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摘要 

  生產規劃問題和預防性保養計劃問題在學術研究中被視為獨立的主題，而

常被分開研究。然而在現實情況下，保養活動和生產活動的影響經常互相關

聯。保養機臺會使生產效能降低，並可能導致供不應求。忽視保養還可能導致

生產設備持續惡化，增加生產過程中的不確定性並降低生產效率。因此，涉及

生產規劃和預防性保養計劃的整合決策過程是一個需要關注的議題。 

  在這項研究中，我們考慮一個決策者同時決定生產計劃和預防性保養計劃

的問題。在每個週期決策者決定生產數量以及是否進行維護，以最小化總成

本。我們將此問題以動態規劃模型描述，並證明此問題的確定性版本為 NP-困

難。 

  我們提出了兩個演算法，根據每個週期的狀態，在週期的開頭決定計劃。

我們透過兩個啟發式規則，即設置良率閾值和比較保養決策的成本，來決定保

養計畫，之後通過求解線性規劃模型來獲得生產計劃。我們通過數值實驗評估

算法的性能和在不同情境下的有效性。 

關鍵字：生產規劃、預防性保養排程、生產隨機性、流線型環境、啟發式演算

法 
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Abstract 

Production planning and preventive maintenance planning are typically treated 

as separate subjects in academic studies. However, in real-world scenarios, 

maintenance activities can significantly impact production capacity, potentially 

resulting in a shortage of supply to meet demand. Neglecting maintenance can also 

lead to a continuous deterioration of production equipment, causing uncertainty and 

inefficiency in the production process. Consequently, the integrated decision-making 

process involving both production planning and preventive maintenance planning 

becomes a critical and practical challenge that requires attention.  

In this study, we consider a problem where the decision maker determines both 

production plan and preventive maintenance plan. The production quantity and 

whether to conduct maintenance are decided every period, aiming to minimize the 

total cost. We formulate the problem with dynamic programming model, then show 

the deterministic version of our problem to be NP-hard.  

We propose two algorithms, where planning is conducted at the beginning of 

each period given observed states. The maintenance plan is decided by two heuristic 

ideas, setting a yield rate threshold and comparing costs of decisions. After that, the 

production plan may be obtained through solving linear programming model. We 

evaluate the algorithms performance and their effectiveness under different scenarios 

through numerical experiments.  

Keywords: production planning, preventive maintenance scheduling, production 

uncertainty, flow shop, heuristic algorithm 
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Chapter 1

Introduction

1.1 Background and motivation

Production planning and preventive maintenance planning are well-studied subjects dur-

ing the past decades. The extensive research in academia and wide application in manu-

facturing industry reflect their significance. Production planning aims to minimize total

cost by deciding production quantity at every period. In contrast, preventive mainte-

nance planning tries to maximize the system reliability or product quality, by choosing

the appropriate timing to conduct maintenance.

The two subjects are usually studied separately. In production planning problems,

the machines are implicitly assumed to be reliable, and the system consistently achieves

the planned production quantity. The assumptions, however, are often impractical in

many real-world scenarios. In practice, production environments are much more complex,

requiring the manufacturers to make decisions from various perspectives.

1
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1.2 Research objectives

We intend to study an integrated production planning and preventive maintenance plan-

ning problem under a flow shop system. Similar to production planning problems, most

studies regarding flow shop environment assume machine conditions remain unchanged

as time passes. In this study we consider an environment where machine conditions

deteriorate over time and are restored through maintenances.

In our case, the system consists of multiple stages. At each period, the planner

decides the input quantity and whether to conduct a maintenance at each stage. A

random amount of output, influenced by the condition of the stage, is produced at the

beginning of next period, then it serves as the input of the next stage. The output

of each stage is regarded as WIP (work in progress) except for that of the final stage,

which is regarded end product. There are demands for end products at each period.

If the demands fail to be realized, a shortage cost will be incurred. Although in some

studies deterioration of machines is related to the probability of breakdown, this study

focuses solely on the declining yield rate of stages over time without considering machine

breakdown. Performing maintenance improves the yield rate of stages, but comes with

costs and reduces capacity, thereby limiting the input quantity at each stage.

The objective of this study is to decide the optimal input quantity and preventive

maintenance plan. The decision aims to balance the costs, capacity, and stage condition,

to meet the demand by efficient production. Since the optimal production and main-

tenance plan depend on the state at the beginning of every period, we formulate the

problem as a dynamic programming model and design algorithms to find the solution.

2
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1.3 Research plan

The remainder of this study is organized as follows. Chapter 2 briefly reviews the litera-

ture. Chapter 3 describes the abstracted problem and presents the dynamic programming

model. Chapter 4 analyzes the problem complexity and describes the proposed algorithm.

Chapter 5 conducts numerical experiments to show the effectiveness of the proposed al-

gorithm, and Chapter 6 concludes the study.

3
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Chapter 2

Literature Review

2.1 Studies of production planning and flow shop pro-

duction environment

Most studies regarding production planning problems are conducted from several aspects,

including material requirement planning, lot sizing, hierarchical planning, and integrated

planning (Gelders and Van Wassenhove, 1981). According to the number of stages and

relation between stages, the production environment can be roughly classified into single

stage, flow shop, and job shop. In this study, the production environment is a flow shop

system.

Florian et al. (1980) considered deterministic production planning problems over a

finite planning horizon. They investigated complexity for problems with various types

of cost functions, set-up costs, and capacity limits, then proposed several algorithms to

solve a partition of problems. Escudero et al. (1993) considered uncertainty in demand,

4
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and characterized the uncertainty using individual scenarios. Solutions for each scenario

are obtained, and are combined to form an implementable policy. They proposed an LP

to determine the product inventory and product volume, and an MIP model to support

the decision for material supply.

Johnson (1954) is a pioneer in the study of flow shop problems. He investigated the

flow shop system consisting of two machines and gave an algorithm that yields the opti-

mal scheduling plan with minimized makespan. Since then, extensive research regarding

production problem under flow shop environment is conducted.

Allaoui and Artiba (2006) investigated a two-stage hybrid flow shop problem consid-

ering machine availability, where hybrid flow shop problem implies stages may include

one or more machines, and that at least one stage includes multiple machines. They

indicated that in industries, machines may be unavailable due to breakdowns or preven-

tive maintenance and showed that the problem is NP-hard, since it is a generalization

of another well-known NP-hard problem. A Branch and Bound model is proposed, and

performance between LIST algorithm, LPT algorithm, and H-heuristic, is compared.

Ebrahimi et al. (2014) studied the scheduling problem under a hybrid flow shop sys-

tem, considering uncertainty of setup time and due dates. The problem is shown to be

NP-hard, and two GA-based algorithms are proposed. Chu et al. (2022) studied an in-

tegration of production planning and scheduling under a hybrid flow-shop system. They

established a two-level decision making model for a forging system, as well as a particle

swarm-genetic hybrid algorithm to obtain the feasible integrated solution.

All of the studies above assume the yield rates of machines are stable, i.e., no loss

occurs during production. The assumption is impractical in reality, therefore in our study

5
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we consider the loss during production. Decision of conducting a preventive maintenance

must be made to sustain a certain level of yield rate.

2.2 Studies of integrated production planning and

preventive maintenance planning

Recently, extensive research about multi-decision optimization problems are conducted.

Integrated production planning and preventive maintenance planning problems received

much attention due to its practicality in industries.

Aghezzaf et al. (2007) studied a problem assuming that the production system is sub-

ject to random failure, and that maintenance caused by a failure reduces the production

capacity. They formulated and solved the problem as a multi-item capacitated lot-sizing

problem. Aghezzaf and Najid (2008) then extended the model by assuming the system

consists of parallel machines and deteriorates over time. It is assumed that when a pro-

duction line fails, a minimal repair is carried out to restore it to an “as-bad-as-old” status.

A preventive maintenance restores the production line to a “as-good-as-new” status, but

reduces the production capacity. They modeled the problem as a linear mixed-integer

program when noncyclical preventive maintenance policies are allowed, then proposed a

Lagrangian-based heuristic procedure for the solution.

Yalaoui et al. (2014) studied a problem applying similar settings with that of Aghezzaf

and Najid (2008), including multiple items, parallel machines, and the system deteriorates

over time. The difference between theirs and Aghezzaf and Najid (2008) is that the

6
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deterioration is reflected by the decrease of production capacity in their model. They

showed that their approach deals with wider range of problems than that of Aghezzaf

and Najid (2008). They developed a relaxation technique to reduce the computation

time, as well as a heuristic algorithm for complex problems.

Alimian et al. (2019) studied the integrated problem where the demand fluctuates,

assuming the components of the system face both independent and common cause failures.

They used robust optimization to model the problem and yield the maintenance plan

including decision of conducting perfect or imperfect maintenance. Khatab et al. (2019)

investigated a problem integrating production quantity planning and conditional-based

maintenance, in a system that deteriorates stochastically. The system is considered to

be in “fail mode” whenever its degradation level exceeds a predetermined threshold. The

system in “fail mode” produces non-conforming items, which will be replaced via overtime

production or spot market purchases. An optimization model is developed to minimize

total cost, by determining the optimal inspection cycle and the degradation threshold

level.

The studies above applied the single-stage production environment. We intend to

generalize the problem by applying the setting of flow shop production environment. To

the best of our knowledge, the works done by Aghezzaf and Najid (2008) and Yalaoui

et al. (2014) is the closest to our work by applying the aforementioned settings. The

major difference of our work and theirs is that we conduct planning under a flow shop

system, and that the system deterioration reflects on the yield rate in our formulation.

Moreover, to make the model fit reality better, we assume that the actual output given

the observed yield rate is random, as well as the deterioration rate and the result after

7
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maintenance. These settings come directly from a real world example, and are more

suitable for some cases in manufacturing industry.

8
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Chapter 3

Problem Description and

Formulation

3.1 Problem description

Consider a multi-stage flow shop system under a finite number of periods indexed by t =

1, ..., T . Multiple products are produced, indexed by i = 1, ..., I. The stages processing

the products are indexed by j = 0, ..., J , where J indicates the stage producing end

product. We abuse the notation j = 0 as it does not represent an actual production

stage, but the process of purchasing raw material.

At each period, the input quantity of product i to stage j, denoted by xijt, is decided.

xijt has an index j ranging from 0 to J . xi,0,t represents the purchasing quantity of raw

material. xi,J,t denotes the input quantity to stage J , namely, the production quantity of

end products. Finally, xijt where j = 1, ..., J − 1, denotes the input quantity to stage j.

9
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zjt ∈ {0, 1}, denoting whether to conduct maintenance at stage j, is also decided at each

period t. zjt equals 1 means a maintenance is conducted, or 0 otherwise. Both xijt and

zijt have index t ranging from 1 to T − 1, since no decision has to be made at period T .

In reality, there might be multiple machines operating in a single stage. In this study,

we view all machines in the same stage as a whole, or that a stage simply consists of only

one machine.

We introduce yijt and wjt as the state variables in our dynamic programming formu-

lation. Let yijt denote the beginning inventory level of product i at period t. Index j

of yijt ranges from 0 to J , implying meaning similar with that of xijt. yi,0,t and yi,J,t are

the inventory level of raw material and end product, respectively. yi,1,t, ..., yi,J−1,t are the

inventory level of WIP(work in progress) at corresponding stages. Let wjt denote the

beginning yield rate of stage j at period t. The beginning inventory level and yield rate

at period 1 are parameters, denoted by Yi,j,1 and Wj,1. The constraints in the formulation

restrict the value of yi,j,1 and wj,1 in the later section.

For j = 1, ..., J , xijt units of product-i input are processed by corresponding stages

at each period t. A random quantity of output, influenced by wjt, is produced at the

beginning of period t+1, regarded as yi,j,t+1. The random quantity of output is denoted as

H(w = wjt, x = xijt). It follows a binomial distribution, where the number of experiments

equals x, and the success probability equals w. On the other hand, xi,0,t units of raw

material are purchased at each period t. They are realized at the beginning of period t+1

regarded as yi,0,t+1. Without being processed by a stage, the quantity of raw material

purchased equals the quantity of raw material inventory increased at the beginning of

next period.

10
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The input quantity to a stage is limited by beginning inventory level of the previous

stage. i.e., xijt ≤ yi,j−1,t for all i = 1, ..., I, j = 1, ..., J, t = 1, ..., T−1. A similar constraint

applies to xi,0,t, that the purchase of raw material must not exceed the external supply

limit Mit, i.e., xi,0,t ≤ Mit for all i = 1, ..., I, t = 1, ..., T − 1. Furthermore, each stage

has its own per period capacity, denoted by AH
j , meaning the maximum input it may

process at each period. The input quantity to stage j must not exceed the capacity, i.e.,
I∑

i=1

xijt ≤ AH
j for all i = 1, ..., I, j = 1, ..., J, t = 1, ..., T − 1.

If no maintenance is conducted at a stage, wjt falls by a random rate Fj, which follows

a p.d.f. F̃ , at the beginning of next period. A maintenance takes extra cost and decreases

the per period capacity of stage j from AH
j to AL

j . In return, a maintenance restores wjt

to a random level Kj, which follows a p.d.f. K̃, at the beginning of the next period.

The objective is to decide optimal input quantity xijt, and maintenance decision zjt at

each period t, in order to minimize the total cost. Pijt and Rij denote production cost and

inventory cost, respectively. Every unit of unfulfilled demand incurs a shortage cost Qi.

A maintenance incurs a maintenance cost Sj. Disposal cost Uij is charged if any inventory

is left at the end of period T . The indices used are stated in Table 3.1. The decision

variables and the state variables are listed in Table 3.2. The meaning of parameters are

listed in Table 3.3. Variables sij and rij are introduced later in this section.

11
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Notation Description

i Index of products, i = 1, ..., I.

j Index of stages, j = 0, ..., J , where 0 is the stage of raw material,

and J is the stage of end product.

t Index of time periods, t = 1, ..., T .

Table 3.1: List of indices

12
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Notation Description

xijt Input quantity of product i to stage j at period t. i = 1, ..., I,

j = 0, ..., J, t = 1, ..., T − 1. xi,0,t is the purchase quantity of product i’s raw

material at period t, and xi,J,t is end product i’s production quantity

at period t.

zjt Whether a maintenance is conducted at stage j, period t, zjt ∈ {0, 1}.

Equals 1 if a maintenance is conducted, or 0 otherwise. j = 1, ..., J,

t = 1, ..., T − 1.

sit The quantity of product-i demand fulfilled at period t, i = 1, ..., I,

t = 1, ..., T .

rjt Binary variable used to relax non-linear constraints. rjt ∈ {0, 1}, j = 1, ..., J,

t = 1, ..., T − 1.

yijt Beginning stage-j inventory level of product i at period t, i = 1, ..., I,

j = 0, ..., J, t = 1, ..., T . yi,0,t denotes the beginning inventory level of product i’s

raw material in period t, and yi,J,t denotes the beginning inventory level of

end product i at period t.

wjt The beginning yield rate of stage j at period t, j = 1, ..., J, t = 1, ..., T .

Table 3.2: List of variables

13
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Notation Description

Pijt Unit production cost of product-i raw material, WIP, or end product

at stage j, period t.

Qi Unit shortage cost of the demand for end product i.

Rij Unit inventory cost of product-i raw material, WIP, or end product

in stage j.

Sj One-period maintenance cost of stage j.

Uij Disposal cost if stage-j inventory of product i is left at the end of period T .

Fj The random rate yield rate of stage j decreases if no maintenance

is conducted.

F̃ The probability density function followed by Fj.

Kj The random yield rate of stage j after a maintenance is conducted.

K̃ The probability density function followed by Kj.

BL The lowest yield rate stages would reach.

Dit The demand for end product i at period t.

AH
j The per period capacity of stage j if no maintenance is conducted.

AL
j The per period capacity of stage j if a maintenance is conducted.

Mit The limit of material supply of product i at period t.

H(w, x) The output quantity given input quantity x and yield rate w.

Follows binomial distribution where the number of experiments

equals x and the success probability equals w.

Yi,j,1 The beginning stage-j inventory level of product i at period 1.

Wj,1 The beginning yield rate of stage j at period 1.

Table 3.3: List of parameters14
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Denote (w1,t, w2,t, ..., wJ,t) as vector wt, and (y1,0,t, y1,1,t, ..., y1,J,t, y2,0,t, ..., y2,J,t, ...,

yI,0,t, ..., yI,J,t) as vector yt. We use superscripted plus sign to transform a mathematical

expression to itself when it is negative, and to 0 when it is positive, i.e., E+ = max{0, E}.

Given the states and the decisions at period t, the states at period t+ 1 may be derived

as

wj,t+1 = max{wjt − Fj, B
L}(1− zjt) +Kjzjt ∀j = 1, ..., J, t = 1, ..., T − 1, (3.1)

yi,0,t+1 = yi,0,t + xi,0,t − xi,1,t ∀i = 1, ..., I, t = 1, ..., T − 1, (3.2)

yi,j,t+1 = yijt +H(wjt, xijt)− xi,j+1,t ∀i = 1, ..., I, j = 1, ..., J − 1, t = 1, ..., T − 1,

(3.3)

yi,J,t+1 =
(
yi,J,t +H(wJ,t, xi,J,t)−Dit

)+ ∀i = 1, ..., I, t = 1, ..., T − 1. (3.4)

Denote (z1,t, z2,t, ..., zJ,t) as vector zt and (x1,0,t, x1,1,t, ..., x1,J,t, x2,0,t, ..., x2,J,t, ...,

xI,0,t, ..., xI,J,t) as vector xt. We denote Vt(wt, yt) as the minimum cost at period t, given

all state variables per period and formulate the problem as a dynamic programming model

Vt(wt, yt) = min
xt,zt

E
( I∑

i=1

J∑
j=0

(Pijxijt +Rijyi,j,t+1) +
J∑

j=1

Sjzjt

+
I∑

i=1

Qi

(
Dit − yi,J,t −H(wJ,t, xi,J,t)

)+
+ Vt+1(wt+1, yt+1)

)
,

s.t. (3.1)− (3.4)

yi,j,1 = Yi,j,1 ∀i = 1, ..., I, j = 0, ..., J, (3.5)

wj,1 = Wj,1 ∀j = 1, ..., J, (3.6)

xijt ≤ yi,j−1,t ∀i = 1, ..., I, j = 1, ..., J, (3.7)

xi,0,t ≤Mit ∀i = 1, ..., I, (3.8)

15
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I∑
i=1

xijt ≤ AH
j (1− zjt) + AL

j zjt ∀j = 1, ..., J, (3.9)

xijt ≥ 0 ∀i = 1, ..., I, j = 1, ..., J, (3.10)

zjt ∈ {0, 1} ∀j = 1, ..., J . (3.11)

Denote our problem as PS. We analyze the problem by addressing the complexity of a

deterministic version of PS in the next section.

3.2 Complexity analysis

We formulate a deterministic version of PS, denoted as PD, by making stochastic param-

eters deterministic. Specifically, Fj and Kj are constants instead of random variables,

while H(w, x) is a linear function wx, instead of a random variable following binomial

distribution. PD can then be formulated as an MINLP from the dynamic programming

model. Denote (z1,1, z2,1, ..., zJ,1, z1,2, ..., zJ,T−1) as vector z and (x1,0,1, x1,1,1, ..., x1,J,1, x2,0,1,

..., xI,J,1, x1,0,2..., xI,J,T−1) as vector x. The MINLP is formulated as

min
x,z

I∑
i=1

J−1∑
j=1

T−1∑
t=1

(
Pijxijt +Rij(yijt + wjtxijt − xi,j+1,t)

)
+

J∑
j=1

T−1∑
t=1

Sjzjt

+
I∑

i=1

T−1∑
t=1

(
Pi,Jxi,J,t +Ri,0(yi,0,t + xi,0,t − xi,1,t) +Ri,J(yi,J,t + wJ,txi,J,t − sit)

+Qi(Dit − sit)
)
+

I∑
i=1

(J−1∑
j=0

Ui,j(yi,j,T ) + Ui,J(yi,J,T − si,T )
)
,

s.t. xijt ≤ yi,j−1,t ∀i = 1, ..., I, j = 1, ..., J, t = 1, ..., T − 1, (3.12)

xi,0,t ≤Mit ∀i = 1, ..., I, t = 1, ..., T − 1, (3.13)
I∑

i=1

xijt ≤ AH
j (1− zjt) + AL

j zjt ∀j = 1, ..., J, t = 1, ..., T − 1, (3.14)

16
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wj,1 = Wj,1 ∀j = 1, ..., J, (3.15)

wj,t+1 ≤ M̂(1− zjt) +Kjzjt ∀j = 1, ..., J, t = 1, ..., T − 1, (3.16)

wj,t+1 ≤ M̂zjt + M̂rjt + wjt − Fj ∀j = 1, ..., J, t = 1, ..., T − 1, (3.17)

wj,t+1 ≤ M̂zjt + M̂(1− rjt) +BL ∀j = 1, ..., J, t = 1, ..., T − 1, (3.18)

yi,j,1 = Yi,j,1 ∀i = 1, ..., I, j = 0, ..., J, (3.19)

yi,j,t+1 = yijt + wjtxijt − xi,j+1,t ∀i = 1, ..., I, j = 1, ..., J − 1, t = 1, ..., T − 1,

(3.20)

yi,0,t+1 = yi,0,t + xi,0,t − xi,1,t ∀i = 1, ..., I, t = 1, ..., T − 1, (3.21)

yi,J,t+1 = yi,J,t + wJ,txi,J,t − sit ∀i = 1, ..., I, t = 1, ..., T − 1, (3.22)

si,1 ≤ yi,J,1 ∀i = 1, ..., I, (3.23)

sit ≤ yi,J,t + wJ,txi,J,t ∀i = 1, ..., I, t = 2, ..., T, (3.24)

sit ≤ Dit ∀i = 1, ..., I, t = 1, ..., T, (3.25)

xijt ≥ 0 ∀i = 1, ..., I, j = 1, ..., J, t = 1, ..., T − 1, (3.26)

sit ≥ 0 ∀i = 1, ..., I, t = 1, ..., T, (3.27)

zjt ∈ {0, 1} ∀j = 1, ..., J, t = 1, ..., T − 1, (3.28)

rjt ∈ {0, 1} ∀j = 1, ..., J, t = 1, ..., T − 1. (3.29)

Constraint (3.1) is linearized by introducing binary variable rjt. Constraints (3.17), (3.18)

and (3.29) keep wjt in the correct range by rjt and a large number M̂ . The objective

function of PS and constraint (3.4) are linearized by introducing variable sit. By adding

constraints (3.23), (3.24), (3.25), and (3.27), sit is guaranteed to be the quantity of fulfilled

demand of product i at period t.

17
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Following similar process of Florian et al. (1980), we show PD to be NP-hard by

reducing a well-known NP-hard problem SUBSET-SUM to PD. SUBSET-SUM is defined

as follows.

SUBSET-SUM: Given a set {a1, ..., aN} and a number G, decide if there is a subset

P such that
∑
i∈P

ai = G.

Let M̄ be a large number. Given a SUBSET-SUM instance, we may construct a PD

instance IPD
with I = 1, J = 1, T = 3N , and the remaining parameter settings shown in

table 3.4.

18
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The MINLP model of IPD
may be derived as

min
x,z

3N−1∑
t=1

( 1∑
j=0

P1,j,tx1,j,t + M̄(D1,t − s1,t) + zi,t

)
+ M̄(y1,1,3N − s1,3N),

s.t. x1,0,t ≤M1,t ∀t = 1, ..., 3N − 1,

x1,1,t ≤ y1,0,t ∀t = 1, ..., 3N − 1,

x1,1,t ≤ AH
1 (1− z1,t) + ALz1,t ∀t = 1, ..., 3N − 1,

w1,1 = W1,1,

w1,t+1 = z1,t ∀t = 1, ..., 3N − 1,

y1,0,1 = Y1,0,1,

y1,1,1 = G(N − 1),

y1,1,t+1 = y1,1,t + w1,tx1,1,t − s1,t+1 ∀t = 1, ..., 3N − 1,

s1,t ≤ y1,1,t + x1,1,t ∀t = 2, ..., 3N,

s1,t ≤ D1,t ∀t = 1, ..., 3N,

x1,j,t ≥ 0 ∀j = 0, 1, t = 1, ..., 3N − 1,

s1,t ≥ 0 ∀t = 1, ..., 3N,

z1,t ∈ {0, 1} ∀t = 1, ..., 3N − 1.

In this instance, the stage fully recovers after every maintenance, then immediately break

down at the next period given that both F1 and K1 have a value of one. To obtain a cost

equals G, all purchased materials must be consumed at the next period, given that the

inventory cost of raw material equals a large number. Shortage cost and disposal cost of

end product are also a large number, making total cost to be G only if demands at every

19
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Parameter Value

P1,0,t 0 ∀t = 1, ..., 3N

P1,1,t


a(t+1)/3−1

a(t+1)/3
, t ≡ 2 (mod 3)

M̄, otherwise

∀t = 1, ..., 3N

Q1 M̄

R1,0 M̄

R1,1 0

S1 1

U1,0 0

U1,1 M̄

F1 1

K1 1

D1,t


G, t ≡ 0 (mod 3)

0, otherwise

∀t = 1, ..., 3N

AH
1 M̄

AL
1 0

M1,t


a(t+2)/3, t ≡ 1 (mod 3)

0, otherwise

∀t = 1, ..., 3N

BL 0

Y1,0,1 0

Y1,1,1 (N − 1)G

W1,1 0

Table 3.4: Settings of IPD20
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period fulfilled and no inventory of end product is left at the end of period 3N .

There are G units of demand for end product every three periods. Whenever a planner

wish to produce a product, a period must be taken to maintain the stage and to purchase

raw materials. After that, the production is conducted at the next period. Finally, the

end product is realized at the beginning of the third period. Therefore each set of three

periods may be viewed as a group, resulting in a total of N groups. In each period group

n, an units of raw material may be input into stage 1 after maintenance. Moreover, the

production cost subtracts maintenance cost equals an if exactly an units of products are

produced.

There are NG units of demand in total and (N − 1)G units of initial inventory of

end product, hence G units of products to be produced to avoid shortage and disposal

cost. If there exists a plan with total cost of G, there must be a set of period groups

whose capacities sum up to G. The supply of raw material correspond to {a1, ..., aN}

in SUBSET-SUM problem. Therefore, the SUBSET-SUM problem returns True if there

exists a feasible production plan for IPD
with cost G, thereby completing the proof. The

only exception is that any number in a1, ..., aN lower than 1 may result in a negative

production cost, as indicated by the function an−1
an

. In such cases, a transformation that

ensures all values of a1, ..., aN are greater than 1 can help maintain the validity of the

proof.

In the dynamic programming model of PS, the number of variables increases expo-

nentially by the instance size, making it impractical to solve the model. Therefore we

propose heuristic algorithms for PS in the next chapter.

21
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Chapter 4

The Algorithms

4.1 The overall procedure

We propose algorithms that plan maintenance by heuristic rules first. Production plan

is then decided by solving linear programming model according to the maintenance plan.

Finally the algorithms apply the plans for one period, yields states of the next period,

then repeat the process until the last period. The overall process is illustrated in Figure

4.1.

Figure 4.1: An illustration of the overall process

22
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The maintenance plan is determined using heuristic algorithms described in the fol-

lowing sections. After obtaining the maintenance plan, the expected yield rate of all

periods may also be acquired. Denote the maintenance plan and expected yield rate as

Z and W respectively, a linear programming model may be formed from the MINLP in

Chapter 3 since now maintenance plan and yield rate are parameters instead of variables.

The linear programming problem may be formulated as

min
x

I∑
i=1

J−1∑
j=1

T∑
t=1

(
Pijxijt +Rij(yijt +Wjtxi,j,t − xi,j+1,t)

)
+

J∑
j=1

T∑
t=1

SjZjt

+
I∑

i=1

T∑
t=1

(
Pi,0xi,0,t + Pi,Jxi,J,t +Ri,0(yi,0,t + xi,0,t − xi,1,t)

+Ri,J(yi,J,t +WJ,txi,J,t − sit) +Qi(Dit − sit)
)

+
I∑

i=1

(J−1∑
j=0

Uijyi,j,T + Ui,J(yi,J,T − si,T )
)
,

s.t. xijt ≤ yi,j−1,t ∀i = 1, ..., I, j = 1, ..., J, t = 1, ..., T, (4.1)

xi,0,t ≤Mit ∀i = 1, ..., I, t = 1, ..., T, (4.2)
I∑

i=1

xijt ≤ AH(1− Zjt) + ALZjt ∀j = 1, ..., J, t = 1, ..., T, (4.3)

yi,j,1 = Yi,j,1 ∀i = 1, ..., I, j = 1, ..., J − 1, (4.4)

yi,j,t+1 = yijt +Wjtxijt − xi,j+1,t ∀i = 1, ..., I, j = 1, ..., J − 1, t = 1, ..., T − 1,

(4.5)

yi,0,t+1 = yi,0,t + xi,0,t − xi,1,t ∀i = 1, ..., I, t = 1, ..., T − 1, (4.6)

yi,J,t+1 = yi,J,t +WJ,txi,J,t − sit ∀i = 1, ..., I, t = 1, ..., T − 1, (4.7)

si,1 ≤ yi,J,1 ∀i = 1, ..., I, (4.8)

sit ≤ yi,J,t +WJ,txi,J,t ∀i = 1, ..., I, t = 2, ..., T, (4.9)
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sit ≤ Dit ∀i = 1, ..., I, t = 1, ..., T, (4.10)

xijt ≥ 0 ∀i = 1, ..., I, j = 1, ..., J, t = 1, ..., T, (4.11)

sit ≥ 0 ∀i = 1, ..., I, t = 1, ..., T . (4.12)

Solving the LP model yields a production plan. The algorithms apply the maintenance

and production plan for one period, then the states of the next period may be obtained,

forming an instance with T decreased by 1. After that, the procedure above may be

repeated until the last period. The steps in one iteration is shown in Figure 4.2 . The

complete procedure is summarized in Algorithm 4.1. It takes the instance to be solved

insToSolve, then returns the production plan x, the maintenance plan z, and the total

cost totalCost.

Figure 4.2: The steps conducted in one iteration

4.2 Yield rate threshold heuristic algorithm (YRTHA)

A possible heuristic algorithm for determining the maintenance plan follows a simple

idea. The yield rate deteriorates by period, making the production inefficient. The

algorithm sets a threshold of yield rate. If the current yield rate of a stage is lower than

the threshold, a maintenance is conducted at the current period. For the maintenance

plan of remaining periods, the algorithm sets a fixed frequency to conduct maintenances

according to the falling speed of yield rate, e.g., the mean of F̃ . The steps are shown

24
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Algorithm 4.1 The overall process
1: function SOLVE(insToSolve)

2: totalCost ← 0, ins ← insToSolve

3: x[1...insToSolve.I][0...insToSolve.J ][1...insToSolve.T −1] ← 0

4: z[1...insToSolve.J ][1...insToSolve.T − 1] ← 0

5: numIterations ← ins.T − 1

6: for t in 1, ..., numIterations do

7: ins.Z ← NULL

8: zP lan ← HEURISTIC(ins)

9: ins.Z ← zP lan

10: z[0...insToSolve.J ][t] ← zP lan[0...insToSolve.J ][1]

11: w[1...ins.J ][1...ins.T − 1] ← 0

12: w[1...ins.J ][1] ← ins.W [1...ins.J ][1]

13: for j in 1, ..., ins.J do

14: for t in 2, ..., ins.T − 1 do

15: if ins.Z[j][t− 1] > 0 then

16: w[j][t] ← mean(ins.K̃)

17: else

18: w[j][t] ← max{ins.BL, w[j][t− 1] - mean(ins.F̃ )}

19: end if

20: end for

21: end for

22: ins.W ← w

23: xP lan ← solveLP(ins)
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24: x[1...insToSolve.I][0...insToSolve.J ][t] ← xP lan[1...ins.I][0...ins.J ][1]

25: wNext[1... ins.J ] ← 0

26: for j in 1, ..., ins.J do

27: if zP lan[j] = 1 then

28: wNext[j] ← RandomSample(ins.K̃)

29: else

30: wNext[j] ← max{w[j][1] − RandomSample(ins.F̃ ), ins.BL}

31: end if

32: end for

33: yNext← CalculateInventoryLeft()

34: costPerPeriod← CalculateCostPerPeriod()

35: totalCost← totalCost+ costPerPeriod

36: ins.T ← ins.T − 1

37: ins.W [1...ins.J ][1]← wNext

38: ins.Y [1...ins.I][1...ins.J ][1]← yNext

39: Remove ins.D[1...ins.I][1]

40: Remove ins.M [1...ins.I][1]

41: end for

42: return x, z, totalCost

43: end function
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in 4.3, and the procedure in detail is summarized in Algorithm 4.2. It takes a problem

instance ins and a manually set threshold w, then returns a maintenance plan z.

Figure 4.3: The steps of YRTHA

YRTHA is applied in Algorithm 4.1 by substituting HEURISTIC in line 8 to YRTHA

and provide an additional threshold parameter w. The algorithm has polynomial time

complexity by solving LP and repeating procedure for T −1 times. While it is an efficient

algorithm, deciding an appropriate threshold is a complicated task. It may be viewed as

a searching problem to decide an optimal threshold from BL to 1. In the overall process

of our algorithm, we manually assign several threshold levels to perform grid search, with

the best threshold returned. We measure the performance of this algorithm in Chapter

5 and propose another heuristic algorithm in the next section.

4.3 Cost comparison heuristic algorithm (CCHA)

4.3.1 Algorithm description

In this section we propose another possible way to decide whether the stage at current

period should be maintained. The idea is to measure the cost of conducting and not

conducting a maintenance by observing the state of current period and a few periods in
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Algorithm 4.2 Yield Rate Threshold Heuristic Algorithm
1: function YRTHA(ins, w)

2: z[1...ins.J ][1...ins.T − 1] ← 0

3: for j in 1...ins.J do

4: if ins.W [j][1] < w then

5: z[j][1] ← 1

6: else

7: z[j][1] ← 0

8: end if

9: end for

10: for j in 1...ins.J do

11: maintenancePeriod ← ceil((mean(ins.K̃) −BL) / (2×mean(ins.F̃ )))

12: t ← 1

13: while t < ins.T do

14: z[j][t] ← 1

15: t ← t + maintenancePeriod

16: end while

17: end for

18: return z

19: end function
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near future. Assuming the stages operate at full capacity, the production at stage j goes

through J − j stages and takes J − j + 1 periods until the end products are realized. In

other words, the production of stage j at period p is directly related to the beginning

inventory of end product at period p + J − j + 1. If period p + J − j + 1 faces a large

quantity of demand, the maintenance decision of stage j at period p may be critical. If

a maintenance is conducted, and the capacity this period is fallen by C, there may be C

units of shortage, hence the corresponding shortage cost.

On the other hand, while a maintenance may sacrifice the demand at a period, it

benefits periods after that by keeping the stage in a better condition. In fact, the cost of

not conducting maintenances becomes significant in these later periods. Not conducting

maintenance may allow stages to fulfill demand temporarily, but sacrifices the chance of

bringing yield rate of the stage to a higher level. Extra shortage cost is possible if the

stage produce at a lower yield rate level in the later periods.

Therefore, the idea of algorithm is to compare the cost of conducting and not con-

ducting maintenance at the current period, then apply the decision with lower cost. After

the maintenance plan of current period is made, the procedure of planning the remain-

ing periods and solving LP to yield production plan is same as the yield rate threshold

algorithm.

The algorithm applies a greedy strategy to consider several periods in near future from

now. Specifically, we consider the cost of totally 3 periods. It is assumed that stages

produce at their maximum capacity. For the first period, the initial inventory is also

considered since inventory also limits the production. There may be bottleneck stages,

i.e., the stages with rather low capacity level, in a problem instance. This algorithm
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identifies the bottleneck stage with lowest capacity. For stages after the bottleneck stage,

the capacity of the bottleneck stage also limits their production.

The cost is composed of shortage, inventory, and maintenance cost of 3 periods. Let

Q̄ denote the average shortage cost of all products, and R̄ denote the average inventory

cost of all products and stages. µK and µF denote the mean of K̃ and F̃ , respectively.

Let AH
B denote per period capacity of the bottleneck stage. We use superscripted M and

N to represent the decision of whether or not to conduct a maintenance. Subscripted

BB and AB are used to represent stages before and after bottleneck stage. The cost of

whether or not conducting maintenance at each stage is listed in Table 4.1.

To decide the maintenance plan, stages that satisfies p + J − j > T are planned to

not conduct maintenances since any production is too late to meet the demand, therefore

no maintenance is required. For the other stages, the algorithm calculates the cost of

conducting and not conducting a maintenance by the cost functions in Table 4.1. The

option with less cost is adopted at the current period. Then a similar approach described

in Algorithm 4.2 is adopted to decide the maintenance plan at the remaining periods.

The steps are shown in 4.4, and the procedure in detail is described in Algorithm 4.3. It

takes a problem instance ins, then returns a maintenance plan z.

Figure 4.4: The steps of CCHA
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Cost Value

CM
BB Q̄(

I∑
i=0

Di,p+J−j+1 − wjp min(AL,
I∑

i=0

yi,j−1,t))
+

+Q̄(
I∑

i=0

Di,p+J−j+2 − µKA
H)+

+Q̄(
I∑

i=0

Di,p+J−j+3 − (µK − µF )A
H)+

−R̄(min(AL,
I∑

i=0

yi,j−1,t) + AH + AH)+

Sj

CN
BB Q̄(

I∑
i=0

Di,p+J−j+1 − wjp min(AH ,
I∑

i=0

yi,j−1,t))
+

+Q̄(
I∑

i=0

Di,p+J−j+2 − (wjp − µF )A
H)+

+Q̄(
I∑

i=0

Di,p+J−j+3 − (wjp − 2µF )A
H)+

−R̄(min(AH ,
I∑

i=0

, yi,j−1,t) + AH + AH)

CM
AB Q̄(

I∑
i=0

Di,p+J−j+1 − wjp min(AL,
I∑

i=0

yi,j−1,t, A
HB))+

+Q̄(
I∑

i=0

Di,p+J−j+2 − µK min(AH , AHB))+

+Q̄(
I∑

i=0

Di,p+J−j+3 − (µK − µF )min(AH , AHB))+

−R̄(min(AL,
I∑

i=0

yi,j−1,t, A
HB) + 2min(AH , AHB))

+Sj

CN
AB Q̄(

I∑
i=0

Di,p+J−j+1 − wjp min(AH ,
I∑

i=0

yi,j−1,t, A
HB))+

+Q̄(
I∑

i=0

Di,p+J−j+2 − (wjp − µF )min(AH , AHB))+

+Q̄(
I∑

i=0

Di,p+J−j+3 − (wjp − 2µF )min(AH , AHB))+

−R̄(min(
I∑

i=0

yi,j−1,t, A
H , AHB) + 2min(AH , AHB))

Table 4.1: Cost of whether or not conducting maintenance at each stage
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Algorithm 4.3 Cost Comparison Heuristic Algorithm
1: function CCHA(ins)

2: z[1...ins.J ][1...ins.T − 1]← 0

3: costMaintenance← 0, costNoMaintenance← 0

4: bottleNeckStage← findBottleNeck(ins)

5: for j in 1 ... bottleNeckStage do

6: if J − j + 3 > T then

7: break

8: end if

9: if j ≤ bottleNeckStage then

10: costMaintenance ← costMaintenanceBeforeBottleNeck(j)

11: costNoMaintenance ← costNoMaintenanceBeforeBottleNeck(j)

12: else

13: costMaintenance ← costMaintenanceAfterBottleNeck(j)

14: costNoMaintenance ← costNoMaintenanceAfterBottleNeck(j)

15: end if

16: if costMaintenance < costNoMaintenance then

17: z[j][1] ← 1

18: else

19: z[j][1] ← 0

20: end if

21: end for

22: for j in 1...ins.J do

23: maintenancePeriod ← ceil((mean(ins.K̃) −BL) / (2mean(ins.F̃ )))
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24: t ← 1

25: while t < ins.T do

26: z[j][t] ← 1

27: t ← t + maintenancePeriod

28: end while

29: end for

30: return z

31: end function

CCHA is applied in Algorithm 4.1 by substituting HEURISTIC in line 8 to CCHA.

The time complexity of this algorithm is same as YRTHA. The advantage of this al-

gorithm is that it is simple to be implemented, requiring no extra parameter settings.

Moreover, the algorithm considers the relationship between stages and demand. Chapter

5 compares the performance of this algorithm with the others.

4.3.2 A numerical example

In this section, we provide a numerical example to illustrate how the algorithm works.

Given a problem instance with 3 products, 5 stages, and 8 periods. Stage 3 is set to be

a bottleneck stage. The demand is set as

D =


100 100 100 150 250 100 150 200

100 100 100 50 100 50 200 50

100 100 100 50 200 100 50 50

 ,

where the row represents products and columns represents periods. There is sufficient

initial inventory, and the initial yield rate equals 0.6 for all j. The remaining of the
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Parameter Value

Qi 100 ∀i = 1, ..., I

Rij 2 ∀i = 1, ..., I, j = 0, ..., J

Sj 4000 ∀j = 1, ..., J

F̃ Normal distribution with mean equals 0.1

K̃ Normal distribution with mean equals 1

AH
j 100 ∀j = 1, 2, 4, 5

AL
j 50 ∀j = 1, 2, 4, 5

AH
3 50

AL
3 25

Table 4.2: List of parameters

parameters are set as shown in Table 4.2.

Q̄ and R̄ are 100 and 2 respectively, which is calculated from average values of Q and

R. Similarly, µF and µK are 0.1 and 1 respectively, calculated from the mean of F̃ and

K̃. For stage 1 at period 1, the production is directly related to the beginning inventory

of end product at period 1 + 5− 1 + 1 = 6, whose demand equals 250 in total, as well as

period 7 and 8. Since it is a stage before the bottleneck stage, CM
BB and CN

BB are applied

to calculate the costs.

The cost of conducting a maintenance is calculated as CM
BB = 100× (250−0.6×50)+

100× (400− 1× 100) + 100× (300− 0.9× 100)− 2× (50 + 100 + 100) + 4000 = 76500.

The cost of not conducting a maintenance is calculated as CN
BB = 100× (250− 0.6×

100)+ 100× (400− 0.5× 100)+ 100× (300− 0.4× 100)− 2× (100+ 100+ 100) = 79400.

34



doi:10.6342/NTU202403120

Since the cost of conductung a maintenance is cheaper, it is planned to conduct a

maintenance at stage 1, period 1.

Take stage 4 at period 2 as another example. the production is directly related to the

beginning inventory of end product at period 2+5− 4+1 = 4, as well as period 5 and 6.

Since it is a stage after the bottleneck stage, CM
AB and CN

AB are applied to calculate the

costs.

The cost of conducting a maintenance is calculated as CM
AB = 100× (250−0.6×25)+

100× (550− 1× 50) + 100× (250− 0.9× 50)− 2× (50 + 2× 50) + 4000 = 97750.

The cost of not conducting a maintenance is calculated as CN
AB = 100× (250− 0.6×

50) + 100× (550− 0.5× 50) + 100× (250− 0.4× 50)− 2× (50 + 2× 50) = 97200.

Since the cost of not conductung a maintenance is cheaper, it is planned to not conduct

a maintenance at stage 4, period 2.
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Chapter 5

Numerical Study

5.1 Experiment setting

In this chapter, we conduct numerical experiments to examine the effectiveness of pro-

posed algorithms. In our experiments, Wj,1 is set to 0.96, and Yi,j,1 is set to 0. Since there

are no initial inventory, the demands of first 5 periods may not be fulfilled. Considering

the problem complexity and real-life application, we set T to 21, which would be three

weeks if a period is considered as a day. We define four scenarios with different number

of products and stages as listed in Table 5.1.

J is set to 4 in multiple stage scenarios, making it possible to fulfill the demand

starting from period 5 given no initital inventory. Considering the difference of efficiency

to produce under single and multiple stage, we lower AH
j under single stage scenarios to

reduce the bias. Specifically, AH
j under single stage is set to 0.65 times AH

j under multiple

stages according to the benchmark performance. Mij applies the same setting.
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Scenario I J

SPSS 1 1

SPMS 1 4

MPSS 3 1

MPMS 3 4

Table 5.1: Settings of scenarios

We adopt four factors that would affect the performance of proposed algorithms.

First, we set ratio of demand per period and stage capacity to simulate different level of

tightness to supply the demand. The ratio is set to 2:1 and 3:1, with AH
j under multiple

stages equals 30000, and average demand per period set to 60000 and 90000. Next, we

consider two types of demand distribution, even and uneven. For even distribution, the

demand at every period follows normal distribution with small variance. In contrast,

uneven distribution has demand only at periods 3, 7, 10, 14, 17, and 21. Following

is the ratio of inventory and shortage cost, setting to 1:50 and 1:100. The difference

between two costs should be significant enough, otherwise the optimal plan would always

be conducting no maintenance and producing zero product. Both costs are identical

for all products and stages. Finally, we randomly assign one stage to be the bottleneck

stage under SPMS and MPMS scenarios. The capacity of bottleneck stage is set to AH
j ,

0.75AH
j , and 0.5AH

j .

The remaining of the parameters are set as follows. Pij = 2 for all i = 1, ..., I, j =

0, ..., J , Sj = 20 for all j = 1, ..., J , and Uij = 0 for all i = 1, ..., I, j = 0, ..., J . AL
j is

set to half of AH
j . BL equals 0.8. F̃ is a normal distribution with mean equals 0.01 and
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standard deviation equals 0.0001. K̃ is a normal distribution with mean equals 1 and

standard deviation equals 0.001. The random sample from K̃ would be automatically

adjusted to 1 if it exceeds 1.

The above four scenarios and four factors generate 4 × 2 × 2 × 2 × 3 = 96 scenarios

in total. We generate 30 instances for each scenario and report the average performance.

The experiments were performed on a laptop equipped with two 2.30Gz Intel(R) Core

i5-2600U CPUs and 12GB RAM. The heuristic algorithms are implemented using Python

3.9.13. Gurobi Optimizer version 9.5.1 build v9.5.1rc2 (win64) is invoked to solve mathe-

matical models. We apply {0.1, 0.2, ..., 0.9} in YRTHA to perform grid search and report

the best performance.

5.2 Benchmarks

5.2.1 The first benchmark: A lower bound

To evaluate the performance of each algorithm, we solve a special scenario of PS as

benchmark. In this scenario, Fj equals 0 and Wj,1 equals 1. In other words, the yield

rate is always 100%, allowing all production to be fully realized without loss, therefore

no maintenance is required. In this case, the only decision left is xijt, and this problem

may be formulated as a linear program. The program is formulated as

min
x

I∑
i=1

J−1∑
j=1

T−1∑
t=1

(
Pijxijt +Rij(yijt + xi,j,t − xi,j+1,t)

)
+

I∑
i=1

T−1∑
t=1

(
Pi,0xi,0,t + Pi,Jxi,J,t +Ri,0(yi,0,t + xi,0,t − xi,1,t)
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+Ri,J(yi,J,t + xi,J,t − sit) +Qi(Dit − sit)
)

+
I∑

i=1

(J−1∑
j=0

Ui,jyi,j,T + Ui,J(yi,J,T − si,T )
)
,

s.t. xijt ≤ yi,j−1,t ∀i = 1, ..., I, j = 1, ..., J, t = 1, ..., T − 1, (5.1)

xi,0,t ≤Mit ∀i = 1, ..., I, t = 1, ..., T − 1, (5.2)
I∑

i=1

xijt ≤ AH
j ∀j = 1, ..., J, t = 1, ..., T − 1, (5.3)

yi,j,1 = Yi,j,1 ∀i = 1, ..., I, j = 0, ..., J, (5.4)

yi,j,t+1 = yijt + xijt − xi,j+1,t ∀i = 1, ..., I, j = 1, ..., J − 1, t = 1, ..., T − 1, (5.5)

yi,0,t+1 = yi,0,t + xi,0,t − xi,1,t ∀i = 1, ..., I, t = 1, ..., T − 1, (5.6)

yi,J,t+1 = yi,J,t + xi,J,t − sit ∀i = 1, ..., I, t = 1, ..., T − 1, (5.7)

si,1 ≤ yi,J,1 ∀i = 1, ..., I, (5.8)

sit ≤ yi,J,t + xi,J,t−1 ∀i = 1, ..., I, t = 2, ..., T, (5.9)

sit ≤ Dit ∀i = 1, ..., I, t = 1, ..., T, (5.10)

xijt ≥ 0 ∀i = 1, ..., I, j = 1, ..., J, (5.11)

sit ≥ 0 ∀i = 1, ..., I, t = 1, ..., T . (5.12)

The solution of this problem may be immediately obtained by invoking an LP solver.

Since this is an idealized scenario where the productions are maximally efficient, the

optimal value is a loose lower bound.
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5.2.2 The second benchmark: MINLP heuristic algorithm (MHA)

In order to avoid possible bias caused by the over-idealized settings in the benchmark

algorithm, we introduce another algorithm that yields more reasonable optimal values.

The algorithm is denoted as MHA, and the steps are described as follows. First, invoke

solver to solve PD and apply the solution plan for one period. The plan yields states

of the next period, then an instance with period less by one may be formed. It then

can be solved by MINLP solver again, then the procedure repeats until the last period.

The complete steps are summarized in Algorithm 5.1. It takes a instance to be solved

insToSolve, then returns the production plan x, the maintenance plan z, and the total

cost totalCost.

MHA yields solution with small gap to the lower bound. However, it is time consuming

to solve MINLP as the instance size grows. In our experiments, we set 90 seconds as time

limit for solving MINLP. All models in the testing instances yield feasible solution.

5.3 Experimental results

Denote an optimal value as z∗, and the value to be measured as z. The optimality gap

is calculated as z−z∗

z∗
. Denote gap between the algorithms and benchmark 1 as GAPOPT .

Denote gap between the algorithms and benchmark 2 as GAPMHA. We show the perfor-

mance of YRTHA and CCHA, and how the selected factors influence performance of the

algorithms.

Table 5.2 shows the numerical result of the single-product-single-stage scenario. It is

shown that the benchmark algorithm indeed yields a looser bound, comparing to MHA.
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Algorithm 5.1 MINLP Heuristic Algorithm
1: function MHA(insToSolve)

2: totalCost← 0, ins← NULL

3: x[1...insToSolve.I][0...insToSolve.J ][1...insToSolve.T − 1]← 0

4: z[1...insToSolve.J ][1...insToSolve.T − 1]← 0

5: ins← insToSolve

6: numIterations← ins.T − 1

7: w ← ins.W [1...ins.J ][1]

8: for t in 1, ..., numIterations do

9: if t = 1 then

10: end if

11: xP lan, zP lan← minlp(ins)

12: x[1...insToSolve.I][0...insToSolve.J ][t]← xP lan[1...ins.I][0...ins.J ][1]

13: z[0...insToSolve.J ][t]← zP lan[0...ins.J ][1]

14: wNext[1...ins.J ]← 0

15: for j in 1, ..., ins.J do

16: if zP lan[j][0] = 1 then

17: wNext[j]← RandomSample(ins.K̃)

18: else

19: wNext[j]← max{w[j]− RandomSample(ins.F̃ ), ins.BL}

20: end if

21: end for

22: yNext← CalculateInventoryLeft()

23: costPerPeriod← CalculateCostPerPeriod()
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24: totalCost← totalCost+ costPerPeriod

25: ins.T ← ins.T − 1

26: ins.W [1...ins.J ][1]← wNext

27: ins.Y [1...ins.I][1...ins.J ][1]← yNext

28: Remove ins.D[1...ins.I][1]

29: Remove ins.M [1...ins.I][1]

30: end for

31: return x, z, totalCost

32: end function

In general, YRTHA yields better results than CCHA.

Both YRTHA and CCHA have smaller optimality gap when facing higher demand

given fixed capacity. The advantage of benchmark algorithm is limited by the capacity

crunch, hence the closer gaps. Similar results are shown under different levels of bottle-

neck stage capacity. The lower capacity of bottleneck stage yields smaller gap between

proposed algorithms and the benchmark. The gaps are shown larger under uneven de-

mand distribution, since the benchmark algorithm plans with perfect yield rate and meets

the peak demands better. On the other hand, both algorithms have close optimality gaps

under even demand distribution, while YRTHA reaches almost the same performance of

MHA, showing that steady demand is well-handled by the strategies of proposed algo-

rithms. Finally, the performance of proposed algorithms do not show big difference when

inventory-shortage cost ratio are 1:50 and 1:100. It is first observed an improvement when

the ratio changes from 1:9 to 1:50, since the shortage cost is too low that no maintenance

and production would be the optimal plan. The improvement, however, does not appear
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significant as shortage cost increases after the ratio reaches 1:50. This may suggest a

possible way to improve the algorithm, since the control of yield rate should be stricter

as shortage cost increases.

Factor Level
GAPOPT GAPMHA

YRTHA CCHA YRTHA CCHA

Demand-capacity ratio
2:1 18.21% 23.79% 8.06% 13.14%

3:1 15.96% 19.34% 9.50% 12.69%

Demand distribution
even 9.77% 15.43% 3.59% 8.88%

uneven 24.39% 27.69% 13.97% 16.96%

Inventory-shortage cost ratio
1:50 16.98% 21.28% 9.26% 13.25%

1:100 17.18% 21.84% 8.30% 12.58%

Bottleneck stage capacity

0.5AH
j 15.28% 18.00% 9.45% 12.04%

0.75AH
j 16.99% 21.38% 9.41% 13.52%

AH
j 18.08% 25.30% 7.48% 13.19%

Table 5.2: Numerical result of SPSS

Similar results are obtained under environment multiple products, as shown in Table

5.3. Since there exists no big difference of costs and demand between products in our

experiment settings, the proposed algorithms yield similar performance as the number

of products increases. However, the gaps decrease under even demand distribution, and

increase under uneven demand distribution. This further indicates the efficiency of our

algorithm planning under even demand distribution.

Table 5.4 and 5.5 show the results of multi-stage environments, with single and mul-
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Factor Level
GAPOPT GAPMHA

YRTHA CCHA YRTHA CCHA

Demand-capacity ratio
2:1 18.26% 23.89% 8.36% 13.45%

3:1 16.00% 19.40% 9.95% 13.16%

Demand distribution
even 9.87% 15.59% 1.7% 6.92%

uneven 24.39% 27.70% 16.61% 19.68%

Inventory-shortage cost ratio
1:50 17.03% 21.37% 9.26% 13.25%

1:100 17.23% 21.93% 9.05% 13.35%

Bottleneck stage capacity

0.5AH
j 15.32% 18.06% 10.42% 13.03%

0.75AH
j 17.04% 21.46% 9.42% 13.53%

AH
j 19.04% 25.42% 7.63% 13.34%

Table 5.3: Numerical result of MPSS
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tiple products. While the result remains similar when number of products increases,

GAPtextMHA increases under all scenarios when stages increase, indicating the advantage

of benchmark 1 increases given the increased problem complexity. CCHA suffers slightly

higher gap increase compared to YRTHA. While YRTHA yields better results, they are

returned after a search enumerating several possibilities, which requires extra knowledge

and settings. CCHA, on the other hand, has the advantage of requiring no extra settings.

The performance may be improved by designing other cost functions considering more

properties of problem instances. On the other hand, decrease of GAPtextOPT is observed

as stages increase. Since we set only 90 seconds to solve MINLPs, solutions with lower

cost may not be obtained in time. The proposed algorithms may obtain solution with

small gaps compared to MHA in reasonable time.

Factor Level
GAPOPT GAPMHA

YRTHA CCHA YRTHA CCHA

Demand-capacity ratio
2:1 24.67% 31.75% 7.44% 13.46%

3:1 19.80% 24.07% 10.12% 14.03%

Demand distribution
even 15.30% 21.68% 2.93% 8.51%

uneven 29.17% 34.14% 14.62% 18.98%

Inventory-shortage cost ratio
1:50 21.84% 27.15% 9.05% 13.73%

1:100 22.63% 28.67% 8.51% 13.76%

Bottleneck stage capacity

0.5AH
j 17.67% 21.67% 10.20% 13.94%

0.75AH
j 21.18% 26.79% 8.46% 13.45%

AH
j 27.85% 35.27% 7.67% 13.85%

Table 5.4: Numerical result of SPMS
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Factor Level
GAPOPT GAPMHA

YRTHA CCHA YRTHA CCHA

Demand-capacity ratio
2:1 24.69% 31.75% 6.30% 12.24%

3:1 19.79% 24.08% 8.44% 12.30%

Demand distribution
even 15.31% 21.68% 1.27% 6.74%

uneven 29.16% 34.16% 13.47% 17.80%

Inventory-shortage cost ratio
1:50 21.83% 27.10% 6.64% 11.17%

1:100 22.64% 28.74% 8.10% 13.36%

Bottleneck stage capacity

0.5AH
j 17.61% 21.66% 9.52% 13.28%

0.75AH
j 21.23% 26.88% 8.20% 13.22%

AH
j 27.87% 35.21% 4.38% 10.31%

Table 5.5: Numerical result of MPMS
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Chapter 6

Conclusion

In this study, we consider an integrated production planning and preventive maintenance

planning problem under a flow shop system. We define the problem by formulating

a dynamic programming model. We formulate an MINLP model for the determinsitc

version of our problem, then prove it to be NP-hard. Since directly solving the dynamic

programming model is difficult, we propose heuristic algorithms with steps of solving

MINLP. Due to the fact that solving MINLP is time consuming, we propose two other

algorithms. The idea of setting yield rate threshold and comparing costs are used to

determine preventive maintenance plan, then production plan may be obtained by solving

LP models. Through numerical studies, we show that the proposed algorithm yields near-

optimal solutions under different scenarios.

There are some possible directions to extend this study. The inventory cost may be

generalized to convex function or other types of function. The convexity and optimization

of the problem may require further studies. Next, the proposed algorithms may be im-

proved by setting threshold in a more reasonable way, or developing better cost functions.
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Furthermore, the proposed cost function barely considers cost of different products, or

the decisions in the near future. Further studies on the relationship between parameters

may be required.
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