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Abstract

Methods for change-point detection in functional data have garnered significant at-
tention and continue to evolve, from the early derivation of “CUSUM?” to the emergence
of increasingly complex loss functions. However, previous methods often rely on moment
estimators which may be time-consuming and impractical for functional data, especially
in estimating higher-order moments. To enhance the feasibility, we propose utilizing data
depth to establish a statistical measure for identifying change point locations and com-
bine this statistic with the sample splitting method to confirm whether a change has truly
occurred in the data. The simulation results demonstrate the feasibility of our method
and highlight the impact of different parameter settings. In the conclusion, we provide a

summary of our findings and suggest potential directions for future improvements.

Keywords: Functional Data, Data Depth, Change-Point Analysis, CUSUM, Sample

Splitting
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Chapter 1 Introduction

Change point analysis is a subject with a long history and still an active area of re-

search, primarily utilized across a variety of fields such as market stock volatility [

, ], engineering quality control and fault detection [l ai, ],
identification of hazardous factors within genetic sequences [ , ],
short-term climate variations [ , ], and even image data [

, ]. The cases above focus on simple forms of data. With the progress of tech-
nology in sampling techniques and data storage methods, the forms of data have become
increasingly complex, with high-dimensional and even functional data formats gradually
being explored and becoming more common. As s result, datasets in the form of functional
data are more common, such as different temperatures in different locations of weather sta-
tions, growth curves for boys and girls [ , ] and fMRI scan data
[ , ] etc. With the increasing number of these datasets, there has been a
subsequent emergence and growing importance of analysis methods for functional data.
In particular, functional change point analysis is one of the classic and increasingly pop-

ular research topics.

Talking about research on functional change point analysis, it’s an issue trying to

spot the moments when some significant shifts occurred in the data. In the case of mean
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change, numerous methods have been developed, whereas there is not as much literature
on covariance change. Additionally, to the best of our knowledge, there is no method of

exploring distributional differences currently.

The location shift, or alternatively, change in mean function represents the average
behavior of the function over its defined interval. A significant change in the mean results
in an obvious deviation in the entire function’s location. From best of our knowledge, the
earliest study in the case of the mean function has been proposed by [ ],a
statistic generated by integrating the concepts of Functional Principal Component Analy-
sis (FPCA) with CUSUM has also been developed, and they also show the null distribution
converges asymptotically to square of a Brownian bridge under the hypothesis H, which
indicates a scenario where no change has occurred. Additionally, an asymptotic theory
for an estimator constructed by estimated scores of detecting mean change has also been

developed, and the finite sample behavior for this estimator has been shown in

[ ]. However, the assumption of independence for functional data is often too strong.
To address the issue of data dependency, [ ] and
[ ] construct a statistical measure by considering a long-run covariance matrix

instead of the ordinary covariance matrix in the proposed statistics under the AMOC (at
most one change or no change occurred in our samples) and epidemic change scenarios,
respectively. All the methods mentioned above used functional principal component anal-
ysis to reduce dimension without considering the information lost by the step.

[ ] introduced a method for detecting mean change but without a dimension reduction
step. The methods mentioned above focus on a single parameter variable. On the other

hand, [ ] proposed a test statistics combined with additional weight
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to deal with the case of observations consist of time and spatial location simultaneously.

Compared to the literature for mean change, research on covariance change is rather
less extensive. To the best of our knowledge, the first skill to address the detection of
functional covariance change has been proposed by [ ], utilizing FPCA to
identify covariance change. Their statistic also follows the square of a Brownian bridge
under the condition that no change occurred. [ ] proposed another method
for detecting covariance change, which uses the fluctuations of sample eigenvalues or
traces of the sample covariance matrix. [ ] construct a method for
detecting relevant differences in covariance by establishing a null hypothesis in which the
form states that the distance between covariances is small. Such a method can also be
applied to functional time series cases. Methods mentioned above focus on the AMOC
model, but research on multiple changes in covariance has also been proposed. For exam-
ple, [ ] introduced a Multiple Changepoint Isolation (MCI) method with
an augmented fused lasso procedure after data projection. Another case worth discussing
is the scenario of high-dimensional functions, [ ] proposed homo-
geneity tests for covariance by computing the trace of the sample covariance matrix and
some feasible computation methods. To avoid missing information by using functional
principal component analysis, [ ] introduced a method without dimension

reduction for a general situation for weakly dependent observations.

However, all the above ideas must be implemented with moment estimators. There-
fore, if we aim to detect covariance changes by using CUSUM, it would necessitate consid-

ering four arguments of the operator, which would pose numerous difficulties and render

3 doi:10.6342/NTU202402805


http://dx.doi.org/10.6342/NTU202402805

the verification of hypotheses or practical computations infeasible. To circumvent this
dilemma, we attempt to employ another statistical measure to achieve our objective. In
doing so, we opt to utilize an alternative index known as “data depth” to circumvent com-
plex computation so that we are able to avoid the aforementioned challenges associated
with using moment estimation. Additionally, data depth has the advantage of capturing

the relative position of data within the distribution.

The remainder of this article is organized as follows: In Section 2, we will introduce
some common functional depths. Following that, we will propose another novel statistic
that can be applied to change point detection and explain how we arrived at this idea. In
Section 3, a brief simulation study will be conducted to examine the performance of our

method under various alternative settings.
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Chapter 2 Data Depth and
Methodology

In this article, we assume that we obtained independent continuous random function
sequence, 1 (t), xo(t), x3(t),..., Tn_1(t), 7, (t) belong to L-space with domain 7 = [0,1].
In other words,

zi(t) € 52(7'),/ w3 (t) dt < oo, fori € {1,2,...,n} (2.1)
T

Furthermore, among these functions, there will be at most one change point, denoted as 6*
such that z(t),..., z¢~(t) remains the same distribution while xp+1(t),..., z,,(t) also share
another distribution but distinct from the preceding one. (above well-known for AMOC

assumption).

From the basic concept of change-point analysis, it can be elucidated that there will
be a certain dissimilarity in the data before and after a certain change occurs. Taking
functional data as an example, there may exist differences in the mean function or het-
erogeneity in scale, or even both simultaneously. Moreover, the difference in shape is
also worthy of consideration. From an alternative perspective, this heterogeneity can be

conceptualized as the functions preceding a particular change are considered outliers with
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respect to the data following that change. Within this framework, a popular nonparametric
index, data depth, serves as an appropriate choice as well as a practical tool for identifying

outliers.

2.1 Review of Functional Data Depth

To the best of our knowledge, the earliest study in data depth can be traced back to
[ ], which starts from the concept of simplices. The core idea of data depth measures
is to assess the relative positions of data points within a dataset and identify outliers or

provide an overall summary of the dataset.

However, the utilization of data depth for change point detection is not a brand-new
idea. According to our comprehension, methods utilizing data depth for change point
analysis have been previously introduced by [ ],

[ ] retrospectively, albeit less commonly in the context of functional data [

, ]. They proposed a nonparametric method that utilizes the CUSUM-
based statistic of ranks based on functional depth to detect covariance change. In contrast
to [ ], this article aims to accurately detect various types of
changes. To address the issues we aim to resolve in this article, we would prefer to employ
functional data depth intuitively. Hence, a brief review of some commonly used functional

data depth measures will be conducted below.

2.1.1 FM-depth

[ ] introduced a functional data depth, which is called FM-
depth. Assume 1 (t),...,x,(t) be some independent stochastic process defined on the in-
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terval [a,b], and [a,b] will be set in [0,1], generally. We also define £}, ;(z;(t)) as the
empirical distribution for curves z1(t),...,z,(t) (1= 1,2,...,n) at a fixed time-point t and t €

[a,b]. Then empirical FM-depth is defined as
b
FMD,(x;) = / Du(i(t))dt, 2.2)

where D, (z;(t)) =1 - |5 — F,(x:(t)] and F, o (2i(t)) = 3 37 Z(x;(t) < a4(t)) and

Z(-) is an indicator function.

Due to functional setting, time-points within defined intervals are inherently con-
sidered to be of infinite dimension, in (2.2) we consider integral rather than summation

consequently.

The underlying intuitive meaning can be explained as first contemplating the cen-
trality of these curves at different time points, followed by extending from a certain time

point to encompass the entire interval where the functions are defined.

2.1.2 Random projection depth

Another method for utilizing random projection to construct functional data depth
has also been proposed in [ ]. Given some continuous functions x1,...,2,
well defined on Hilbert-space £2[0,1], and a random direction u (independent from all
x;) will be taken to produce data projection. The result of projecting z; onto v can be
obtained using the inner product in the function space, namely (u, x;) = fol u(t)z;(t)dt.

Similar rules have also been applied on the projection for the first derivative of obser-

vations (u,z;) = fol u(t)x;(t)dt. Assume we now construct projection on Q direction

{u1,...,uq} (often generated by Gaussian Process in [0,1]), then sample version of ran-
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dom projection depth obtained by

Q
1 /
RPDy(x;) = 0 > Du({ug, 1), (ug, 7)), (2.3)
q=1
where D, (+) refers to a depth function defined on R? such as zonoid depth, Mahalanobis
depth, etc. Further options and definitions of data depth are introduced in [ ].
The computation of D,,(-) can utilize previously introduced depth measures or another

option called the h-model depth (detail in [ 1.

In simple terms, the concept of RPD,,(x) can be explained as that if a curve exhibits
lower outlieness among all the original observations, meaning it’s closer to the median of
all observations, then even after being projected in multiple different directions, although
it may have relatively lower depth D,, compared to other observations in some directions,
overall it should have a higher depth since we still consider the performance across all

projection directions.

2.1.3 Band depth and modified band depth

[ ] established a definition of data depth with the con-
cept of “band” to measure the “centrality” of curves in a functional setting. With a col-
lection of continuous functions x1,xs,...,z,, defined on the compact interval 7, they first
constructed the concept of a band which can be denoted as

B(xy,x9, ..., xy) = {(t,s): t €T, 7}12271 zi(t) <s < max z;(t)}, (2.4)
1=1,2,..., n 1=1,2,..., n

The above definition represents that at each time point, we identify the range covered

by its maximum and minimum values, extending to the entire interval. The union of these
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ranges constitutes the “band”. Then, empirical band depth could be defined as
J
BD,(a') =) BDY('), 25)
j=2

where

-1
0= (") X M C Bl (O

J 1<a1<az<...<a;<n

An intuitive exposition of band depth of 2’ can be described as the frequency with a certain

curve 2’ resides in the band formed by other curves within a defined function domain.

However, employing an indicator-based approach to determine the depth of data can
be somewhat extreme. For instance, if among n curves xi,...,z, defined in the interval
[0,1], a particular curve z’ predominantly aligns with the average of other functions across
most intervals but deviating only in the interval [0,0.01] outside the band formed by other
curves. A scenario like that may conclude this curve as an outlier when using the previ-
ously defined method to calculate its band depth. Hence, an alternative flexible calculation

method, termed “modified band depth”, has also been proposed to address this issue.

We first let

S(a) = 82ty Ty o)) = {1 € T2 _min_a,(t) <2’ < maz x (1)}, Q7)

7777 1= EEREE)

be the set in the interval 7" where 2’ locate in the band defined with x,,, z,, ..., Tq; , and
1 <a <ay <..<aj <n. Then “modified band depth” proposed to be constructed
with

J
MBD, (z') => MBDY ('), (2.8)
j=2
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where

o[\ A(S;(2"))
MBDWy' = (j) > NGE 2.9)

1<a1<az<...<a;<n

where A() is Lebesgue measure on the interval 7.

From the definition above, the disparities in shapes between curves can dramatically
influence the magnitude of Band Depth (BD), whereas Modified Band Depth (MBD), in
contrast to focusing on the shapes of curves, places greater emphasis on the magnitudes

between curves.

2.2 Method Proposed

With the foundational understanding of functional data depths (FMD, RPD, BD,
MBD), we now assume a change occurred at #* € {1,2,...,n}. Our original idea stems
from a tool for assessing outliers called DD-plot proposed by [ ]. Assume
Y ={v1,...,yn, } and Z = {zy, ..., z,, } be random samples from F; and F; respectively,
and these samples can include univariate data, multivariate or even functional. Then a

two-dimensional DD-plot can be built with d(F,, , Fa,,) where
d(Flnl ) ‘F2n2) = {(Dflnl (‘I)7 D]:2n2 (‘r))7 LS {Y U Z}} (2.10)

{F1in,»Fon, } 1s the empirical distribution of {7,/ } and various types of data depth can be
used for computing empirical depth D, (+). For instance, simplicial depth [Liu, ]
can be applied to the multivariate case, while modified band depth [

, ] is suitable for functional samples.

Upon completion of the DD-plot construction described above, in [ ],
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a test statistic constructed from the concept of DD-plot is employed to determine if there is
heterogeneity in the distributions of two datasets. Although multivariate data rather than
functional data are used, it can be observed that when there is heterogeneity present in
the data (including centrality, dispersion, and even skewness and kurtosis), the resulting
DD-plot exhibits various specific patterns but share a common characteristic of slightly
deviating from the 45-degree line. From the perspective of change point analysis, the
existence of heterogeneity can be interpreted as a shift in the data before and after 6*.
Specifically, the data {1, ..., xy~ } will serve as extreme values relative to {zg«1, ..., T, },
and vice versa. Then, a significant deviation from the 45-degree line must be expected if

a DD-plot is constructed with these two groups segmented by 6*.

For this reason, the total distances of all points on the DD-plot to the 45-degree line
will increase significantly as the heterogeneity in the data becomes stronger. We have
developed a statistic to detect whether a change has occurred in our datasets. The statistic

can be formulated as:

To(0) = Z |Df (x:) = Dy ()] (2.11)

where D} (;) represents the data depth of z; with respect to dataset combined with {z1, 7o,

ey Lo—1, .Tg},

D;'(x;) represents the data depth of z; with respect to the remaining samples {xg 1, ..., Tn_1, Tp }

and 6 is our change point predictor.

After fully defining the aforementioned statistic, as previously discussed, we expect
that the statistic will be significantly higher at the actual change point than at a location
without a change. Consequently, we define the location where this statistic reaches its
maximum value as our change point estimator intuitively. Finally, due to the lack of clear

understanding regarding the theoretical properties and true distribution of this statistic, we
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then employ a permutation test to confirm whether the estimated change point represents

an actual change.

Nevertheless, the proposed statistic is not flawless. A noticeable issue arises from
the potentially unequal sample sizes of the two segments divided by 6. In that case, an
insufficient representative may occur such that the dataset distribution is difficult to cap-
ture when the reference group is unequal. This scenario increases the possibility that the
estimated change point will fall on a boundary rather than at the actual change when using

(2.11). Our simulation tests have also yielded erroneous results in such cases.

To address the aforementioned drawbacks, we note that the change point reflects
local behavior in the data [ , ] and incorporates the idea of a sliding
window. Continuing from the previous assumption that ¢ is our change point predictor and
dividing the data into two parts {1, ..., x¢} and {xg;1, ..., 2, }, we now turn to consider
a window segment which used for identifying the change point involves |nw| samples
before and after 0, noted as {xg_ |y |+1(t), ..., xo(t) } and {xo11 (L), ..., To [nw) (t) }, Where
{@o—[nw)+1(t), .., vo(t) } means the set consists of the functions before a change occur,
which is often described as the left window, and {xg1(t), ..., %o |nw| (t) } represent the
remaining functions (right window), where w € (0, 0.5) is a proper rate. The influence of

w will be discussed in the next section.

If & = 6%, the actual change 6* indicates that data from the left window will be
outliers relative to the data in the right window, or data from the right window will be
outliers relative to the data in the left window. In the case of a mean change, the data
from the two groups act as extreme values for each other. In contrast, only one-sided

conformity will occur under a scale change. By integrating the concept of data depth,
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we can infer if a sample z;(t) originates from the left window, the depth of z;(¢) with
respect to the right window should be much lower than the depth of x;(¢) with respect to
the left window intuitively due to the dissimilarity between two window segments. The
calculated significantly lower data depths can subsequently be employed to pinpoint the

exact locations of changes within the data.

Based on the above, to accomplish change point detection, we now propose a statis-

tical measure combined with sliding windows which can be defined as

0 0+ nw|
T(0) =min{ >  Dj(x:), > Dp(z:)} (2.12)
i=0—|nw]|+1 i=0+1

where DY (z;) represents the data depth of z; in the left window with respect to the right
window segment and D%(x;) is built with same procedure but take reference in the left
window segment. Among all candidate § € ©,, = {anw 1415 -+ Tn—|nw) }. We then define

T= i T(0) (2.13)

When the statistic (2.13) reaches a sufficiently low value, we consider that a change has
occurred in the data. Similar to the previous method, a permutation test can be used for
validation in testing whether an actual change exists. And the most probable location of

the change, denoted as é*, is then defined as

6 0+[nw]
0* = argmin T(0) = argmin min{ Z DY (x,), Z DY%(x)} (2.14)
660w 6€6u i=0—|nw|+1 i=6+1

represents our final change point estimator.

Nevertheless, we opt for sample splitting as an alternative approach due to considera-

tions of computational feasibility. The sample splitting technique is effective for detecting
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the number of change points and also estimating their locations precisely [ A ],
[ , ]. In this study, we try to utilize an alternative concept for sample split-
ting. Initially, we segment the sample functions into odd and even sub-samples noted as

So, Sg where

So = {z1(t), x3(t)..., w9541(1), ...} &Sg = {x2(t), 24(t), ..., x9;(¢), ...}, Vi = 1,2, ..., [n/2]
(2.15)

Under the assumption of AMOC condition and the existence of a real change, the location

identified in the odd and even sub-samples should be approximately the same. Conversely,

if the locations of the change points identified in the odd and even sub-samples differ

obviously, the guess that a change has occurred in the data should be denied intuitively. A

detailed execution summary for the above procedure can be presented as follows.

(a) Divide n functions into two subset S, Sg as defined above.

(b) In each segment group Sp, Sg, use equation (2.14) to determine the location of
change points § and 6}, in alternative candidate subset O, O where O = {2 |52 ]+

L% +3,m =215 — 1, and O = {2]5] +2,.n — 2| B2},

(c) With a proper C, we consider that a change has occurred if |0, — 03| < C. Oth-
erwise, concluding that no change has occurred in the functions should be a more

persuasive argument.

In the aforementioned procedure, we first divide the sample into odd and even seg-
ments. And then within these two segments, we use (2.14) to identify our change point
estimator 6 and 0} in each segment. At last, based on the intuitive idea presented ear-
lier, we determine the authenticity of the change #* by assessing whether the difference in
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position between the two estimators is sufficiently small by using an appropriate constant

C.

As for the criterion C, it could be determined based on our specific requirements. Ifa
change in the data is considered critical and requires prevention, we may increase the value
of C' to ensure that the change can be detected more easily. Conversely, if we wish to avoid
detecting less significant changes, we can reduce the value of C' to minimize the possibility
of identifying such changes. We will adjust C' based on the sample size primarily because
the proposed statistic uses a sliding window concept, where each change point candidate
has an equal chance of being selected as the final estimator. So that adjust the value of C'

based on the sample size would be a more reasonable approach.

2.3 Remarks on proposed method

At last, we provide a brief analysis and discussion of the strengths and weaknesses of
the aforementioned methods and how various parameters influence the proposed method-
ology. The first discussion focuses on the advantages and disadvantages of using local
samples versus the entire sample. The former approach not only mitigates the issue of the
estimator frequently falling on the boundary but also avoids the unstable estimated change
point experienced by the CUSUM-based methods due to shifting in the change location.
However, compared to the latter approach, parameters such as window size significantly
impact the estimation results of the proposed method. Consequently, determining the ap-

propriate window size presents a complex and challenging problem.

Another noteworthy issue is the replacement of the permutation test with the sample

splitting method. Although this alternative method significantly enhances computational
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efficiency thereby increasing the feasibility of the proposed statistics, it still presents a
clear drawback which is a partial loss of test power. This power reduction is primarily
due to the division of the sample, as opposed to utilizing the entire dataset for testing,
which predictably results in a lower testing power outcome. Besides, sample splitting in
dependent cases faces challenges due to the correlation among the data. On the other hand,
CUSUM-based methods encounter the issue of selecting an appropriate bandwidth when

estimating the long-run covariance.

The remaining issue is on the selection of the rate w. For the rate w, in practical
applications, the number of candidates defined by ©,, in this article increases as the sample
size becomes larger, thereby reducing the possibility of each candidate being selected as
the final estimator compared to smaller sample sizes. Therefore, we adopt a proportion
for setting w both before and after sample splitting, typically employing w = 0.15 in
this study. The simulation and discussion sections will present the results obtained with
different w along with more detailed discussions. Regarding the cutoff C', we also consider

that the cutoff should be appropriately adjusted its scale according to the sample size.
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Chapter 3 Simulation Study

The aim of this chapter is to evaluate the performance of the proposed statistic in the
AMOC scenario. Comprehensive changing scenarios such as changes in the decay rate,
changes in the mean function, changes in the distribution of the random term, and simul-
taneous fluctuations in both mean function and decay will be complemented to evaluate
the behavior of the proposed statistic computed with MBD. We then compare our method
with [ ] and [ ] to demonstrate the advantage
of our method. We will also demonstrate how the window size w mentioned earlier affects

the estimation results of the proposed statistic.

3.1 Simulation setting

We set the model without changes as M : z;(t) = po(t) + Yoo, Comdr(t) , Vi €
{1,2,...,n}, &ir generated by N(0, k=) with gradual decay, juo(t) = 0.9 + 3t3(1 — ¢)

and ¢y(t) is the common Fourier basis.

We emulate the simulation setups of [ ] and [ ], while
introducing some minor modifications. We summarize our settings in Table 3.1 and a vi-
sualization of a few curves from our settings is presented in Fig 3.1. In models 1 and 2,
we set up scenarios where the data undergo fast decay and slow decay respectively. We
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Model Equation Varying Changing Scenarios
Model 1 (SC1) | z;(t) = po(t) + 321, Ernde(t) i = N0, 27F)
Model 2 (SC2) | zi(t) = po(t) + Ypty Eonda(t) Gain = N(O, k%)

Model 3 (MC1) | z;(t) = p1 (t) + Sorim, o (t) | pa(t) = po(t) + 0.4sin(1 + 107t)

Model 4 (MC2) | &;(t) = pa(t) + D pm; Eoind(t) po(t) = 0.8 + 3t — 5t
Model 5 (DC1) | @;(t) = po(t) + Yoty SHou(t) Heu(-5,5)
Model 6 (DC2) | z;(t) = po(t) + 2, <4 n(t) & € L0, 757)

Model 7 (MSC1) | 2;(t) = i (t) + i, oir¢r(t) | contamination in both y; (t) and &y,

Model 8 MSC2) | z;(t) = po(t) + Zilzl E2ir0k(t) | contamination in both pi5(¢) and £y
Table 3.1: Model setting

establish a mean shift in shape in model 3 and apply a magnitude fluctuation within model
4. For models 5 and 6, we use the uniform distribution and the Laplace distribution to
mimic the scenarios that FPC scores are from different distributions. These distributions
are set to have the same mean and variance as M,. Finally, in models 7 and 8, we aim
to depict more complex forms of change combined slow decay with shape and magni-
tude respectively. The following discussion will be performed with the data before the
change are modeled as M, and the data after the change are modeled according to the
aforementioned 8 models. All these scenarios will be set up in 200 simulation runs with
proper w = 0.15. Simulated datasets combine with independent functions in two sample
sizes n = 200 and 500, and the true change points 6* will be set at the same position
|0.3n|. Furthermore, we define accuracy as #{|0* — 0*| < C/2}/#{run times} where

C' = |0.1n] to facilitate the explanation.
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Simulation setting
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Figure 3.1: Visualization of our setting. For a concise expression, we draw 5 curves in
each scenario and only plot the mean function in the mean change case (top right).

3.2 Comparison

In the presentation of simulation results, we begin with a validation of the perfor-
mance of the statistical measures proposed in this study with n = 500. To present the
method proposed in this study more clearly, we have selected model 1 and model 4 which
exhibit stronger changes, for preliminary demonstration. The left side of Figure 3.2 illus-
trates that our statistical measures perform well in model 1 and model 4. A conspicuous
downward trend at the correct change location (6* = 150) can be discovered. The his-
togram on the right side also demonstrates that our estimator 6* lands around the precise
location where an actual change occurs in the data. Above results validated that our idea

1s successful.

We then compare the change point locations identified by our method against those
captured by [ ] (noted as RC) and [ ] (noted as
MCI) in sample size n = 200, 500. The reason for choosing to compare with
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Statistics in model 1 and 4 when n =500
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Figure 3.2: The results of the statistics and location under two varying conditions are
illustrated. The top of the figure displays the trends in our statistics and our change point
estimator in model 1, and the bottom of the figure represents the performance in model 4,
and 0* is set on 150.

[ ] is that it utilizes data depth as well but applies it to transform obtained se-
quences into ranks and execute CUSUM with these ranks to determine change points. This
method is primarily used to detect changes in covariance, which is also included in our
simulation design. [ ] proposed a method that projects variations both
between and within samples and integrates the fused lasso procedure to decide change
point candidates, and ultimately applies FDR correction to identify changes in the data.
We chose this method primarily because it employs CUSUM within a specific interval
after segmentation, indicating that it also relies on local data. Additionally, it can simul-
taneously detect changes in both the mean and covariance of functional data, which is

included in our setting scenarios as well.

We then compare the change point estimator in the above three methods respectively.
Since MCI tends to identify multiple change estimators, we select the most significant one
—the point with the smallest p-value after FDR correction as the change point identified by
MCI. As illustrated in Figure 3.3 and Figure 3.4. Although the most significant estimator
of MCI exhibits an overall smaller bias than the other two methods, it tends to overestimate
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Figure 3.3: The figure above compares estimated bias in 8 models with sample size n =
200. The y-axis represents §* — 6*. The first from the top left to the second from the top
left toward the bottom right corresponds to models 1,2,..., and 8, respectively.
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Figure 3.4: The figure above compares estimated bias in 8 models with sample size n =
500. The y-axis represents §* — 6*. The first from the top left to the second from the top
left toward the bottom right corresponds to models 1,2,..., and 8, respectively.

the number of change points. Therefore, it is challenging to evaluate the performance
of this method under the AMOC framework. Consequently, we will primarily focus on

discussing the proposed method and the RC method.

In models 1 and 2, our method has better performance than the method in
[ ] because of CUSUM-based method tends to capture a change in the
middle of samples; under the scenario of mean change, the performance of both meth-
ods fell short of expectations especially in model 3 which also represents shape change
scenario. The primary reason for the weak performance of our method may be attributed
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to the instability of MBD to detect shape outliers. Employing another data depth might
yield improvements. The RC method is primarily designed to detect changes in covari-
ance, and its insensitivity to mean change is anticipated; nevertheless, in the context of a
magnitude shift, i.e. model 4, a significant improvement in our method can be discovered.
The primary reason is that our method utilizes more samples as the sample size increases,
thereby enhancing the representative of samples within the window. This is an advantage
of adjusting the window size proportionally rather than using a fixed number of samples
(further discussed in next section). In model 5, the significant disparity between normal
and uniform distributions enabled both methods to perform quite well, but in model 6, the
resemblance between normal and Laplace distributions, both of which approximate a bell
shape, hindered both methods from detecting such changes. Lastly, in models 7 and 8, we
obtain similar conclusions to those of models 1 and 2 due to the existence of covariance

change.

Index | Power | Size | Accuracy
‘ #{|05—0;5] < C/2} ‘ #{l05—05 < C/2} | #{|6*—6%| < C/2}

#{run times} #{run times} #{run times}

Proposed
Table 3.2: Empirical power, size and accuracy for our method

We now present the performance in change detection for the three methods. The
compared index for our method is defined in Table 3.2, and the calculation of empirical
power will be discussed in the 8 types of changes mentioned earlier, while size will be
calculated under the scenario where no changes have occurred in the data. In RC the
empirical power and empirical size are calculated using the 95% quantile of the Brownian
bridge derived in [ ] and then divided by 200. But for MCI,
the empirical power is computed as the number of times one or more changes are detected

divided by 200, while the empirical size is computed as the number of times one or more
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Sample  Model Power(Size) Accuracy
Proposed RC MCI | Proposed RC MCT

n =200 SCI1 0.85(0.23)  1(0.12)  0.31(0.97) | 0.885 0.88  ~0.99
SC2 0.445 0.885 0.14 0.72 0.605 0.985
MCl1 0.26 0.17 0.225 0.175 0:165 0.96
MC2 | 0.285 0.26 0.49 0.445 021 = 0.785
DCl1 0.985 1 0.045 0.99 0.955 099
DC2 0.39 0.465 0.245 0.335 033 0.15
MSCI1 | 0.485 0.85 0.175 0.705 0.57 096
MSC2 | 0.5 0.725 0.39 0.755 0.52 0098

n =500 SCl1 0.935(0.24) 1(0.145) 0.28(0.96) | 0.97 096 1
SC2 0.495 1 0.12 0.61 0.85 1
MCl1 0.23 0.185 0.125 0.255 0.205 0.99
MC2 | 0.38 0.415 0.59 0.62 0.32 091
DC1 1 1 0.025 1 0.99 0985
DC2 0.31 0.66 0.125 0.29 0.495 0.235
MSCI1 | 0.575 0.985 0.075 0.765 0.78 0.995
MSC2 | 0.32 0.98 0.54 0.775 0.75 0975

Table 3.3: Empirical result comparison in 8 models

changes are detected when there is no change occurred, also divided by 200. The term
“accuracy” has been previously defined in Section 3.1. But for MCI, we selected the most
significant estimator (the estimator corresponds to the lowest p-value) identified by that

for comparison with others, primarily due to MCI tends to identify more change points.

From Table 3.3, we can observe that the method proposed in this article exhibits a
slightly inferior performance in empirical power compared to RC overall. Even though an
increase in sample size can lead to better results in terms of both accuracy and empirical
power for our method, with a more noticeable improvement in accuracy, it still falls short
in terms of power when compared to RC. The primary reason for this discrepancy lies in
our choice of using the less stable sample splitting approach instead of testing, which is
an area where our method could be improved. Despite our method obtaining a slightly in-
ferior performance in terms of empirical power, it generally outperforms RC in accuracy,
especially in capturing the precise location of the change. This advantage is even more pro-

nounced in cases involving mean change. Another noteworthy aspect is the performance
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of'the MCI method, we can observe that MCI has a very low probability of correctly detect-
ing a single change point across the eight scenarios we designed. Even in-scenarios where
no changes are present, this method frequently detects changes, which can be attributed
to its tendency to identify more change points. Nevertheless, when examining accuracy,
we find that “the most significant estimator” identified by MCI is generally more precise
than the other two methods and falls within our defined standards (|0* — 6*| < C/2).
Nonetheless, in Model 6 (DC2), all these three methods exhibit poor accuracy due to the

weak signal of the change, including MCI which typically performs better overall.

Deviation in different methods in SC1

| | P d
o | i ropose
s ! RC
- 7 ' MCI
E = —_ |
: - - i
" ] | | —_
=  — — 1
- O E— 1 1 : T =

%
%

Figure 3.5: The figure illustrates the deviation from the estimated change point to 6* in
three mentioned methods when moving 6* to three different locations, the result obtained
by SC1 with n = 200

Another noticeable issue is the performance in different change point locations 6*.
We now set 0* at |0.2n],|0.3n],|0.5n] in SCI to compare the accuracy of the change
point estimators obtained by three methods. As shown in Figure 3.5, our method are less
affected by the variation in the change point location which supports the advantages of
using local sample rather than using the entire sample. Same conclusion can be obtained
for MCI also identifies change points by examining multiple intervals which represents it
also using local data. In contrast, RC uses the entire dataset and relies on CUSUM, tends to
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detect changes around the center positions. This leads to noticeable overestimation when
design change is located on |0.2n| and |0.3n |, further demonstrating the advantages of

using local data.

3.3 Window Size Decision

We subsequently engage in a discussion regarding the window size at the conclusion
of the simulation. Primarily, we identify two reasonable approaches for selection. The
first approach involves utilizing a fixed proportion w, while the second approach entails
directly assigning a fixed numerical value w’. Both are reasonable choices. But when
the sample size increases or decreases, the number of candidate points also varies with
our choice of window size. Nevertheless, with different sample size, we tend to prefer
a standard with the same scale. Using w’ to implement our method will increase our
candidate set such that making us more susceptible to false detection (detailed discussion
in Figure 3.6). Therefore, we choose to implement our method by using a fixed proportion
w rather than w’ due to the insensitivity of w’ to sample size and that will allows us to better

capture the benefits of an increased sample size.

In Figure 3.6, we can observe that empirical power, size, and accuracy all signif-
icantly increase with the rise of w. The empirical power and size even accuracy do not
show a significant ascension with further increases in w beyond w = 0.15. While in terms
of accuracy, it continues to improve as the window size increases as expected because a
larger window size better captures the distribution of the samples, meaning the samples

within the window are more representative.

Nevertheless, a counterintuitive result is that our empirical size increases with w.
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Figure 3.6: Comparison in empirical power, size and accuracy with the same definition
in aforementioned section. The left figure illustrates an empirical result of our method in
n = 200 in SC1 while the right one presents the same result but adjusts sample size to
n = 500.

The primary reason is that when no change occurs in the data, the minimum value of our
test statistic will be randomly distributed within our candidate set ©,,. As w increases, a
smaller candidate set will be obtained, and the possibility of encountering overlapping ég
and ég increases significantly with w. Namely, the defined criterion \é;g — ég\ in section
2.2 becomes easier to meet regardless of whether a change has actually occurred in the

data or not. This indicates that we cannot blindly increase w.

In Figure 3.7, we demonstrate the proposed statistic in some simulation rounds with
n = 200 in SC1, and a downward trend near #* can be observed frequently but a more

unstable oscillation occurs when w < 0.1 than those in w > 0.15.

In summary, we aim to increase w to enhance the representativeness of our samples
for more accurate estimation, but we must also avoid indiscriminately increasing w to
prevent false detections. Additionally, increasing w leads to discarding too many samples,
or we say, change point candidates. For practical applications, we end up selecting w =

0.15 as a reasonable and balanced choice.
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Figure 3.7: The figure illustrates the performance of our statistical measure in different w
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O
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Chapter 4 Summary and Discussion

This article adopts an approach based on data depth and DD-plot, further extending
the concept of outlier and linking it to change point detection. The statistical measure is
derived using data depth which is commonly used to identify whether the data are outliers.
When determining whether a change is actual or not, we apply sample splitting to divide
the samples but we assess whether the detected change points in these two samples are
approximately the same to validate the detected signal’s authenticity. The simulations
show the results of our approach and further present the impact of using different window
sizes. A brief comparison with the other method is also present our method demonstrates

a competitive accuracy in determining the location of changes.

Nevertheless, the statistical measure remains significant room for development. For
instance, we have not yet determined the optimal method for selecting w in this article,
but have only discussed the pros and cons of different w values. Combining w with our
proposed statistical measure using a penalty approach may be a feasible idea. we have
not learned detailed information on the distribution of the starting point 75(f) and the
final statistical measure 7°(#) under large samples. Understanding the theoretical proper-
ties of these statistical measures should enable significant advancements in our method.
Additionally, when faced with scenarios such as Model 3 or Model 7, where functional

data exhibits behavior often characterized as shape outliers, using Modified Band Depth
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(MBD) for computation shows limitations in capturing changes effectively. Exploring
alternative depth measures such as Total Variation Depth (TVD)[ - ],
which are less influenced by shape outliers, could potentially enhance the performance of
the proposed statistical measure. Finally, this study employs the sliding window as the
core of the method’s construction. Since the sliding window is also a common and fea-
sible approach in online detection, the ideas proposed here may not be limited to offline

cases and could potentially perform well in online detection scenarios as well.
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