http://dx.doi.org/10.6342/NTU202402805


doi:10.6342/NTU202402805

then employ a permutation test to confirm whether the estimated change point represents

an actual change.

Nevertheless, the proposed statistic is not flawless. A noticeable issue arises from

the potentially unequal sample sizes of the two segments divided by θ. In that case, an

insufficient representative may occur such that the dataset distribution is difficult to cap-

ture when the reference group is unequal. This scenario increases the possibility that the

estimated change point will fall on a boundary rather than at the actual change when using

(2.11). Our simulation tests have also yielded erroneous results in such cases.

To address the aforementioned drawbacks, we note that the change point reflects

local behavior in the data [Niu and Zhang, 2012] and incorporates the idea of a sliding

window. Continuing from the previous assumption that θ is our change point predictor and

dividing the data into two parts {x1, ..., xθ} and {xθ+1, ..., xn}, we now turn to consider

a window segment which used for identifying the change point involves ⌊nw⌋ samples

before and after θ, noted as {xθ−⌊nw⌋+1(t), ..., xθ(t)} and {xθ+1(t), ..., xθ+⌊nw⌋(t)}, where

{xθ−⌊nw⌋+1(t), ..., xθ(t)} means the set consists of the functions before a change occur,

which is often described as the left window, and {xθ+1(t), ..., xθ+⌊nw⌋(t)} represent the

remaining functions (right window), where w ∈ (0, 0.5) is a proper rate. The influence of

w will be discussed in the next section.

If θ = θ∗, the actual change θ∗ indicates that data from the left window will be

outliers relative to the data in the right window, or data from the right window will be

outliers relative to the data in the left window. In the case of a mean change, the data

from the two groups act as extreme values for each other. In contrast, only one-sided

conformity will occur under a scale change. By integrating the concept of data depth,

12
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we can infer if a sample xi(t) originates from the left window, the depth of xi(t) with

respect to the right window should be much lower than the depth of xi(t) with respect to

the left window intuitively due to the dissimilarity between two window segments. The

calculated significantly lower data depths can subsequently be employed to pinpoint the

exact locations of changes within the data.

Based on the above, to accomplish change point detection, we now propose a statis-

tical measure combined with sliding windows which can be defined as

T (θ) = min{
θ∑

i=θ−⌊nw⌋+1

Dθ
L(xi),

θ+⌊nw⌋∑
i=θ+1

Dθ
R(xi)} (2.12)

where Dθ
L(xi) represents the data depth of xi in the left window with respect to the right

window segment and Dθ
R(xi) is built with same procedure but take reference in the left

window segment. Among all candidate θ ∈ Θw = {x⌊nw⌋+1, ..., xn−⌊nw⌋}. We then define

T = min
θ∈Θw

T (θ) (2.13)

When the statistic (2.13) reaches a sufficiently low value, we consider that a change has

occurred in the data. Similar to the previous method, a permutation test can be used for

validation in testing whether an actual change exists. And the most probable location of

the change, denoted as θ̂∗, is then defined as

θ̂∗ = argmin
θ∈Θw

T (θ) = argmin
θ∈Θw

min{
θ∑

i=θ−⌊nw⌋+1

Dθ
L(xi),

θ+⌊nw⌋∑
i=θ+1

Dθ
R(xi)} (2.14)

represents our final change point estimator.

Nevertheless, we opt for sample splitting as an alternative approach due to considera-

tions of computational feasibility. The sample splitting technique is effective for detecting

13
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the number of change points and also estimating their locations precisely [Chong, 2001],

[Zou et al., 2020]. In this study, we try to utilize an alternative concept for sample split-

ting. Initially, we segment the sample functions into odd and even sub-samples noted as

SO, SE where

SO = {x1(t), x3(t)..., x2j+1(t), ...}&SE = {x2(t), x4(t), ..., x2j(t), ...}, ∀j = 1, 2, ..., ⌊n/2⌋

(2.15)

Under the assumption of AMOC condition and the existence of a real change, the location

identified in the odd and even sub-samples should be approximately the same. Conversely,

if the locations of the change points identified in the odd and even sub-samples differ

obviously, the guess that a change has occurred in the data should be denied intuitively. A

detailed execution summary for the above procedure can be presented as follows.

(a) Divide n functions into two subset SO, SE as defined above.

(b) In each segment group SO, SE, use equation (2.14) to determine the location of

change points θ̂∗O and θ̂∗E in alternative candidate subsetΘO,ΘEwhereΘO = {2⌊nw
2
⌋+

1, 2⌊nw
2
⌋+ 3, ..., n− 2⌊nw

2
⌋ − 1}, and ΘE = {2⌊nw

2
⌋+ 2, ..., n− 2⌊nw

2
⌋}.

(c) With a proper C, we consider that a change has occurred if |θ̂∗O − θ̂∗E| ≤ C. Oth-

erwise, concluding that no change has occurred in the functions should be a more

persuasive argument.

In the aforementioned procedure, we first divide the sample into odd and even seg-

ments. And then within these two segments, we use (2.14) to identify our change point

estimator θ̂∗O and θ̂∗E in each segment. At last, based on the intuitive idea presented ear-

lier, we determine the authenticity of the change θ∗ by assessing whether the difference in

14
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position between the two estimators is sufficiently small by using an appropriate constant

C.

As for the criterionC, it could be determined based on our specific requirements. If a

change in the data is considered critical and requires prevention, wemay increase the value

ofC to ensure that the change can be detected more easily. Conversely, if we wish to avoid

detecting less significant changes, we can reduce the value ofC to minimize the possibility

of identifying such changes. We will adjust C based on the sample size primarily because

the proposed statistic uses a sliding window concept, where each change point candidate

has an equal chance of being selected as the final estimator. So that adjust the value of C

based on the sample size would be a more reasonable approach.

2.3 Remarks on proposed method

At last, we provide a brief analysis and discussion of the strengths and weaknesses of

the aforementioned methods and how various parameters influence the proposed method-

ology. The first discussion focuses on the advantages and disadvantages of using local

samples versus the entire sample. The former approach not only mitigates the issue of the

estimator frequently falling on the boundary but also avoids the unstable estimated change

point experienced by the CUSUM-based methods due to shifting in the change location.

However, compared to the latter approach, parameters such as window size significantly

impact the estimation results of the proposed method. Consequently, determining the ap-

propriate window size presents a complex and challenging problem.

Another noteworthy issue is the replacement of the permutation test with the sample

splitting method. Although this alternative method significantly enhances computational

15
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efficiency thereby increasing the feasibility of the proposed statistics, it still presents a

clear drawback which is a partial loss of test power. This power reduction is primarily

due to the division of the sample, as opposed to utilizing the entire dataset for testing,

which predictably results in a lower testing power outcome. Besides, sample splitting in

dependent cases faces challenges due to the correlation among the data. On the other hand,

CUSUM-based methods encounter the issue of selecting an appropriate bandwidth when

estimating the long-run covariance.

The remaining issue is on the selection of the rate w. For the rate w, in practical

applications, the number of candidates defined byΘw in this article increases as the sample

size becomes larger, thereby reducing the possibility of each candidate being selected as

the final estimator compared to smaller sample sizes. Therefore, we adopt a proportion

for setting w both before and after sample splitting, typically employing w = 0.15 in

this study. The simulation and discussion sections will present the results obtained with

differentw alongwithmore detailed discussions. Regarding the cutoffC, we also consider

that the cutoff should be appropriately adjusted its scale according to the sample size.

16
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Chapter 3 Simulation Study

The aim of this chapter is to evaluate the performance of the proposed statistic in the

AMOC scenario. Comprehensive changing scenarios such as changes in the decay rate,

changes in the mean function, changes in the distribution of the random term, and simul-

taneous fluctuations in both mean function and decay will be complemented to evaluate

the behavior of the proposed statistic computed with MBD. We then compare our method

with Ramsay and Chenouri [2021] and Harris et al. [2022] to demonstrate the advantage

of our method. We will also demonstrate how the window sizewmentioned earlier affects

the estimation results of the proposed statistic.

3.1 Simulation setting

We set the model without changes asM0 : xi(t) = µ0(t) +
∑21

k=1 ξ0ikϕk(t) , ∀ i ∈

{1, 2, ..., n}, ξ0ik generated by N (0, k−1) with gradual decay, µ0(t) = 0.9 + 3t3(1 − t)

and ϕk(t) is the common Fourier basis.

We emulate the simulation setups of Aue et al. [2018] and Chiou et al. [2019], while

introducing some minor modifications. We summarize our settings in Table 3.1 and a vi-

sualization of a few curves from our settings is presented in Fig 3.1. In models 1 and 2,

we set up scenarios where the data undergo fast decay and slow decay respectively. We

17
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Model Equation Varying Changing Scenarios

Model 1 (SC1) xi(t) = µ0(t) +
∑21

k=1 ξ1ikϕk(t) ξ1ik = N (0, 2−k)

Model 2 (SC2) xi(t) = µ0(t) +
∑21

k=1 ξ2ikϕk(t) ξ2ik = N (0, k− 1
2 )

Model 3 (MC1) xi(t) = µ1(t) +
∑21

k=1 ξ0ikϕk(t) µ1(t) = µ0(t) + 0.4 sin(1 + 10πt)

Model 4 (MC2) xi(t) = µ2(t) +
∑21

k=1 ξ0ikϕk(t) µ2(t) = 0.8 + 3t2 − 5t3

Model 5 (DC1) xi(t) = µ0(t) +
∑21

k=1 ξ
U
ikϕk(t) ξUik ∈ U(− 6

k2
, 6
k2
)

Model 6 (DC2) xi(t) = µ0(t) +
∑21

k=1 ξ
L
ikϕk(t) ξLik ∈ L(0, 1√

2k
)

Model 7 (MSC1) xi(t) = µ1(t) +
∑21

k=1 ξ2ikϕk(t) contamination in both µ1(t) and ξ2ik

Model 8 (MSC2) xi(t) = µ2(t) +
∑21

k=1 ξ2ikϕk(t) contamination in both µ2(t) and ξ2ik
Table 3.1: Model setting

establish a mean shift in shape in model 3 and apply a magnitude fluctuation within model

4. For models 5 and 6, we use the uniform distribution and the Laplace distribution to

mimic the scenarios that FPC scores are from different distributions. These distributions

are set to have the same mean and variance as M0. Finally, in models 7 and 8, we aim

to depict more complex forms of change combined slow decay with shape and magni-

tude respectively. The following discussion will be performed with the data before the

change are modeled as M0, and the data after the change are modeled according to the

aforementioned 8 models. All these scenarios will be set up in 200 simulation runs with

proper w = 0.15. Simulated datasets combine with independent functions in two sample

sizes n = 200 and 500, and the true change points θ∗ will be set at the same position

⌊0.3n⌋. Furthermore, we define accuracy as #{|θ̂∗ − θ∗| ≤ C/2}/#{run times} where

C = ⌊0.1n⌋ to facilitate the explanation.

18
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Figure 3.1: Visualization of our setting. For a concise expression, we draw 5 curves in
each scenario and only plot the mean function in the mean change case (top right).

3.2 Comparison

In the presentation of simulation results, we begin with a validation of the perfor-

mance of the statistical measures proposed in this study with n = 500. To present the

method proposed in this study more clearly, we have selected model 1 and model 4 which

exhibit stronger changes, for preliminary demonstration. The left side of Figure 3.2 illus-

trates that our statistical measures perform well in model 1 and model 4. A conspicuous

downward trend at the correct change location (θ∗ = 150) can be discovered. The his-

togram on the right side also demonstrates that our estimator θ̂∗ lands around the precise

location where an actual change occurs in the data. Above results validated that our idea

is successful.

We then compare the change point locations identified by our method against those

captured by Ramsay and Chenouri [2021] (noted as RC) and Harris et al. [2022] (noted as

MCI) in sample size n = 200, 500. The reason for choosing to compare with Ramsay and
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Figure 3.2: The results of the statistics and location under two varying conditions are
illustrated. The top of the figure displays the trends in our statistics and our change point
estimator in model 1, and the bottom of the figure represents the performance in model 4,
and θ∗ is set on 150.

Chenouri [2021] is that it utilizes data depth as well but applies it to transform obtained se-

quences into ranks and execute CUSUMwith these ranks to determine change points. This

method is primarily used to detect changes in covariance, which is also included in our

simulation design. Harris et al. [2022] proposed a method that projects variations both

between and within samples and integrates the fused lasso procedure to decide change

point candidates, and ultimately applies FDR correction to identify changes in the data.

We chose this method primarily because it employs CUSUM within a specific interval

after segmentation, indicating that it also relies on local data. Additionally, it can simul-

taneously detect changes in both the mean and covariance of functional data, which is

included in our setting scenarios as well.

We then compare the change point estimator in the above three methods respectively.

Since MCI tends to identify multiple change estimators, we select the most significant one

—the point with the smallest p-value after FDR correction as the change point identified by

MCI. As illustrated in Figure 3.3 and Figure 3.4. Although the most significant estimator

ofMCI exhibits an overall smaller bias than the other twomethods, it tends to overestimate

20
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Figure 3.3: The figure above compares estimated bias in 8 models with sample size n =
200. The y-axis represents θ̂∗ − θ∗. The first from the top left to the second from the top
left toward the bottom right corresponds to models 1,2,..., and 8, respectively.

Figure 3.4: The figure above compares estimated bias in 8 models with sample size n =
500. The y-axis represents θ̂∗ − θ∗. The first from the top left to the second from the top
left toward the bottom right corresponds to models 1,2,..., and 8, respectively.

the number of change points. Therefore, it is challenging to evaluate the performance

of this method under the AMOC framework. Consequently, we will primarily focus on

discussing the proposed method and the RC method.

In models 1 and 2, our method has better performance than the method in Ramsay

and Chenouri [2021] because of CUSUM-based method tends to capture a change in the

middle of samples; under the scenario of mean change, the performance of both meth-

ods fell short of expectations especially in model 3 which also represents shape change

scenario. The primary reason for the weak performance of our method may be attributed
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to the instability of MBD to detect shape outliers. Employing another data depth might

yield improvements. The RC method is primarily designed to detect changes in covari-

ance, and its insensitivity to mean change is anticipated; nevertheless, in the context of a

magnitude shift, i.e. model 4, a significant improvement in our method can be discovered.

The primary reason is that our method utilizes more samples as the sample size increases,

thereby enhancing the representative of samples within the window. This is an advantage

of adjusting the window size proportionally rather than using a fixed number of samples

(further discussed in next section). In model 5, the significant disparity between normal

and uniform distributions enabled both methods to perform quite well, but in model 6, the

resemblance between normal and Laplace distributions, both of which approximate a bell

shape, hindered both methods from detecting such changes. Lastly, in models 7 and 8, we

obtain similar conclusions to those of models 1 and 2 due to the existence of covariance

change.

Index Power Size Accuracy
Proposed #{|θ̂∗O−θ̂∗E | ≤ C/2}

#{run times}
#{|θ̂∗O−θ̂∗E | ≤ C/2}
#{run times}

#{|θ̂∗−θ∗| ≤ C/2}
#{run times}

Table 3.2: Empirical power, size and accuracy for our method

We now present the performance in change detection for the three methods. The

compared index for our method is defined in Table 3.2, and the calculation of empirical

power will be discussed in the 8 types of changes mentioned earlier, while size will be

calculated under the scenario where no changes have occurred in the data. In RC the

empirical power and empirical size are calculated using the 95% quantile of the Brownian

bridge derived in Ramsay and Chenouri [2021] and then divided by 200. But for MCI,

the empirical power is computed as the number of times one or more changes are detected

divided by 200, while the empirical size is computed as the number of times one or more
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Sample Model Power(Size) Accuracy
Proposed RC MCI Proposed RC MCI

n = 200 SC1 0.85(0.23) 1(0.12) 0.31(0.97) 0.885 0.88 0.99
SC2 0.445 0.885 0.14 0.72 0.605 0.985
MC1 0.26 0.17 0.225 0.175 0.165 0.96
MC2 0.285 0.26 0.49 0.445 0.21 0.785
DC1 0.985 1 0.045 0.99 0.955 0.99
DC2 0.39 0.465 0.245 0.335 0.33 0.15
MSC1 0.485 0.85 0.175 0.705 0.57 0.96
MSC2 0.5 0.725 0.39 0.755 0.52 0.98

n = 500 SC1 0.935(0.24) 1(0.145) 0.28(0.96) 0.97 0.96 1
SC2 0.495 1 0.12 0.61 0.85 1
MC1 0.23 0.185 0.125 0.255 0.205 0.99
MC2 0.38 0.415 0.59 0.62 0.32 0.91
DC1 1 1 0.025 1 0.99 0.985
DC2 0.31 0.66 0.125 0.29 0.495 0.235
MSC1 0.575 0.985 0.075 0.765 0.78 0.995
MSC2 0.32 0.98 0.54 0.775 0.75 0.975

Table 3.3: Empirical result comparison in 8 models

changes are detected when there is no change occurred, also divided by 200. The term

“accuracy” has been previously defined in Section 3.1. But for MCI, we selected the most

significant estimator (the estimator corresponds to the lowest p-value) identified by that

for comparison with others, primarily due to MCI tends to identify more change points.

From Table 3.3, we can observe that the method proposed in this article exhibits a

slightly inferior performance in empirical power compared to RC overall. Even though an

increase in sample size can lead to better results in terms of both accuracy and empirical

power for our method, with a more noticeable improvement in accuracy, it still falls short

in terms of power when compared to RC. The primary reason for this discrepancy lies in

our choice of using the less stable sample splitting approach instead of testing, which is

an area where our method could be improved. Despite our method obtaining a slightly in-

ferior performance in terms of empirical power, it generally outperforms RC in accuracy,

especially in capturing the precise location of the change. This advantage is evenmore pro-

nounced in cases involving mean change. Another noteworthy aspect is the performance
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of theMCImethod, we can observe thatMCI has a very low probability of correctly detect-

ing a single change point across the eight scenarios we designed. Even in scenarios where

no changes are present, this method frequently detects changes, which can be attributed

to its tendency to identify more change points. Nevertheless, when examining accuracy,

we find that “the most significant estimator” identified by MCI is generally more precise

than the other two methods and falls within our defined standards (|θ̂∗ − θ∗| ≤ C/2).

Nonetheless, in Model 6 (DC2), all these three methods exhibit poor accuracy due to the

weak signal of the change, including MCI which typically performs better overall.

Figure 3.5: The figure illustrates the deviation from the estimated change point to θ∗ in
three mentioned methods when moving θ∗ to three different locations, the result obtained
by SC1 with n = 200

Another noticeable issue is the performance in different change point locations θ∗.

We now set θ∗ at ⌊0.2n⌋,⌊0.3n⌋,⌊0.5n⌋ in SC1 to compare the accuracy of the change

point estimators obtained by three methods. As shown in Figure 3.5, our method are less

affected by the variation in the change point location which supports the advantages of

using local sample rather than using the entire sample. Same conclusion can be obtained

for MCI also identifies change points by examining multiple intervals which represents it

also using local data. In contrast, RC uses the entire dataset and relies on CUSUM, tends to
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detect changes around the center positions. This leads to noticeable overestimation when

design change is located on ⌊0.2n⌋ and ⌊0.3n⌋, further demonstrating the advantages of

using local data.

3.3 Window Size Decision

We subsequently engage in a discussion regarding the window size at the conclusion

of the simulation. Primarily, we identify two reasonable approaches for selection. The

first approach involves utilizing a fixed proportion w, while the second approach entails

directly assigning a fixed numerical value w′. Both are reasonable choices. But when

the sample size increases or decreases, the number of candidate points also varies with

our choice of window size. Nevertheless, with different sample size, we tend to prefer

a standard with the same scale. Using w′ to implement our method will increase our

candidate set such that making us more susceptible to false detection (detailed discussion

in Figure 3.6). Therefore, we choose to implement our method by using a fixed proportion

w rather thanw′ due to the insensitivity ofw′ to sample size and that will allows us to better

capture the benefits of an increased sample size.

In Figure 3.6, we can observe that empirical power, size, and accuracy all signif-

icantly increase with the rise of w. The empirical power and size even accuracy do not

show a significant ascension with further increases inw beyondw = 0.15. While in terms

of accuracy, it continues to improve as the window size increases as expected because a

larger window size better captures the distribution of the samples, meaning the samples

within the window are more representative.

Nevertheless, a counterintuitive result is that our empirical size increases with w.
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Figure 3.6: Comparison in empirical power, size and accuracy with the same definition
in aforementioned section. The left figure illustrates an empirical result of our method in
n = 200 in SC1 while the right one presents the same result but adjusts sample size to
n = 500.

The primary reason is that when no change occurs in the data, the minimum value of our

test statistic will be randomly distributed within our candidate set Θw. As w increases, a

smaller candidate set will be obtained, and the possibility of encountering overlapping θ̂∗O

and θ̂∗E increases significantly with w. Namely, the defined criterion |θ̂∗O − θ̂∗E| in section

2.2 becomes easier to meet regardless of whether a change has actually occurred in the

data or not. This indicates that we cannot blindly increase w.

In Figure 3.7, we demonstrate the proposed statistic in some simulation rounds with

n = 200 in SC1, and a downward trend near θ∗ can be observed frequently but a more

unstable oscillation occurs when w ≤ 0.1 than those in w ≥ 0.15.

In summary, we aim to increase w to enhance the representativeness of our samples

for more accurate estimation, but we must also avoid indiscriminately increasing w to

prevent false detections. Additionally, increasingw leads to discarding too many samples,

or we say, change point candidates. For practical applications, we end up selecting w =

0.15 as a reasonable and balanced choice.
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Figure 3.7: The figure illustrates the performance of our statistical measure in different w
in SC1 and n = 200. The red line represents θ∗ = 60 The x-axis represents candidate in
Θw
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Chapter 4 Summary and Discussion

This article adopts an approach based on data depth and DD-plot, further extending

the concept of outlier and linking it to change point detection. The statistical measure is

derived using data depth which is commonly used to identify whether the data are outliers.

When determining whether a change is actual or not, we apply sample splitting to divide

the samples but we assess whether the detected change points in these two samples are

approximately the same to validate the detected signal’s authenticity. The simulations

show the results of our approach and further present the impact of using different window

sizes. A brief comparison with the other method is also present our method demonstrates

a competitive accuracy in determining the location of changes.

Nevertheless, the statistical measure remains significant room for development. For

instance, we have not yet determined the optimal method for selecting w in this article,

but have only discussed the pros and cons of different w values. Combining w with our

proposed statistical measure using a penalty approach may be a feasible idea. we have

not learned detailed information on the distribution of the starting point T0(θ) and the

final statistical measure T (θ) under large samples. Understanding the theoretical proper-

ties of these statistical measures should enable significant advancements in our method.

Additionally, when faced with scenarios such as Model 3 or Model 7, where functional

data exhibits behavior often characterized as shape outliers, using Modified Band Depth
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(MBD) for computation shows limitations in capturing changes effectively. Exploring

alternative depth measures such as Total Variation Depth (TVD)[Huang and Sun, 2019],

which are less influenced by shape outliers, could potentially enhance the performance of

the proposed statistical measure. Finally, this study employs the sliding window as the

core of the method’s construction. Since the sliding window is also a common and fea-

sible approach in online detection, the ideas proposed here may not be limited to offline

cases and could potentially perform well in online detection scenarios as well.
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