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Abstract

Production planning and preventive maintenance planning are typically treated
as separate subjects in academic studies. However, in real-world scenarios,
maintenance activities can significantly impact production capacity, potentially
resulting in a shortage of supply to meet demand. Neglecting maintenance can also
lead to a continuous deterioration of production equipment, causing uncertainty and
inefficiency in the production process. Consequently, the integrated decision-making
process involving both production planning and preventive maintenance planning
becomes a critical and practical challenge that requires attention.

In this study, we consider a problem where the decision maker determines both
production plan and preventive maintenance plan. The production quantity and
whether to conduct maintenance are decided every period, aiming to minimize the
total cost. We formulate the problem with dynamic programming model, then show
the deterministic version of our problem to be NP-hard.

We propose two algorithms, where planning is conducted at the beginning of
each period given observed states. The maintenance plan is decided by two heuristic
ideas, setting a yield rate threshold and comparing costs of decisions. After that, the
production plan may be obtained through solving linear programming model. We
evaluate the algorithms performance and their effectiveness under different scenarios

through numerical experiments.

Keywords: production planning, preventive maintenance scheduling, production

uncertainty, flow shop, heuristic algorithm
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Chapter 1

Introduction

1.1 Background and motivation

Production planning and preventive maintenance planning are well-studied subjects dur-
ing the past decades. The extensive research in academia and wide application in manu-
facturing industry reflect their significance. Production planning aims to minimize total
cost by deciding production quantity at every period. In contrast, preventive mainte-
nance planning tries to maximize the system reliability or product quality, by choosing

the appropriate timing to conduct maintenance.

The two subjects are usually studied separately. In production planning problems,
the machines are implicitly assumed to be reliable, and the system consistently achieves
the planned production quantity. The assumptions, however, are often impractical in
many real-world scenarios. In practice, production environments are much more complex,

requiring the manufacturers to make decisions from various perspectives.
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1.2 Research objectives

We intend to study an integrated production planning and preventive maintenance plan-
ning problem under a flow shop system. Similar to production planning problems, most
studies regarding flow shop environment assume machine conditions remain unchanged
as time passes. In this study we consider an environment where machine conditions

deteriorate over time and are restored through maintenances.

In our case, the system consists of multiple stages. At each period, the planner
decides the input quantity and whether to conduct a maintenance at each stage. A
random amount of output, influenced by the condition of the stage, is produced at the
beginning of next period, then it serves as the input of the next stage. The output
of each stage is regarded as WIP (work in progress) except for that of the final stage,
which is regarded end product. There are demands for end products at each period.
If the demands fail to be realized, a shortage cost will be incurred. Although in some
studies deterioration of machines is related to the probability of breakdown, this study
focuses solely on the declining yield rate of stages over time without considering machine
breakdown. Performing maintenance improves the yield rate of stages, but comes with

costs and reduces capacity, thereby limiting the input quantity at each stage.

The objective of this study is to decide the optimal input quantity and preventive
maintenance plan. The decision aims to balance the costs, capacity, and stage condition,
to meet the demand by efficient production. Since the optimal production and main-
tenance plan depend on the state at the beginning of every period, we formulate the

problem as a dynamic programming model and design algorithms to find the solution.
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1.3 Research plan

The remainder of this study is organized as follows. Chapter 2 briefly reviews the litera-
ture. Chapter 3 describes the abstracted problem and presents the dynamic programming
model. Chapter 4 analyzes the problem complexity and describes the proposed algorithm.
Chapter 5 conducts numerical experiments to show the effectiveness of the proposed al-

gorithm, and Chapter 6 concludes the study.
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Chapter 2

Literature Review

2.1 Studies of production planning and flow shop pro-

duction environment

Most studies regarding production planning problems are conducted from several aspects,
including material requirement planning, lot sizing, hierarchical planning, and integrated
planning (Gelders and Van Wassenhove, 1981). According to the number of stages and
relation between stages, the production environment can be roughly classified into single
stage, flow shop, and job shop. In this study, the production environment is a flow shop

system.

Florian et al. (1980) considered deterministic production planning problems over a
finite planning horizon. They investigated complexity for problems with various types
of cost functions, set-up costs, and capacity limits, then proposed several algorithms to
solve a partition of problems. Escudero et al. (1993) considered uncertainty in demand,

4
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and characterized the uncertainty using individual scenarios. Solutions for each scenario
are obtained, and are combined to form an implementable policy. They proposed an LP
to determine the product inventory and product volume, and an MIP model to support

the decision for material supply.

Johnson (1954) is a pioneer in the study of flow shop problems. He investigated the
flow shop system consisting of two machines and gave an algorithm that yields the opti-
mal scheduling plan with minimized makespan. Since then, extensive research regarding

production problem under flow shop environment is conducted.

Allaoui and Artiba (2006) investigated a two-stage hybrid flow shop problem consid-
ering machine availability, where hybrid flow shop problem implies stages may include
one or more machines, and that at least one stage includes multiple machines. They
indicated that in industries, machines may be unavailable due to breakdowns or preven-
tive maintenance and showed that the problem is NP-hard, since it is a generalization
of another well-known NP-hard problem. A Branch and Bound model is proposed, and

performance between LIST algorithm, LPT algorithm, and H-heuristic, is compared.

Ebrahimi et al. (2014) studied the scheduling problem under a hybrid flow shop sys-
tem, considering uncertainty of setup time and due dates. The problem is shown to be
NP-hard, and two GA-based algorithms are proposed. Chu et al. (2022) studied an in-
tegration of production planning and scheduling under a hybrid flow-shop system. They
established a two-level decision making model for a forging system, as well as a particle

swarm-genetic hybrid algorithm to obtain the feasible integrated solution.

All of the studies above assume the yield rates of machines are stable, i.e., no loss

occurs during production. The assumption is impractical in reality, therefore in our study
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we consider the loss during production. Decision of conducting a preventive maintenance

must be made to sustain a certain level of yield rate.

2.2 Studies of integrated production planning and

preventive maintenance planning

Recently, extensive research about multi-decision optimization problems are conducted.
Integrated production planning and preventive maintenance planning problems received

much attention due to its practicality in industries.

Aghezzaf et al. (2007) studied a problem assuming that the production system is sub-
ject to random failure, and that maintenance caused by a failure reduces the production
capacity. They formulated and solved the problem as a multi-item capacitated lot-sizing
problem. Aghezzaf and Najid (2008) then extended the model by assuming the system
consists of parallel machines and deteriorates over time. It is assumed that when a pro-
duction line fails, a minimal repair is carried out to restore it to an “as-bad-as-old” status.
A preventive maintenance restores the production line to a “as-good-as-new” status, but
reduces the production capacity. They modeled the problem as a linear mixed-integer
program when noncyclical preventive maintenance policies are allowed, then proposed a

Lagrangian-based heuristic procedure for the solution.

Yalaoui et al. (2014) studied a problem applying similar settings with that of Aghezzaf
and Najid (2008), including multiple items, parallel machines, and the system deteriorates
over time. The difference between theirs and Aghezzaf and Najid (2008) is that the

6

d0i:10.6342/NTU202403120



deterioration is reflected by the decrease of production capacity in their model. They
showed that their approach deals with wider range of problems than that of Aghezzaf
and Najid (2008). They developed a relaxation technique to reduce the computation

time, as well as a heuristic algorithm for complex problems.

Alimian et al. (2019) studied the integrated problem where the demand fluctuates,
assuming the components of the system face both independent and common cause failures.
They used robust optimization to model the problem and yield the maintenance plan
including decision of conducting perfect or imperfect maintenance. Khatab et al. (2019)
investigated a problem integrating production quantity planning and conditional-based
maintenance, in a system that deteriorates stochastically. The system is considered to
be in “fail mode” whenever its degradation level exceeds a predetermined threshold. The
system in “fail mode” produces non-conforming items, which will be replaced via overtime
production or spot market purchases. An optimization model is developed to minimize
total cost, by determining the optimal inspection cycle and the degradation threshold

level.

The studies above applied the single-stage production environment. We intend to
generalize the problem by applying the setting of flow shop production environment. To
the best of our knowledge, the works done by Aghezzaf and Najid (2008) and Yalaoui
et al. (2014) is the closest to our work by applying the aforementioned settings. The
major difference of our work and theirs is that we conduct planning under a flow shop
system, and that the system deterioration reflects on the yield rate in our formulation.
Moreover, to make the model fit reality better, we assume that the actual output given

the observed yield rate is random, as well as the deterioration rate and the result after
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maintenance. These settings come directly from a real world example, and are more

suitable for some cases in manufacturing industry.
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Chapter 3

Problem Description and

Formulation

3.1 Problem description

Consider a multi-stage flow shop system under a finite number of periods indexed by ¢t =
1,...,T. Multiple products are produced, indexed by ¢ = 1,...,I. The stages processing
the products are indexed by 7 = 0,...,J, where J indicates the stage producing end
product. We abuse the notation j = 0 as it does not represent an actual production

stage, but the process of purchasing raw material.

At each period, the input quantity of product 7 to stage 7, denoted by x;;;, is decided.
Z;;¢ has an index j ranging from 0 to J. ;0. represents the purchasing quantity of raw
material. x; j; denotes the input quantity to stage J, namely, the production quantity of
end products. Finally, x;;; where j = 1,...,J — 1, denotes the input quantity to stage j.

9
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zit € {0,1}, denoting whether to conduct maintenance at stage j, is also decided at each
period t. zj equals 1 means a maintenance is conducted, or 0 otherwise. Both z;;; and

2;;+ have index ¢ ranging from 1 to 7' — 1, since no decision has to be made at period 7.

In reality, there might be multiple machines operating in a single stage. In this study,
we view all machines in the same stage as a whole, or that a stage simply consists of only

one machine.

We introduce y;;; and wj; as the state variables in our dynamic programming formu-
lation. Let y,;; denote the beginning inventory level of product ¢ at period ¢. Index j
of y;;» ranges from 0 to J, implying meaning similar with that of ;. y; 0. and y; s, are
the inventory level of raw material and end product, respectively. v; 14, ...,¥; -1, are the
inventory level of WIP(work in progress) at corresponding stages. Let w;; denote the
beginning yield rate of stage j at period ¢t. The beginning inventory level and yield rate
at period 1 are parameters, denoted by Y; ;1 and W; ;. The constraints in the formulation

restrict the value of y; ;1 and w;; in the later section.

For j = 1,...,J, ;; units of product-i input are processed by corresponding stages
at each period t. A random quantity of output, influenced by w;;, is produced at the
beginning of period t41, regarded as y; j++1. The random quantity of output is denoted as
H(w = wjt, x = x;5). It follows a binomial distribution, where the number of experiments
equals x, and the success probability equals w. On the other hand, z;¢; units of raw
material are purchased at each period ¢t. They are realized at the beginning of period ¢+ 1
regarded as y;0+y1. Without being processed by a stage, the quantity of raw material
purchased equals the quantity of raw material inventory increased at the beginning of

next period.

10
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The input quantity to a stage is limited by beginning inventory level of the previous
stage. i.e., zjy < yijcforalle=1,..,1,5=1,....J,t =1,...,T—1. A similar constraint
applies to z; ., that the purchase of raw material must not exceed the external supply
limit M, ie., x;0: < My foralli =1,...,1,t = 1,...,T — 1. Furthermore, cach stage
has its own per period capacity, denoted by AJH , meaning the maximum input it may

process at each period. The input quantity to stage j must not exceed the capacity, i.e.,

I
doxir < AJH foralli=1,....I,5=1,...J;t=1,..T—1.
i=1

If no maintenance is conducted at a stage, wj; falls by a random rate F}, which follows
ap.d.f. F,at the beginning of next period. A maintenance takes extra cost and decreases
the per period capacity of stage j from Af to AJL. In return, a maintenance restores w;j;

to a random level K, which follows a p.d.f. K, at the beginning of the next period.

The objective is to decide optimal input quantity x;;;, and maintenance decision zj; at
each period ¢, in order to minimize the total cost. P;;; and R;; denote production cost and
inventory cost, respectively. Every unit of unfulfilled demand incurs a shortage cost @);.
A maintenance incurs a maintenance cost S;. Disposal cost U;; is charged if any inventory
is left at the end of period T. The indices used are stated in Table 3.1. The decision
variables and the state variables are listed in Table 3.2. The meaning of parameters are

listed in Table 3.3. Variables s;; and r;; are introduced later in this section.

11
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Notation Description

1 Index of products, 1 =1, ..., I.
J Index of stages, j =0, ..., J, where 0 is the stage of raw material,
and J is the stage of end product.

t Index of time periods, t =1,...,T.

Table 3.1: List of indices

12
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Notation Description

Lijt

Sit

Input quantity of product i to stage 5 at period t. i =1,..., I,
j=0,..,J;t=1,...,T —1. 0, is the purchase quantity of product ¢’s raw
material at period ¢, and z; s, is end product 7’s production quantity

at period t.

Whether a maintenance is conducted at stage j, period ¢, z;; € {0,1}.

Equals 1 if a maintenance is conducted, or 0 otherwise. 7 =1, ..., J,

Yijt

Beginning stage-j inventory level of product ¢ at period t, 1 =1,..., 1,
j=0,...,J;t=1,..,T. y; 0 denotes the beginning inventory level of product ¢’s
raw material in period ¢, and y; j; denotes the beginning inventory level of

end product ¢ at period t.

The beginning yield rate of stage j at period ¢, j =1,...;,J;t =1,...,T.

Table 3.2: List of variables

13
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Notation

Description

Piji

Qi

Yijn

Wia

Unit production cost of product-i raw material, WIP, or end product
at stage 7, period t.

Unit shortage cost of the demand for end product .

Unit inventory cost of product-: raw material, WIP, or end product
in stage 7.

One-period maintenance cost of stage j.

Disposal cost if stage-j inventory of product ¢ is left at the end of period T
The random rate yield rate of stage j decreases if no maintenance
is conducted.

The probability density function followed by Fj.

The random yield rate of stage j after a maintenance is conducted.
The probability density function followed by K.

The lowest yield rate stages would reach.

The demand for end product i at period t.

The per period capacity of stage 7 if no maintenance is conducted.
The per period capacity of stage j if a maintenance is conducted.
The limit of material supply of product ¢ at period ¢.

The output quantity given input quantity x and yield rate w.
Follows binomial distribution where the number of experiments
equals z and the success probability equals w.

The beginning stage-j inventory level of product i at period 1.

The beginning yield rate of stage j at period 1.

Table 3.3: Lisf 4:of parameters
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Denote (w1, Wa g, ..., W) as vector wy, and (Y1,0.4, Y1,1,ts - Y10t Y2,0.t5 > Y2, Jits -+
Yr.ot, -, Yr.5¢) as vector y,. We use superscripted plus sign to transform a mathematical
expression to itself when it is negative, and to 0 when it is positive, i.e., ET = max{0, F'}.

Given the states and the decisions at period ¢, the states at period ¢ + 1 may be derived

as

Wi = max{wj — Fj, B*}(1 — 2jt) + Kjzjp Vi=1,...,Jt=1,..T—1,  (3.1)
Yiot+1 = Yior + Tior — Tine Vi=1,., L t=1..,T—1, (3.2)

Yijt+1 = Yijt + H(wjt,xijt) — Tij+1t Vi = 1, ...,[,j = 1, cey J— 1,t = 1, ,T — 1,

Yigie1 = (Yigs + H(wye, xigs) — D) Vi=1,.,[t=1,..,T — 1. (3.4)

Denote (214, 22,4y -y 27¢) as vector zp and (T1.0¢, 11ty oy T1Jts T2.0.4y s TSty vy
Tr04,--- 1,0¢) as vector x;. We denote Vi(wy,y¢) as the minimum cost at period ¢, given

all state variables per period and formulate the problem as a dynamic programming model

I J J

Vi(wy, y) = min E(Z > (Pywij+ Rigyijen) + Y Size
TR i=1 j=0 =1
I

+ Z Qi(Dit — i — H(wyy, l’i,J,t))+ + Vi1 (Wi, yt+1)>>
i=1

st (3.1) = (3.4)

Yija =Yz Yi=1,.,1,j=0,..J, (3.5)

wig =Wy Vj=1,..J (3.6)

Tt < Yigoa Vi=1,..1,j=1,..J (3.7)

Tioy < My Vi=1,..1, (3.8)
15
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S wp SAT1 =z + Afzy Vi=1,..J, (3.9)

i=1
Tijt > 0 Vi= 1, ...,I,j = 1, vy J, (310)
2 €{0,1} Vi=1,..J. (3.11)

Denote our problem as Pg. We analyze the problem by addressing the complexity of a

deterministic version of Pg in the next section.

3.2 Complexity analysis

We formulate a deterministic version of Pg, denoted as Pp, by making stochastic param-
eters deterministic. Specifically, F; and K are constants instead of random variables,
while H(w,x) is a linear function wz, instead of a random variable following binomial
distribution. Pp can then be formulated as an MINLP from the dynamic programming
model. Denote (21,1, 22,1, -y 271, 21,25 -y Zy7—1) as vector z and (1,01, 11,1, -, T1,71, £2,0.1,

X115 T102---, X1,57—1) as vector x. The MINLP is formulated as

I J-1T-1 T-1
min E E (P i Uit + sz (yz]t + Wit Tige — Ti j4+1,t ) + E S 2t
T,z
i=1 j=1 t=1 j=1 t=1
T-1

+
/N

Pyxige+ Rio(Yior + Tior — Ting) + Rig(Yige + Wi gr — Sit)

i=1 t=1
I J-1
+ Qz(th — Sit ) Z(Z U,j yz,]T + Uz J(yz JT — Si,T))?
=1 75=0
s.t. Tijt S Yij—14 Vi = 1, ...,[,j = 1, ceey J,t = 1, ,T - 1, (312)
Ti0,t S Mit Vi = 1, ...,I,t = ]_, ,T - ]_, (313)
S wp <AT(L—z) + Afzy Vi=1,.,J0t=1.T-1, (3.14)

=1

16
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wip=W;1 Vj=1,..J,

Wipg1 S M1 —23) + Kjzje Vj=1,.,Jt=1,.,T—1,
W1 < Mth +M7“jt +wy—F;, Vj=1,.,Jt=1..,T-1
Wipg1 < Mzj+ M1 —ry)+BY V=1, Jt=1.T-1,

yi,j,lZY;,j,l Vizl,...,],j:O,...,J,

Yijt+1 = Yijt T WjtLije — Tijy1t Vi=1,..1,j=1..,J-1t=1,..

Yiot+1 = Yiot + Tior —Tiny Vi=1,...I,t=1,..T—1,
Yi,Jt+1 = Yigr + WitTi gt — Sit Vi=1,...,.1,t=1,...T — 1,
si1 <yig1 Vi=1,..,1,

Sit < Yigr+wxigy Vi=1,..,1t=2..T,

SitSDit VZ:L,I,t:L T

Y Y

20 >0 Vi=1,..1,j=1,.,Jt=1,..T—1,
sy >0 Vi=1,.,1,t=1,..T,
the {0,1} Vj:].,...7(],t:].,...,T—].,

Tjte {0,1} Vle,,J,tzl,,T—l

Constraint (3.1) is linearized by introducing binary variable r;;. Constraints (3.17), (3.18)

and (3.29) keep wj; in the correct range by rj; and a large number M. The objective

function of Pg and constraint (3.4) are linearized by introducing variable s;;. By adding

constraints (3.23), (3.24), (3.25), and (3.27), s;; is guaranteed to be the quantity of fulfilled

demand of product i at period t.

17
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Following similar process of Florian et al. (1980), we show Pp to be NP-hard by
reducing a well-known NP-hard problem SUBSET-SUM to Pp. SUBSET-SUM is defined

as follows.

SUBSET-SUM: Given a set {aq, ...,ay } and a number G, decide if there is a subset
P such that > a; = G.
i€P
Let M be a large number. Given a SUBSET-SUM instance, we may construct a Pp

instance Zp, with I =1,J = 1,7 = 3N, and the remaining parameter settings shown in

table 3.4.

18
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The MINLP model of Zp, may be derived as
3N-1 1

t=1  j=0

s.t. T1,0.t < Ml,t Vt = 1, ,?)N — 1,

Tiae < Yor VE=1,..,3N —1,

L1, S A{{(l - Zl,t) + ALZLt YVt = ]_7 ceey 3N —

w11 = W1,1,

Wit+1 = 21t Vit = 1,...,3N—1,
Y101 = Y101,

Y111 = G(N - 1)7

Y1,1,641 = Y116 T W1T116 — S1,t41
S1,t S Y11t + T1,1,¢ YVt = 2, ceny 3N,

S1t S Dl,t Vt = 1, ...,3N,

21,,>0 Vj=01,t=1,.. 3N -1,

s1.>0 Vt=1,..3N,

2, €{0,1} Vt=1,... 3N —1.

Vt=1,..,3N —

1

Y

min Z (Z Pyjawy g+ M(Dyy — s14) + Zi,t> + M(y1138 = 5138);

In this instance, the stage fully recovers after every maintenance, then immediately break

down at the next period given that both F; and K7 have a value of one. To obtain a cost

equals G, all purchased materials must be consumed at the next period, given that the

inventory cost of raw material equals a large number. Shortage cost and disposal cost of

end product are also a large number, making total cost to be G only if demands at every
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Parameter Value

Py 0 Vt=1,..,3N
Wit =9 (mod 3)

Py e/ Vi=1,...,3N
M, otherwise

o M

RI,O M

Rl,l 0

S1 1

Ul,O 0

U1,1 M

F 1

K 1
G, t=0 (mod 3)

Dy Vt=1,..,3N
0, otherwise

Al Y,

AL 0
Qt2)/3, t= 1 (mod 3)

M, 4 Vt=1,...,3N
0, otherwise

B 0

Yioa 0

Yii1 (N -1)G

Wl,l 0

Table 3.4: Se6tings of Zp,
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period fulfilled and no inventory of end product is left at the end of period 3N.

There are GG units of demand for end product every three periods. Whenever a planner
wish to produce a product, a period must be taken to maintain the stage and to purchase
raw materials. After that, the production is conducted at the next period. Finally, the
end product is realized at the beginning of the third period. Therefore each set of three
periods may be viewed as a group, resulting in a total of N groups. In each period group
n, a, units of raw material may be input into stage 1 after maintenance. Moreover, the
production cost subtracts maintenance cost equals a,, if exactly a,, units of products are

produced.

There are NG units of demand in total and (N — 1)G units of initial inventory of
end product, hence G units of products to be produced to avoid shortage and disposal
cost. If there exists a plan with total cost of G, there must be a set of period groups
whose capacities sum up to GG. The supply of raw material correspond to {ai,...,an}
in SUBSET-SUM problem. Therefore, the SUBSET-SUM problem returns True if there
exists a feasible production plan for Zp,, with cost G, thereby completing the proof. The

only exception is that any number in aq,...,ay lower than 1 may result in a negative

an—1
an

production cost, as indicated by the function . In such cases, a transformation that
ensures all values of aq,...,ay are greater than 1 can help maintain the validity of the

proof.

In the dynamic programming model of Pg, the number of variables increases expo-
nentially by the instance size, making it impractical to solve the model. Therefore we

propose heuristic algorithms for Pg in the next chapter.
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Chapter 4

The Algorithms

4.1 The overall procedure

We propose algorithms that plan maintenance by heuristic rules first. Production plan
is then decided by solving linear programming model according to the maintenance plan.
Finally the algorithms apply the plans for one period, yields states of the next period,
then repeat the process until the last period. The overall process is illustrated in Figure

4.1.

Initialize x, z, totalCost. .
Input ins to .
Start . Set tto 1 heuristic Get production plan and
probslz;nl?rfsgncc algorithm. maintenance plan.

Yield states of the next period.
Form an instance with the number of
periods decreased by one.

Set ins to this instance.

Apply the plans for one period. Set
x[1...1][0 ...J][t] and z[1 ...]][t] to
the first period of plans.
Increase totalCost by
the cost of the current period.

Output x, z, totalCost.

Figure 4.1: An illustration of the overall process
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The maintenance plan is determined using heuristic algorithms described in the fol-
lowing sections. After obtaining the maintenance plan, the expected yield rate of all
periods may also be acquired. Denote the maintenance plan and expected yield rate as
Z and W respectively, a linear programming model may be formed from the MINLP in
Chapter 3 since now maintenance plan and yield rate are parameters instead of variables.

The linear programming problem may be formulated as

I J-1 J T

mxin Z Z (Pijxijt + Rij(yije + Wi jr — xi7j+1,t)> + Z Z SiZjt

=1 j=1 t=1 j=1 t=1

+ Z Z <Pz',o$i,0,t + Py + Rio(Yior + Tioe — i)

=1 t=1

+ Ri (Vi gr + Wi ge — Si) + Qi( Dy — Sit))

1 J-1

+ Z(Z Uijyiir + Ui g (Yigr — Si,T))a
i=1 j=0
s.t. Tijt S’yi’jflyt Vi = 1,...,I,j: 1,...,J,t: 17...,T, (41)
X4.0,t SM’Lt Vi = 1,...,[,t: 1,...,T, (42)
1
S wyp <A1 - Zy)+ A Zy V=1, J0t=1,.T, (4.3)
i=1
yi,j,l :Y;JJ V’l: 1,...,[,j: 1,...,J—1, (44)

yi,j,tJrl = yijt + VVjthijt — xi7j+17t Vi = 1, ...,[,j = 1, cey J — 1,t = 1, ,T — 1,

(4.5)
Yiotil = Yior +Tiog —ine Vi=1,.. 1 t=1..T—1, (4.6)
Yigtrr =Ygt T Woige—sa Vi=1,.., 1, t=1..T-1, (4.7)
Si1 <yig1 Vi=1..,1, (4.8)
Sit < Yigr +*Wowige Vi=1,..,1,t=2,..T, (4.9)
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Sit SD” Vi = 1,,[,t:1,,T, (410)
>0 Vi=1,..1j=1,.Jt=1,.T, (4.11)

su>0 Vi=1,.. I t=1,.,T. (4.12)

Solving the LP model yields a production plan. The algorithms apply the maintenance
and production plan for one period, then the states of the next period may be obtained,
forming an instance with 7' decreased by 1. After that, the procedure above may be
repeated until the last period. The steps in one iteration is shown in Figure 4.2 . The
complete procedure is summarized in Algorithm 4.1. It takes the instance to be solved
insToSolve, then returns the production plan z, the maintenance plan z, and the total

cost totalCost.

prob] 4.2 YRTHA Preventive Production Plan and
Imt em | or —— Maintenance ——>} sobel bl Preventive
nstance 4.3 CCHA Plan model Maintenance Plan

Figure 4.2: The steps conducted in one iteration

4.2 Yield rate threshold heuristic algorithm (YRTHA)

A possible heuristic algorithm for determining the maintenance plan follows a simple
idea. The yield rate deteriorates by period, making the production inefficient. The
algorithm sets a threshold of yield rate. If the current yield rate of a stage is lower than
the threshold, a maintenance is conducted at the current period. For the maintenance
plan of remaining periods, the algorithm sets a fixed frequency to conduct maintenances
according to the falling speed of yield rate, e.g., the mean of F. The steps are shown
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Algorithm 4.1 The overall process

1: function SOLVE(insToSolve)

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

totalCost < 0, ins < insToSolve
z[l...insToSolve.I][0...insToSolve.J|[1...insToSolve. T —1] < 0
z[1...insToSolve.J|[1...insToSolve T — 1] < 0
numlterations < ins. T — 1
for ¢t in 1, ..., numliterations do
ins.Z < NULL
zPlan <+~ HEURISTIC(ins)
ns.Z < zPlan
z[0...insToSolve. J|[t] <= zPlan|0...insToSolve.J|[1]
wll..ins. J|[l...ins.T — 1] < 0
wl...ins. J|[1] + ins.W|l...ins.J|[1]
for jin 1,...,ins.J do
for tin 2,...,ins. T — 1 do
if ins.Z[j][t — 1] > 0 then
wlj][t] < mean(ins.K)
else
wlj][t] < max{ins. B, w[j][t — 1] - mean(ins.F)}
end if
end for
end for
ms. W <« w

xPlan <+ solveLLP(ins)
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24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

35:

36:

37:

38:

39:

40:

41:

42:

z[l...insToSolve.I][0...insToSolve.J|[t] <— zPlan]l...ins.1][0...ins.J|[1]
wNext[l... ins.J] < 0
for jin 1,..., ins.J do
if zPlan[j] = 1 then
wNext[j] + RandomSample(ins.K)
else
wNext[j] + max{w[j][1] — RandomSample(ins.F), ins.B*}
end if
end for
yNext < CalculatelnventoryLeft()
costPer Period < CalculateCostPerPeriod()
totalCost < totalCost + cost Per Period
ns. T < ins T — 1
ins.W|l...ins.J][1] <~ wNext
ins.Y[l...ans.I][1...ins.J|[1] <= yNext
Remove ins.D[1...ins.I|[1]
Remove ins.M|1...ins.I][1]
end for

return x, z, totalCost

43: end function
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in 4.3, and the procedure in detail is summarized in Algorithm 4.2. It takes a problem

instance vns and a manually set threshold w, then returns a maintenance plan z.

Set Forj = 1,...,ins.]J,
Input ins, w. |——| z[1..ins.J][1..ins.T] if ins. Wj 1is lower than w,
to 0. set z[J][1] to 1.
Forj = .1,.._,Lns.] . Set maintenancePeriod
Output z. Fort = 2,2 + maintenancePeriod, ..., i T
Set z[j][¢] to 1. according to ins.F;.

Figure 4.3: The steps of YRTHA

YRTHA is applied in Algorithm 4.1 by substituting HEURISTIC in line 8 to YRTHA
and provide an additional threshold parameter w. The algorithm has polynomial time
complexity by solving LP and repeating procedure for T'— 1 times. While it is an efficient
algorithm, deciding an appropriate threshold is a complicated task. It may be viewed as
a searching problem to decide an optimal threshold from B* to 1. In the overall process
of our algorithm, we manually assign several threshold levels to perform grid search, with
the best threshold returned. We measure the performance of this algorithm in Chapter

5 and propose another heuristic algorithm in the next section.

4.3 Cost comparison heuristic algorithm (CCHA)

4.3.1 Algorithm description

In this section we propose another possible way to decide whether the stage at current
period should be maintained. The idea is to measure the cost of conducting and not
conducting a maintenance by observing the state of current period and a few periods in

27

d0i:10.6342/NTU202403120



Algorithm 4.2 Yield Rate Threshold Heuristic Algorithm

1: function YRTHA (ins, w)

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

z[1..ins. J][1...ins.T — 1] - 0
for 5 in 1...ins.J do
if ins.W[j][1] < w then
2[jJ[1) 1
else
2[j][1) < 0
end if
end for

for 5 in 1...ins.J do

maintenancePeriod < ceil((mean(ins. K) —BY) / (2xmean(ins.F)))

t+1
while ¢t < ins. T do
zgllt] 1
t < t + maintenancePeriod
end while
end for

return z

19: end function
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near future. Assuming the stages operate at full capacity, the production at stage j goes
through J — j stages and takes J — j 4+ 1 periods until the end products are realized. In
other words, the production of stage j at period p is directly related to the beginning
inventory of end product at period p + J — j 4+ 1. If period p + J — j + 1 faces a large
quantity of demand, the maintenance decision of stage j at period p may be critical. If
a maintenance is conducted, and the capacity this period is fallen by C, there may be C

units of shortage, hence the corresponding shortage cost.

On the other hand, while a maintenance may sacrifice the demand at a period, it
benefits periods after that by keeping the stage in a better condition. In fact, the cost of
not conducting maintenances becomes significant in these later periods. Not conducting
maintenance may allow stages to fulfill demand temporarily, but sacrifices the chance of
bringing yield rate of the stage to a higher level. Extra shortage cost is possible if the

stage produce at a lower yield rate level in the later periods.

Therefore, the idea of algorithm is to compare the cost of conducting and not con-
ducting maintenance at the current period, then apply the decision with lower cost. After
the maintenance plan of current period is made, the procedure of planning the remain-
ing periods and solving LP to yield production plan is same as the yield rate threshold

algorithm.

The algorithm applies a greedy strategy to consider several periods in near future from
now. Specifically, we consider the cost of totally 3 periods. It is assumed that stages
produce at their maximum capacity. For the first period, the initial inventory is also
considered since inventory also limits the production. There may be bottleneck stages,

i.e., the stages with rather low capacity level, in a problem instance. This algorithm
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identifies the bottleneck stage with lowest capacity. For stages after the bottleneck stage,

the capacity of the bottleneck stage also limits their production.

The cost is composed of shortage, inventory, and maintenance cost of 3 periods. Let
@ denote the average shortage cost of all products, and R denote the average inventory
cost of all products and stages. pux and pp denote the mean of K and F, respectively.
Let AR denote per period capacity of the bottleneck stage. We use superscripted M and
N to represent the decision of whether or not to conduct a maintenance. Subscripted
BB and AB are used to represent stages before and after bottleneck stage. The cost of

whether or not conducting maintenance at each stage is listed in Table 4.1.

To decide the maintenance plan, stages that satisfies p + J — 7 > T are planned to
not conduct maintenances since any production is too late to meet the demand, therefore
no maintenance is required. For the other stages, the algorithm calculates the cost of
conducting and not conducting a maintenance by the cost functions in Table 4.1. The
option with less cost is adopted at the current period. Then a similar approach described
in Algorithm 4.2 is adopted to decide the maintenance plan at the remaining periods.
The steps are shown in 4.4, and the procedure in detail is described in Algorithm 4.3. It

takes a problem instance ¢ns, then returns a maintenance plan z.

Set For each stage j, If the cost of
Input ins. z[1 ...ins.J][1 ..ins.T] ' conducting a maintenance
0. is less than not conducting a
maintenance, set z[j][1] to 1.
Forj = 1,...,ins.J , ,
Output z. Fort = 2,2 + maintenancePeriod, ..., Set mamt.enanc.ePeImd
Set z[j][¢] to 1. according to ins.Fj.

Figure 4.4: The steps of CCHA
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Cost

Value

M
C1B B

N
CYB B

M
Cip

N
Cap

T I
QY Dipyy—jr1 — wijpmin(A", 37y 514))"

1=0 1=0
I
+Q(X Dipyy—jr2 — i AT)T
=0
I
+Q(;}Di,p+J—j+3 — (ug — pr)AH)T

I
—R(min(AL, D Yij—1) + Al AH)+
i=0

N

_ 1 I
Q(;} Dipry—jr1— wjp mm(AH, ;)yz’,jq,t)ﬁ

T
+Q(;] Dipry—jr2 — (wjp — pp)A")*

T
+Q( > Dipri—jrs — (wjp — 2up) AT) T

)

- I
—R(min(A%, 37, y; j-14) + A" + AH)
=0

0 I
Q(X Dipry—jur — wipmin(AL, 37y 1, ATF))*

=0 =0
T
+Q(X° Diprs—jr2 — pur min(A7, ATE))+
=0
I
+Q(X Dip+a—jrs — (ux — pur) min(A7, ATF))*
=0

I
—R(min(AL, > yij1.4, ATP) + 2min (A7 AHB))
=0
+8,
T ‘ I
QX Dip+y—js1 — wipmin(A™, 30 yi 14, ATP))T
=0 =0

T
+Q(3C Dipri—jrz — (wjp — pp) min(A", AHE))*

=0
I
+Q(;]Di7p+#j+3 — (wjp — 2up) min(AH, AHB))*
_ I
—R(min(} yij—14, A", A"P) + 2min(A", A"P))
=0

Table 4.1: Cost of whether or not conducting maintenance at each stage
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Algorithm 4.3 Cost Comparison Heuristic Algorithm
1: function CCHA (ins)

2: z[1..ins. J][1..ins.T — 1] < 0
3: cost Maintenance < 0, cost NoM aintenance < 0
4: bottle NeckStage < findBottleNeck(ins)

5: for jin 1 ... bottleNeckStage do

6: if J—74+3>T then

7: break

8: end if

9: if j < bottleNeckStage then

10: costMaintenance < costMaintenanceBeforeBottleNeck(5)

11: cost NoMaintenance < costNoMaintenanceBeforeBottleNeck(5)
12: else

13: cost M aintenance < costMaintenanceAfterBottleNeck(5)

14: costNoMaintenance - costNoMaintenanceAfterBottleNeck(j)
15: end if

16: if costMaintenance < cost NoM aintenance then

17: z[7][1] < 1

18: else

19: z[j][1] «+ 0

20: end if

21: end for

22: for 5 in 1...ins.J do

23: maintenancePeriod < ceil((mean(ins.K) —BY) / (2mean(ins.F)))
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24: t <+ 1

25: while ¢t < ins. T do

26: z[4][t] + 1

27: t < t + maintenancePeriod
28: end while

29: end for

30: return 2

31: end function

CCHA is applied in Algorithm 4.1 by substituting HEURISTIC in line 8 to CCHA.
The time complexity of this algorithm is same as YRTHA. The advantage of this al-
gorithm is that it is simple to be implemented, requiring no extra parameter settings.
Moreover, the algorithm considers the relationship between stages and demand. Chapter

5 compares the performance of this algorithm with the others.

4.3.2 A numerical example

In this section, we provide a numerical example to illustrate how the algorithm works.
Given a problem instance with 3 products, 5 stages, and 8 periods. Stage 3 is set to be

a bottleneck stage. The demand is set as

100 100 100 150 250 100 150 200

D= 1100 100 100 50 100 50 200 50 |-

100 100 100 50 200 100 50 50
where the row represents products and columns represents periods. There is sufficient

initial inventory, and the initial yield rate equals 0.6 for all j. The remaining of the
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Parameter Value

Qi 100 Vi=1,...,1

R;; 2 Vi=1,..,1,7=0,....,J

S; 4000 Vj=1,...,J

F Normal distribution with mean equals 0.1
§ Normal distribution with mean equals 1
AJH 100 V5 =1,2,4,5

A]L 50 Vj=1,2,4,5

Al 50

AL 25

Table 4.2: List of parameters

parameters are set as shown in Table 4.2.

@ and R are 100 and 2 respectively, which is calculated from average values of () and
R. Similarly, pur and pg are 0.1 and 1 respectively, calculated from the mean of F and
K. For stage 1 at period 1, the production is directly related to the beginning inventory
of end product at period 1 +5 — 14 1 = 6, whose demand equals 250 in total, as well as
period 7 and 8. Since it is a stage before the bottleneck stage, C3, and C§5 are applied

to calculate the costs.

The cost of conducting a maintenance is calculated as C3, = 100 x (250 — 0.6 x 50) +

100 x (400 — 1 x 100) + 100 x (300 — 0.9 x 100) — 2 x (50 + 100 + 100) + 4000 = 76500.

The cost of not conducting a maintenance is calculated as C = 100 x (250 — 0.6 x
100) 4 100 x (400 — 0.5 x 100) 4+ 100 x (300 — 0.4 x 100) — 2 x (100 + 100 + 100) = 79400.
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Since the cost of conductung a maintenance is cheaper, it is planned to conduct a

maintenance at stage 1, period 1.

Take stage 4 at period 2 as another example. the production is directly related to the
beginning inventory of end product at period 245 —4+1 = 4, as well as period 5 and 6.
Since it is a stage after the bottleneck stage, CiL and C¥5 are applied to calculate the

costs.

The cost of conducting a maintenance is calculated as C{% = 100 x (250 — 0.6 x 25) +

100 x (550 — 1 x 50) + 100 x (250 — 0.9 x 50) — 2 x (50 + 2 x 50) + 4000 = 97750.

The cost of not conducting a maintenance is calculated as Cz = 100 x (250 — 0.6 x

50) -+ 100 x (550 — 0.5 x 50) + 100 x (250 — 0.4 x 50) — 2 x (50 + 2 x 50) = 97200.

Since the cost of not conductung a maintenance is cheaper, it is planned to not conduct

a maintenance at stage 4, period 2.
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Chapter 5

Numerical Study

5.1 Experiment setting

In this chapter, we conduct numerical experiments to examine the effectiveness of pro-
posed algorithms. In our experiments, W, ; is set to 0.96, and Y ;1 is set to 0. Since there
are no initial inventory, the demands of first 5 periods may not be fulfilled. Considering
the problem complexity and real-life application, we set T" to 21, which would be three
weeks if a period is considered as a day. We define four scenarios with different number

of products and stages as listed in Table 5.1.

J is set to 4 in multiple stage scenarios, making it possible to fulfill the demand
starting from period 5 given no initital inventory. Considering the difference of efficiency
to produce under single and multiple stage, we lower A}H under single stage scenarios to
reduce the bias. Specifically, Af under single stage is set to 0.65 times Af under multiple
stages according to the benchmark performance. M;; applies the same setting.

36

d0i:10.6342/NTU202403120



Scenario I J

SPSS 1 1
SPMS 1 4
MPSS 3 1
MPMS 3 4

Table 5.1: Settings of scenarios

We adopt four factors that would affect the performance of proposed algorithms.
First, we set ratio of demand per period and stage capacity to simulate different level of
tightness to supply the demand. The ratio is set to 2:1 and 3:1, with Afl under multiple
stages equals 30000, and average demand per period set to 60000 and 90000. Next, we
consider two types of demand distribution, even and uneven. For even distribution, the
demand at every period follows normal distribution with small variance. In contrast,
uneven distribution has demand only at periods 3, 7, 10, 14, 17, and 21. Following
is the ratio of inventory and shortage cost, setting to 1:50 and 1:100. The difference
between two costs should be significant enough, otherwise the optimal plan would always
be conducting no maintenance and producing zero product. Both costs are identical
for all products and stages. Finally, we randomly assign one stage to be the bottleneck
stage under SPMS and MPMS scenarios. The capacity of bottleneck stage is set to AJH ,

0.75A§I, and 0.5A§{.

The remaining of the parameters are set as follows. P;; =2 foralli =1,...,1,5 =
0,..,J,8 =20forall j=1,...,J,and U;; =0 forall e =1,....1,5 = 0,..., J. AJL is
set to half of Af . BY equals 0.8. F is a normal distribution with mean equals 0.01 and
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standard deviation equals 0.0001. K is a normal distribution with mean equals 1 and
standard deviation equals 0.001. The random sample from K would be automatically

adjusted to 1 if it exceeds 1.

The above four scenarios and four factors generate 4 x 2 x 2 x 2 x 3 = 96 scenarios
in total. We generate 30 instances for each scenario and report the average performance.
The experiments were performed on a laptop equipped with two 2.30Gz Intel(R) Core
i5-2600U CPUs and 12GB RAM. The heuristic algorithms are implemented using Python
3.9.13. Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64) is invoked to solve mathe-
matical models. We apply {0.1,0.2,...,0.9} in YRTHA to perform grid search and report

the best performance.

5.2 Benchmarks

5.2.1 The first benchmark: A lower bound

To evaluate the performance of each algorithm, we solve a special scenario of Pg as
benchmark. In this scenario, Fj equals 0 and W;; equals 1. In other words, the yield
rate is always 100%, allowing all production to be fully realized without loss, therefore
no maintenance is required. In this case, the only decision left is x;j;, and this problem

may be formulated as a linear program. The program is formulated as

I J-1T-1
min E g (R‘j%jt + Rij(Yije + @ije — xi,j-l—l,t))
i=1 j=1 t=1
I T—
+ E (Pz‘,oxz',o,t + P, jxi ge + Rio(Yior + Tior — i)

38

d0i:10.6342/NTU202403120



+ Ri j(Yige + Tige — Sit) + Qi(Dir — 3it)>

J-1

+ Z <Z Ui Yijr + Ui (Yigr — 5i,T)>7

i=1 7=0

s.t. xijtgyi,j_u Vizl,...,],j:1,...,J,t:1,...,T—1,

yi,j,l :Y;‘,JJ VZ = ]_,...,],j :0,...,J7

Yiji+1 = Yijt + Tijt — Tijp1e Vi=1,..,1,

Yiot+1 = Yior + Tior — Ting Vi=1,..,1
Yiditl = Yige + Tige — Sie Vi=1,.., 1t
si1 <Yig1 Vi=1,..1,

Sit <Yigr+Tig—1 Vi=1,..,1t=2, ..
$i <Dy Vi=1,...,1,t=1,..,T,

i >0 Vi=1,..,1,j=1..J

su>0 Vi=1,. It=1,..T.

j=1,....J—1,t=1,..T—1, (5.5)

t=1,...T—1,

=1,..

T,

(5.10)
(5.11)

(5.12)

The solution of this problem may be immediately obtained by invoking an LP solver.

Since this is an idealized scenario where the productions are maximally efficient, the

optimal value is a loose lower bound.
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5.2.2 The second benchmark: MINLP heuristic algorithm (MHA)

In order to avoid possible bias caused by the over-idealized settings in the benchmark
algorithm, we introduce another algorithm that yields more reasonable optimal values.
The algorithm is denoted as MHA, and the steps are described as follows. First, invoke
solver to solve Pp and apply the solution plan for one period. The plan yields states
of the next period, then an instance with period less by one may be formed. It then
can be solved by MINLP solver again, then the procedure repeats until the last period.
The complete steps are summarized in Algorithm 5.1. It takes a instance to be solved
insToSolve, then returns the production plan z, the maintenance plan z, and the total

cost totalCost.

MHA yields solution with small gap to the lower bound. However, it is time consuming
to solve MINLP as the instance size grows. In our experiments, we set 90 seconds as time

limit for solving MINLP. All models in the testing instances yield feasible solution.

5.3 Experimental results

Denote an optimal value as z*, and the value to be measured as z. The optimality gap
is calculated as % Denote gap between the algorithms and benchmark 1 as GAPppr.
Denote gap between the algorithms and benchmark 2 as GAPy; g 4. We show the perfor-
mance of YRTHA and CCHA, and how the selected factors influence performance of the

algorithms.

Table 5.2 shows the numerical result of the single-product-single-stage scenario. It is
shown that the benchmark algorithm indeed yields a looser bound, comparing to MHA.
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Algorithm 5.1 MINLP Heuristic Algorithm

1: function MHA (insToSolve)

2:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

totalCost < 0,ins < NULL
z[l...insToSolve.I][0...insToSolve.J|[1...insToSolve. T — 1] < 0
z[1...insToSolve.J][1...insToSolve. T — 1] < 0
ins < insToSolve
numlterations < ins. T — 1
w < ins.Wl...ins.J|[1]
for t in 1, ..., numlterations do
if t =1 then
end if

xPlan, zPlan < minlp(ins)

z[l...insT'oSolve.I][0...insToSolve.J|[t] «— xPlan|l...ins.1][0...ins.J|[1]

z[0...insToSolve. J|[t] < zPlan|0...ins.J|[1]
wNext[l...ins.J] < 0
for jin 1,...,ins.J do
if zPlan[j][0] = 1 then
wNext[j] + RandomSample(ins.K)

else

wNext[j] + max{w[j]— RandomSample(ins.F), ins.B*}

end if
end for
yNext <+ CalculatelnventoryLeft ()

costPer Period < CalculateCostPerPeriod()
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24: totalCost < totalCost 4 cost Per Period

25: ns. T < ins T — 1

26: ins.W|l...ins.J][1] <~ wNext

27 ins.Y[l...ins.I][1...ins.J|[1] < yNext
28: Remove ins.D[1...ins.I|[1]

29: Remove ins.M|1...ins.I][1]

30: end for

31: return x, z, totalCost

32: end function

In general, YRTHA yields better results than CCHA.

Both YRTHA and CCHA have smaller optimality gap when facing higher demand
given fixed capacity. The advantage of benchmark algorithm is limited by the capacity
crunch, hence the closer gaps. Similar results are shown under different levels of bottle-
neck stage capacity. The lower capacity of bottleneck stage yields smaller gap between
proposed algorithms and the benchmark. The gaps are shown larger under uneven de-
mand distribution, since the benchmark algorithm plans with perfect yield rate and meets
the peak demands better. On the other hand, both algorithms have close optimality gaps
under even demand distribution, while YRTHA reaches almost the same performance of
MHA, showing that steady demand is well-handled by the strategies of proposed algo-
rithms. Finally, the performance of proposed algorithms do not show big difference when
inventory-shortage cost ratio are 1:50 and 1:100. It is first observed an improvement when
the ratio changes from 1:9 to 1:50, since the shortage cost is too low that no maintenance
and production would be the optimal plan. The improvement, however, does not appear
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significant as shortage cost increases after the ratio reaches 1:50. This may suggest a

possible way to improve the algorithm, since the control of yield rate should be stricter

as shortage cost increases.

GAPOPT ChAPMHA
Factor Level
YRTHA CCHA YRTHA CCHA
2:1 18.21%  23.79%  8.06%  13.14%
Demand-capacity ratio
3:1 15.96% 19.34%  9.50%  12.69%
even 9.77%  15.43%  3.59%  8.88%
Demand distribution
uneven  24.39% 27.69% 13.97% 16.96%
1:50 16.98% 21.28%  9.26%  13.25%
Inventory-shortage cost ratio
1:100 17.18%  21.84%  8.30%  12.58%
0.5Af 15.28% 18.00%  9.45%  12.04%
Bottleneck stage capacity — 0.75AF  16.99% 21.38%  9.41%  13.52%
Al 18.08%  25.30%  7.48%  13.19%

J

Table 5.2: Numerical result of SPSS

Similar results are obtained under environment multiple products, as shown in Table

5.3. Since there exists no big difference of costs and demand between products in our

experiment settings, the proposed algorithms yield similar performance as the number

of products increases. However, the gaps decrease under even demand distribution, and

increase under uneven demand distribution. This further indicates the efficiency of our

algorithm planning under even demand distribution.

Table 5.4 and 5.5 show the results of multi-stage environments, with single and mul-
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GAPOPT GAPMHA
Factor Level
YRTHA CCHA YRTHA CCHA
2:1 18.26% 23.89%  8.36%  13.45%
Demand-capacity ratio
3:1 16.00% 19.40%  9.95%  13.16%
even 9.87%  15.59% 1.7% 6.92%
Demand distribution
uneven  24.39% 27.70% 16.61% 19.68%
1:50 17.03% 21.37%  9.26%  13.25%
Inventory-shortage cost ratio
1:100 17.23% 21.93%  9.05%  13.35%
0.5A§{ 15.32% 18.06% 10.42%  13.03%
Bottleneck stage capacity — 0.75AF  17.04% 21.46%  9.42%  13.53%
Al 19.04% 25.42%  7.63%  13.34%

J

Table 5.3: Numerical result of MPSS
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tiple products. While the result remains similar when number of products increases,
GAPerimrma increases under all scenarios when stages increase, indicating the advantage
of benchmark 1 increases given the increased problem complexity. CCHA suffers slightly
higher gap increase compared to YRTHA. While YRTHA yields better results, they are
returned after a search enumerating several possibilities, which requires extra knowledge
and settings. CCHA, on the other hand, has the advantage of requiring no extra settings.
The performance may be improved by designing other cost functions considering more
properties of problem instances. On the other hand, decrease of GAP;..:opr is observed
as stages increase. Since we set only 90 seconds to solve MINLPs, solutions with lower
cost may not be obtained in time. The proposed algorithms may obtain solution with

small gaps compared to MHA in reasonable time.

GAPopr GAPyvima

Factor Level

YRTHA CCHA YRTHA CCHA

2:1 24.67% 31.75%  7.44%  13.46%
Demand-capacity ratio
3:1 19.80% 24.07% 10.12%  14.03%

even 15.30% 21.68%  2.93% 8.51%
Demand distribution
uneven 29.17% 34.14% 14.62%  18.98%

1:50 21.84% 27.15%  9.06%  13.73%
Inventory-shortage cost ratio
1:100  22.63% 28.67% 851% 13.76%

O.BAf 17.67% 21.67% 10.20% 13.94%
Bottleneck stage capacity O.75Af 21.18% 26.79%  8.46%  13.45%

Al 27.85% 3527% 7.67%  13.85%

J

Table 5.4: Numerical result of SPMS
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GAPOPT GAPMHA
Factor Level
YRTHA CCHA YRTHA CCHA
2:1 24.69% 31.7%% 6.30% 12.24%
Demand-capacity ratio
3:1 19.79% 24.08%  8.44%  12.30%
even 15.31% 21.68% 1.27T% 6.74%
Demand distribution
uneven  29.16% 34.16% 13.47% 17.80%
1:50 21.83% 27.10% 6.64% 11.17%
Inventory-shortage cost ratio
1:100  22.64% 28.74%  8.10%  13.36%
0.5A§{ 17.61% 21.66%  9.52%  13.28%
Bottleneck stage capacity — 0.75AF  21.23% 26.88%  820%  13.22%
Al 27.87% 3521% 4.38%  10.31%

J

Table 5.5: Numerical result of MPMS
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Chapter 6

Conclusion

In this study, we consider an integrated production planning and preventive maintenance
planning problem under a flow shop system. We define the problem by formulating
a dynamic programming model. We formulate an MINLP model for the determinsitc
version of our problem, then prove it to be NP-hard. Since directly solving the dynamic
programming model is difficult, we propose heuristic algorithms with steps of solving
MINLP. Due to the fact that solving MINLP is time consuming, we propose two other
algorithms. The idea of setting yield rate threshold and comparing costs are used to
determine preventive maintenance plan, then production plan may be obtained by solving
LP models. Through numerical studies, we show that the proposed algorithm yields near-

optimal solutions under different scenarios.

There are some possible directions to extend this study. The inventory cost may be
generalized to convex function or other types of function. The convexity and optimization
of the problem may require further studies. Next, the proposed algorithms may be im-

proved by setting threshold in a more reasonable way, or developing better cost functions.

47

d0i:10.6342/NTU202403120



Furthermore, the proposed cost function barely considers cost of different products, or
the decisions in the near future. Further studies on the relationship between parameters

may be required.
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