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摘要

多實例學習 (MIL)是弱監督學習問題，已被應用於許多領域。多實例（MI）

數據包括了袋子和實例的概念，其中每個袋子中都包含了一些實例。另外，袋子

的資訊是已知的，而實例的資訊是缺失的。Carbonneau et al. (2018)提到由於多實

例數據中存在缺失值，因此標籤歧義 (label ambiguity)是在 MIL中的常見問題。

在本論文中，我們了解了某些可能造成標籤歧義的來源，並提出了一個新的袋子

模型來解決此問題。我們提出的模型具有幾個優勢：除了放寬現有MIL方法中常

用的嚴格假設，也能提供更多實例與袋子關聯性的資訊，並且可以與於許多不同

的實例分類方法一起合併使用，例如羅吉斯回歸。

本文討論的MIL模型是使用貝氏的吉布斯採樣進行模型推論。我們在吉布斯

採樣過程中使用變量擴展的方法，具體來說是引入了玻利亞伽瑪的潛變量。我們

對提出的袋子模型與現有方法（例如Haußmann et al. (2017)中提出的方法）進行了

比較分析，證明了我們方法的有效性。最後，通過模擬以及實際資料的實驗，驗

證了我們方法的性能。

關鍵字：多重實例學習、標籤歧義、吉布斯取樣、玻利亞伽瑪擴充
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Abstract

Multiple Instance Learning (MIL) is a weakly supervised learning problem, and it

has been used in various fields. Multiple Instance (MI) data includes the concepts of bag

and instance, where each bag contains several instances. Also, the bag information is

observed, while the instance information is missing. Carbonneau et al. (2018) mentions

that label ambiguity is a common issue in MIL due to the missing values in the MI data. In

this thesis, we investigate the sources of label ambiguity and propose a novel bag model to

address this issue. Our proposed model offers several advantages: (i) It relaxes the strict

MIL assumption commonly employed in existing MIL methods. (ii) It provides greater

insight into the relationship between instances and their corresponding bags. (iii) It can

be integrated with various classifiers at the instance level, such as logistic regression.

The MIL models discussed here are inferred by a Gibbs sampling scheme, which is a

Bayesian approach. We employ a variable augmentation technique on the Gibbs sampling

process, specifically the Pólya­Gamma augmentation. Comparative analysis between our

v
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proposed bag model and existing methods, such as the one presented in Haußmann et al.

(2017), demonstrate the effectiveness of our approach. Finally, we validate the perfor­

mance of our model through various simulations and real data.

Keywords: multiple instance learning, label ambiguity, Gibbs sampling, Pólya­Gamma

augmentation
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Chapter 1 Introduction

1.1 Multiple Instance Learning

We initially illustrate the problem of multiple instance learning (MIL, Dietterich et al.

(1997)) by the following simple example. We imagine that each company member pos­

sesses a keychain, which contains many keys for different rooms. Some members’ key­

chains contain the correct key to open a specific room, while others do not. Unfortunately,

we do not know which key is the correct one. Our goal is to identify the correct key and

predict whether a new key or keychain can get members to enter the specific room.

MIL can be seen as a weakly supervised learning task, where the training data in­

cludes missing values. Also, MIL assumes the training data is composed of many bags,

with each bag containing multiple instances. Compared to traditional supervised learn­

ing, where each instance is directly associated with a response, MIL operates response

variables differently. Response variables in MIL are only assigned at the bag level rather

than the instance level. This means multiple instances within the same bag share a com­

mon bag label (response variable), however, the instance labels are considered missing

values. These missing values may cause some challenges in the prediction, such as label

ambiguity, which will be discussed in Section 1.4. Additionally, MIL can be employed

on binary or multi­task classification problems, but we only emphasize the binary case in

1
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this thesis. Lastly, the MIL assumption defines that a positive bag contains at least one

positive instance, on the other hand, instances in a negative bag should be all negative.

1.2 Applications of MIL

In the initial application ofMIL, Dietterich et al. (1997) studies the task of drug activ­

ity prediction. Each drug molecule (bag) has many distinct shapes, called conformations

(instances), according to the different angles of the molecule’s rotatable bonds. It is im­

portant to note that only a few conformations can bind well to the target protein molecule.

Dietterich et al. (1997) also demonstrates that considering MIL results in better prediction

performance than ignoring it on their datasets.

MIL is widely used to tackle different tasks across various fields afterward. Some no­

table applications include the image and text classification problems, as studied by Maron

and Ratan (1998), Andrews et al. (2002), Zhang et al. (2007), Zhou et al. (2008), and oth­

ers. Specifically, Maron and Ratan (1998) focuses on classifying natural scene images,

e.g. images of waterfalls. In this scenario, if an image (bag) is classified as the waterfall,

it indicates that at least one of its sub­images (instances) contains characteristics of the

waterfall. Andrews et al. (2002) provides an example of the text classification task. Its

MI data are constructed by separating the whole documents (bags) into multiple smaller

passages (instances). In the field of medical diagnosis, MIL is used to predict potential

breast or Barrett’s cancer patients based on hematoxylin and eosin (H&E) stained tissue

microarray images (bags) (Kandemir et al., 2014). Small patches of the image represent

instances, which are missing values. Moreover, Popescu and Mahnot (2012) emphasizes

the detection of illnesses commonly occurring in elders, such as frailty and dementia. Each

2
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individual represents a bag, with 24 measurements (instances) captured by sensors over 24

hours. Finally, another significant application of MIL is object detection (Ali and Saenko,

2014; Ko et al., 2012; Li and Vasconcelos, 2015). Researchers in this domain are inter­

ested in identifying whether specific items, like horses, pedestrians, or even landmines,

are within images. The entire picture is treated as a bag, and its sub­regions are considered

as instances.

According to the numerous applications of MIL just mentioned, it is obvious that

MIL offers an alternative interpretation of the traditional data structures. InMIL, an object

(bag) can be interpreted through a collection of feature vectors (instances). This differs

from conventional methods, such as supervised learning, which typically assumes that an

object is described by just a single feature vector.

1.3 Existing MIL Approaches

Amores (2013) categorizes the existing MIL approaches into three different families,

called instance space (IS), bag space (BS), and embedded space (ES). Each family employs

a different perspective to build classifiers on multiple instance (MI) data. First, classifiers

in IS are constructed on the instance level, and bag labels are determined by the prediction

results of the instances. This approach is seen in works, such as Dietterich et al. (1997),

Raykar et al. (2008), Chen et al. (2017), Haußmann et al. (2017), and Wang and Pinar

(2021). Specifically, the studies in Raykar et al. (2008), Chen et al. (2017), and Haußmann

et al. (2017) use logistic regression to establish classifiers for instance labels, while Wang

and Pinar (2021) employs probit regression.

On the other hand, BS and ES consider the main classification process on the bag

3
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level, instead of the instance level. BS concentrates on the entire bag when modeling.

The distance or similarity among bags usually serves as a guide to determining bag labels.

Therefore, there are many distance­based techniques utilized in BS, including k­Nearest

Neighbors (kNN) (Wang and Zucker, 2000), Support Vector Machine (SVM) (Andrews

et al., 2002; Gärtner et al., 2002), and diverse density (Maron and Lozano­Pérez, 1997).

Lastly, ES maps a whole bag, containing multiple instances, into only one feature vector

(Chen et al., 2007; Ilse et al., 2018). In other words, MI data is transformed into the

data with a traditional structure, which defines each feature vector linked with a response

variable. As a result, many conventional supervised learning techniques can be applied to

classify bag labels.

1.4 Label Ambiguity in MIL

In a MIL problem, the performance of MIL models depends on how we address

the missing information, particularly the absence of instance labels, and how closely our

additional assumptions align with the observed datasets. According to Carbonneau et al.

(2018), an MIL model can be analyzed from four different perspectives: prediction level,

bag composition, data distribution, and label ambiguity.

In this thesis, we specifically focus on label ambiguity, which is closely linked to the

missing values, i.e. instance labels. Unobserved instance labels limit our understanding of

the true connections between instances and their corresponding bags. Consequently, the

missing information in MI data increases the difficulty of addressing the bag labels accu­

rately, thereby leading to label ambiguity. Therefore, understanding the reasons behind

label ambiguity in MI datasets is crucial for developing effective MIL models.

4
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Two possible sources of label ambiguity are proposed. One is label noise, meaning

errors exist in the assigned labels. Label noise can be caused by two factors: mislabeling

during the process of data collection or inherent complexities in the original data struc­

ture. The former is a typical mistake that happens when manual labeling. The latter often

occurs in practice, since it is difficult to ensure no positive instance in a negative bag. For

example, when classifying a picture of a house that contains a small flower in the sub­

image (positive instance), it may not be appropriate to label this entire house picture as a

positive bag for the flower, even though this picture includes some positive elements (Li

and Vasconcelos, 2015). To deal with label noise, Carbonneau et al. (2018) suggests that

relaxing the strict MIL assumption is a proper approach when modeling. We believe that

a bag is more likely to be positive if it has a higher proportion of positive instances, and

unlikely to be positive if it contains a lower proportion of positive instances. In summary,

we can consider a threshold based on the percentage of positive instances to classify bags

as positive or negative, such as in Li and Vasconcelos (2015). In other words, we suppose

the amount of positive instances is required to classify a bag as positive.

Another source of label ambiguity is different label spaces, which means that the

label spaces between instances and bags are different. As an example in Carbonneau et al.

(2018), a positive bag represents a picture including a zebra, and a positive instance implies

that the sub­region of the picture contains the specific characteristics of the zebra, like

black and white stripes. They consider an example where a negative bag includes some

positive instances. Specifically, a white tiger image (negative bag) can also extract similar

black and white stripes of zebras in some patches (positive instances). In this situation, it

is hard to clarify the exact meaning of those positive patches in the negative image, thus

we say the labels of instances and bags exist in different spaces. Moreover, they mention

5
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that several methods, including MILES (Chen et al., 2007) which is an embedding­based

method, are developed to tackle this kind of issue.

1.5 Motivation

Label ambiguity is inherent toMIL tasks as we discussed previously, and relaxing the

restricted MIL assumption can be an approach to deal with this issue. If we still construct

MIL algorithms using theMIL assumption, it may be too restrictive for models. Moreover,

MI data often does not adhere to the MIL assumption precisely in practical situations.

Consequently, we propose a new bag likelihood to relax the strict MIL assumption while

modeling, thereby increasing the robustness of MIL models.

The proposed bag likelihood can be applied to any kind of instance classifier in IS,

such as logistic or probit regression. Specifically, we can utilize logistic regression to

construct the classifier for instance label, and then apply our bag likelihood to predict

bag labels. Notably, the distribution of each bag label is conditional on its instance la­

bels. Although Haußmann et al. (2017) has developed an IS approach with relaxed MIL

assumption, it becomes difficult to explain the relationship between instances and their

bags on MI data. On the other hand, the new proposed bag likelihood can illustrate the

connections between instances and bags.

In this thesis, we employ Bayesian approaches to model and estimate parameters. We

provide the prior distribution for the parameters in logistic regression and use the Gibbs

sampling method to estimate those parameters. This is the first time that Gibbs sampling

has been applied to the MIL model with logistic regression.

6
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Chapter 2 Background

This chapter introduces two common MIL models that satisfy the MIL assumption,

and these twomodels are constructed based on the IS and the Bayesian scheme. Themodel

in Section 2.1 assumes the linearity in the dataset, while the model in Section 2.2 imposes

no restrictions on the dataset’s distribution. Finally, we explain an augmentation tech­

nique known as Pólya­Gamma augmentation (Polson et al., 2013) in Section 2.3, which

is frequently used in the Gibbs sampling process for logistic regression models.

2.1 Multiple Instance Logistic Regression (MILR)

In the MIL setting, the training data {{xij}mi
j=1, yi}Ni=1 consists of N bags, wheremi

indicates the number of instances in the ith bag. There areM =
N∑
i=1

mi instances in total.

All instances can be displayed by the matrixX = [x11, . . . ,x1m1 , . . . ,xN1, . . . ,xNmN
]T ,

and we define Y = [y1, . . . , yN ]
T as all bag labels, where xij ∈ Rd×1, yi ∈ {0, 1},

i = 1, . . . , N , and j = 1, . . . ,mi. For the ith bag, zi = [zi1, . . . , zimi
]T indicates latent

instance labels corresponding to instances [xi1, . . . ,ximi
]T , where zij ∈ {0, 1}. Note that

d is the number of features.

We let Σ ∈ Rd×d to be a diagonal matrix. Also, we consider β ∈ Rd×1 and v ∈

Rd×1. Multiple Instance Logistic Regression (MILR, Chen et al. (2017)) model is shown

7
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as following,

β ∼ N (v,Σ), (2.1)

zij|β,xij ∼ Ber(pij), pij =
1

1 + exp(−xTijβ)
(2.2)

yi|zi1, . . . , zimi
=


0, if zij = 0, ∀j

1, o.w.,

(2.3)

where i = 1, . . . , N and j = 1, . . . ,mi. This model adopts a Bayesian approach, so a prior

distribution of parameterβ is given in (2.1). Moreover, it is better to apply thismodel to the

dataset satisfying the linear assumption, which is operated in logistic regression. Lastly,

(2.3) shows that MILR fulfills the MIL assumption which is a strict assumption.

2.2 Gaussian Process MILR (GPMILR)

We denote some notations and briefly review Gaussian Process (GP) logistic regres­

sion before introducing Gaussian Process MILR (GPMILR). Gaussian Processes (GPs)

consist of instance scalars f = [f11, . . . , f1m1 , . . . , fN1, . . . , fNmN
]T for all instances,

where fij ∈ R. We define KX′X′′ ∈ RM ′×M ′′ to be the gram matrix of the two datasets,

X ′ and X ′′. Here,M ′ andM ′′ are the number of instances in X ′ and X ′′, respectively.

The (i, j)th element of the gram matrix is denoted by k(x′i, x′′j ). We also consider the

RBF kernel function k(x′i, x′′j ) = exp
(
− 1

2θ2
(x′i − x′′j )

T (x′i − x′′j )
)
in this thesis, where θ

is the length­scale parameter. A samller θ makes the differences between x′i and x′′j more

significant, so it can create a more complex model. Conversely, a larger θ smooths the

variations in k(x′i, x′′j ) to prevent overfitting. In addition, diag(·) denotes a function that

retains the diagonal elements of the matrix while setting all off­diagonal elements to zero.

8
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The model of GP logistic regression (Rasmussen and Williams, 2005) can be written as

f(X) ∼ N (0M , KXX), (2.4)

zij|fij ∼ Ber(pij), pij =
1

1 + exp(−fij)
. (2.5)

GPMILR is defined by equations (2.4), (2.5), and (2.3), which include GP logistic

regression. Moreover, other MIL models, such as the one proposed by Haußmann et al.

(2017), also utilize GPs in their classifiers. This is because GPs eliminate the require­

ment for linear assumption in the dataset. However, GPs typically encounter computa­

tional challenges, especially when dealing with large datasets. For the prediction process

on testing data X∗, we derive the posterior predictive distribution as f ∗|f ,X,X∗ ∼

N (KT
XX∗K−1

XXf , KXX − KT
XX∗K−1

XXKXX∗). The dimension of the matrix KXX ∈

RM×M becomes large when the size of training data grows. Therefore, computing the

inverse of KXX becomes inefficient due to its O(M3) computational cost. As a result,

Kandemir et al. (2016) introduces an approach with inducing points, called Fully Inde­

pendent Training Conditional (FITC) approximation, to reduce the computational cost of

K−1
XX to O(q2M), where q is the number of inducing points.

FITC approximation considers q inducing points S = [s1, . . . , sq]
T and their corre­

sponding inducing scalars u = [u1, . . . , uq]
T , where sl ∈ Rd×1, ul ∈ R, and l = 1, . . . , q.

We can rewrite (2.4) in GPMILR to be

u(S) ∼ N (0q, KSS), (2.6)

f |u,X,S ∼ N (KXSK
−1
SSu,K), (2.7)

where K = diag(KXX −KXSK
−1
SSKSX) is a diagonal matrix. Thus, it is apparent that

9
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elements in f are supposed to be independent. Notably, inducing points can be a subset

of the training data, and we choose inducing points through the K­means method here.

2.3 Pólya­Gamma Augmentation

We employ a Gibbs sampling method to infer the MIL models in our study. This

method estimates parameters through the true posterior distribution. We will utilize a

technique called Pólya­Gamma augmentation (Polson et al., 2013) during the process of

Gibbs sampling estimation, therefore we give a brief introduction to Pólya­Gamma aug­

mentation in this section.

Polson et al. (2013) demonstrates that the specific type of log­odds can be represented

by the form of Pólya­Gamma distribution. Their relationship is shown as the following

equation,

(eψ)a

(1 + eψ)b
= 2−beκψ

∫ ∞

0

e−ωψ
2/2p(ω)dω, (2.8)

where b > 0, κ = a − b
2
. Moreover, ω ∼ PG(b, 0) is known as Pólya­Gamma latent

variable, and ω D
= 1

2π2

∞∑
i=1

hi
(i−1/2)2

, where hi ∼ Gamma(b, 1). It is notable that D
= indi­

cates equality in distribution. The left­hand side of the equation (2.8) represents a specific

type of log­odds, while the right­hand side of it is illustrated by the form of a Pólya­

Gamma distribution. The posterior distribution of logistic regression exists a particular

kind of log­odds, which is similar to the left­hand side of (2.8) and hard to sample di­

rectly. Consequently, adopting (2.8) allows us to acquire a transformed distribution with

the Pólya­Gamma distribution, which is simpler to sample from.

10
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Chapter 3 Methodology

3.1 Logistic Aggregation Model (LAM)

Many MIL models, such as MILR and GPMILR, are inefficient to be applied to MI

data with label ambiguity since they are developed based on the MIL assumption. To

address this issue, we propose a novel bag likelihood called Logistic Aggregation Model

(LAM). LAM can relax the MIL assumption and is formulated as

yi|zi1, . . . , zimi
∼ Ber(gi), gi =

1

1 + exp(−t( ki
mi

− r))
, (3.1)

where ki = #{zij = 1,∀j}, i = 1, . . . , N .

It is notable that r and t are both hyperparameters. The rate r can be seen as a thresh­

old to classify the labels of bags, and the positive constant t indicates the degree of the

model adhering to the relaxed MIL assumption. Compared to the MIL assumption, which

claims that yi = 0 if zij = 0,∀j and yi = 1, otherwise; LAM relaxes this assumption, so

it should be able to tolerate some noise in the data. Furthermore, LAM approximates the

MIL assumption under the settings that 0 < r < 1
max{mi}Ni=1

and t towards infinity. LAM

can also be easily applied to various MIL models, which include the specific instance and

bag models. We then show two examples in Section 3.2 and Section 3.3.
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3.2 MILR­LAM

We consider MILR with proposed LAM (MILR­LAM), and this model is demon­

strated by (2.1), (2.2) and (3.1). Moreover, we write down the posterior distribution of

parameters β and Z for Gibbs sampling in the below equation.

P (β,Z|Y ,X) ∝
N∏
i=1

[
P (yi|zij,∀j)

mi∏
j=1

P (zij|β,xij)

]
· π(β). (3.2)

The updating process of the Gibbs sampling approach is shown as follows.

Updating β̂ and ω̂:

The conditional posterior distribution of β is

P (β|Z,Y ,X) ∝

[
N∏
i=1

mi∏
j=1

P (zij|β,xij)

]
· π(β)

∝

[
N∏
i=1

mi∏
j=1

p
zij
ij (1− pij)

(1−zij)

]
· π(β)

∝

[
N∏
i=1

mi∏
j=1

(ex
T
ijβ)zij

(1 + ex
T
ijβ)

]
· π(β). (3.3)

Next, we apply the Pólya­Gamma augmentation technique on the equation (3.3). We de­

note ω = (ω11, . . . , ω1m1 , . . . , ωN1, . . . , ωNmN
) as Pólya­Gamma latent variables, where

ωij ∈ R. We also define a = zij , b = 1, and ψ = xTijβ according to (2.8). The augmented

conditional posterior of β and ω can be written as,

P (β,ω|Z,Y ,X) ∝

[
N∏
i=1

mi∏
j=1

exp
(
(zij −

1

2
)xTijβ

)
exp

(
−ωij

2
(xTijβ)

2
)
p(ωij)

]
· π(β)

∝ exp
{
−1

2

[
βT (XTΩX +Σ−1)β − 2βT (XTC +Σ−1v)

]}
· p(ω),

(3.4)
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where ωij ∼ PG(1, 0) andC = [(z11− 1
2
), . . . , (zNmN

− 1
2
)]T ∈ RM×1. Also,Ω ∈ RM×M

is a diagonal matrix with elements (ω11, . . . , ω1m1 , . . . , ωN1, . . . , ωNmN
) on the diagonal.

Thus, the updating formula of β̂ and ω̂ are

β|ω,Z,Y ,X ∼ N (A,B) (3.5)

ωij|β,Z,Y ,X ∼ PG(1,xTijβ). (3.6)

Here, A = B · (XTC +Σ−1v) and B = (XTΩX +Σ−1)−1.

Updating Ẑ:

Since the bag labels are observed, we separate the conditional posterior distribution

P (zij|β, zis,∀s ̸= j,Y ,X) = P (zij|β, zis,∀s ̸= j, yi,xij) ∝ P (yi|zij,∀j)·
mi∏
j=1

P (zij|β,xij)

into two different cases. For the first case, we consider the positive bag label (yi = 1) and

observe that the updating formula of zij is

zij|β, zis,∀s ̸= j, yi = 1,xij ∼ Ber

(
P11(x

T
ijβ)

P11(xTijβ) + P10(xTijβ)

)
, (3.7)

where

P11(x) =
1

1 + exp(−t(ki′+1
mi

− r))
· 1

1 + exp(−x)
,

P10(x) =
1

1 + exp(−t( ki′
mi

− r))
·
[
1− 1

1 + exp(−x)

]
,

and ki′ = #{zis = 1,∀s ̸= j}. The second case occurs when yi = 0, thus the updating

formula of zij becomes

zij|β, zis,∀s ̸= j, yi = 0,xij ∼ Ber

(
P01(x

T
ijβ)

P01(xTijβ) + P00(xTijβ)

)
, (3.8)
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where

P01(x) =

[
1− 1

1 + exp(−t(ki′+1
mi

− r))

]
· 1

1 + exp(−x)
,

P00(x) =

[
1− 1

1 + exp(−t( ki′
mi

− r))

]
·
[
1− 1

1 + exp(−x)

]
.

3.3 GPMILR­LAM

LAM can be also applied to GPMILR, and we name this model as GPMILR­LAM.

That is, GPMILR­LAM can be demonstrated by (2.6), (2.7), (2.5), and (3.1), with the con­

sideration of inducing points. We still infer the model using the Gibbs sampling approach,

and the posterior distribution of u, f , Z can be written as

P (u,f ,Z|Y ,X,S) ∝
N∏
i=1

[
P (yi|zij,∀j)

mi∏
j=1

P (zij|fij)

]
· P (f |u,X,S) · P (u(S)).

(3.9)

Similarly, we derive the conditional posterior distributions of u, f , and Z, respectively.

We also show their updating formulas, including the Pólya­Gamma latent variables ω.

Updating û, f̂ , and ω̂:

u|f , z,Y ,X,S ∼ N (A′, B′), (3.10)

f |ω,u,Z,Y ,X,S ∼ N (A′′, B′′), (3.11)

ωij|fij,u,Z,Y ,X,S ∼ PG(1, fij), (3.12)

where A′ = B′ · (KXSK
−1
SS)

TK−1f , B′ = ((KXSK
−1
SS)

TK−1(KXSK
−1
SS) + K−1

SS)
−1,

A′′ = B′′ · (C + K−1KXSK
−1
SSu), and B′′ = (Ω + K−1)−1. We realize that B′′ is a
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diagonal matrix, so the conditional posterior distributions of each fij are independent.

Updating Ẑ:

We still consider two cases according to the different values of observed yi, which is

the same updating process as in MILR­LAM. That is,

zij|fij,u, zis,∀s ̸= j, yi = 1,X,S ∼ Ber
(

P11(fij)

P11(fij) + P10(fij)

)
, (3.13)

zij|fij,u, zis,∀s ̸= j, yi = 0,X,S ∼ Ber
(

P01(fij)

P01(fij) + P00(fij)

)
. (3.14)

When a new data X∗ comes, we derive the estimates to be f̂ ∗ = KX∗SK
−1
SSû. For

the ith bag, the predicted probability of instance labels are p̂∗ij = 1/(1 + exp(−f̂ ∗
ij)), ∀j,

and the predicted probability of bag label is ĝ∗i = 1/(1 + exp(−t( k̂
∗
i

mi
− r))). In addition,

since k∗i = #{z∗ij = 1,∀j} =
∑
j

I(z∗ij = 1), we consider the estimate of k∗i to be its

expectation, i.e. k̂∗i =
∑
j

p̂∗ij .

3.4 Comparison between LAMand the Bag Likelihood of

VGPMIL

Haußmann et al. (2017) proposes Variational Gaussian Process Multiple Instance

Learning (VGPMIL) model, which is similar to GPMILR­LAM, but a distinction lies

in the bag model. Therefore, we discuss the differences between the bag likelihoods of

these two models in this section. Both of them aim to relax the strict MIL assumption.

However, the bag likelihood of VGPMIL adopts an alternative approach shown in (3.15).

p(yi|{zij}mi
j=1) =

(
H

H + 1

)Gi
(

1

H + 1

)(1−Gi)

=
HGi

H + 1
, (3.15)
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whereGi := yimax{zij}mi
j=1+(1−yi)(1−max{zij}mi

j=1), ∀i, andH is a positive constant

with the ability to deal with different level of noise in the MI data. When {zij}mi
j=1 and

yi are observed, Gi serves as an indicator to determine if the MI data satisfies the MIL

assumption. Specifically, Gi = 1 implies that the MI data fulfills the MIL assumption

due to satisfying yi = max{zij}mi
j=1; otherwise, Gi = 0. Moreover, the bag likelihood of

VGPMIL approximates the MIL assumption as H approaches infinity.

It is evident that VGPMIL also exists a bag likelihood with relaxed MIL assumption.

Nevertheless, there are some disadvantages in this model. Determining the value of H

can solely rely on our personal interpretation of the MI data because they do not provide

a specific process to choose it. Also, it is challenging to explain which type of label

ambiguity in theMI data through the value ofH since this hyperparameter lacks a sensible

interpretation. In contrast, our proposed LAM introduces t and r, which have precise

meanings, so they can bring additional information to explain the noise presented in the

MI data.

To be more specific, we use the value of 0 < r < 1 to determine the required pro­

portion of positive instances within a bag to classify it as positive. A larger r represents

more positive instances in a bag needed to label it as positive. On the other hand, when r

is small, a bag only requires a few positive instances to label positive. The hyperparam­

eter t determines how strictly the model adheres to the classification threshold set by r.

Theoretically, the model strictly adheres to the classification principle when t is close to

infinity, as the probability gi of the Bernoulli distribution converges to 0 or 1. However,

when t is close to zero, i.e., gi towards 0.5, it suggests the presence of significant noise

in the data. In summary, LAM provides more flexibility to ensure the robustness of the

model than the bag model in VGPMIL does. By tuning r and t, we gain information about
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the sources of label ambiguity, which allows us to construct a more robust model that can

effectively address noise in the data.

In addition to the LAM’s ability to effectively interpret MI data, model inference us­

ing Gibbs sampling offers several benefits. Notably, VGPMIL uses variational inference,

whereas GPMILR­LAM is inferred using Gibbs sampling. The Gibbs sampling approach

considers the true posterior distribution, unlike variational inference, which relies on the

approximation of the posterior distribution. This allows us to capture a more accurate

model structure during statistical inference, and it helps lead to improved accuracy and

stability in the estimation process.
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Chapter 4 Simulation

In this chapter, we provide three distinct simulation scenarios to evaluate our pro­

posed LAM by leveraging MILR­LAM and GPMILR­LAM on various MI datasets. We

also compare MILR­LAM and GPMILR­LAM with the other four benchmark methods.

MILR­LAM and GPMILR­LAM are mentioned in Section 3.2 and Section 3.3, respec­

tively. Both of them utilize Gibbs sampling inference with the technique of Pólya­Gamma

augmentation. Moreover, we use Area Under the Curve (AUC) to examine the perfor­

mance results of various methods. An AUC close to 1 indicates that the model has a

nearly perfect ability to distinguish between positive and negative groups. On the other

hand, when AUC=0.5, it means that the model performs the random guessing of positive

and negative groups. If the AUC value is less than 0.5, it indicates that the model has poor

classification ability. We then explain the four benchmark methods as follows,

• MILR: Chen et al. (2017) proposes this model with inference performed by the

Expectation­maximization (EM) algorithm and provides the R package milr to use.

We do not consider least absolute shrinkage and selection operator (LASSO) penalty

term in our simulations, which is the default setting in milr. It is notable that MILR

model satisfies the MIL assumption.

• MILR (Gibbs): The model of MILR (Gibbs) is the same asMILR, but its statistical

19

http://dx.doi.org/10.6342/NTU202401899


doi:10.6342/NTU202401899

inference uses Gibbs sampling with the technique of Pólya­Gamma augmentation.

• GPMILR: We conduct Gibbs sampling inference on the GPMILR model men­

tioned in Section 2.2. This model fulfills the MIL assumption.

• VGPMIL: Haußmann et al. (2017) proposes this model with the variational infer­

ence method, and provides a Python package vgpmil to operate. We consider 2000

iterations for the variational inference. This is the only benchmark method not sat­

isfying the MIL assumption.

Several methods employ Gibbs sampling, so we have to set the number of iterations

for their inferences. The number of iterations varies based on the characteristics of the two

types of models, linear or non­linear. Specifically, for MIL models with a linear assump­

tion, such as MILR (Gibbs) and MILR­LAM, we iterate 1000 times with no thinning and

burn­in the first 500 samples. ForMILmodels without a linear assumption, we account for

the complex structure and instabilities of models by increasing the number of iterations.

Therefore, we iterate 3000 times with no thinning and burn­in the first 2000 samples. The

non­linear models include GPMILR and GPMILR­LAM, which consider GPs. For VGP­

MIL, we set the length­scale required in GPs to be
√
d, following the same setting as in

Haußmann et al. (2017). For GPMILR and GPMILR­LAM, we set the length­scale to be

1√
2
√
d
.

We operate two types of simulated data: linear and non­linear. The following are the

steps to generate simulated MI data.

1. Generate M × d samples from a standard normal distribution and put them into

a RM×d matrix to create instances X . It is notable that M is the total number of

instances and we consider the case of d = 2 in our simulations.
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2. Provide each instance with an instance label. Explicitly, for ith bag, each instance

label zij is determined by a Bernoulli distribution with probability pij , and j =

1, . . . ,mi. That is,

zij|xij ∼ Ber(pij),

where pij depends on whether you want linear or non­linear MI data.

• Linear MI data:

Given β, and we calculate pij using the formula:

pij =
1

1 + exp(−xTijβ)
.

• Non­linear MI data:

Define a non­linear function f(xij), and then calculate pij by the following

formula:

pij =
1

1 + exp(−f(xij))

3. We choose a threshold value (rate) between 0 and 1, and compute the proportion of

positive instances for each bag. If this proportion exceeds the threshold value, we

label the bag as positive (yi = 1); otherwise, we assign it with a negative bag label

(yi = 0).

4. Return the simulated MI data: {{xij}mi
j=1, yi}Ni=1.

All the simulated MI datasets in this chapter contain label ambiguity, meaning they

are designed not to fulfill the MIL assumption. In the first simulation, we analyze the

effects of label ambiguity on various methods by adding different kinds of noise to the

datasets. Secondly, we examine how the classification ability of different methods changes
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as the bag size increases, where the bag size represents the number of instances in the bag.

Finally, we aim to investigate the impact of varying the true threshold value used to define

bag labels. Specifically, we examine four simulated MI datasets, where bag labels in each

dataset are generated based on a distinct threshold value (rate).

4.1 Impact of Label Noise on Model Performance

The first simulation evaluates the predicted results of several methods onMI datasets,

which are designed not to fulfill the MIL assumption and contain some label noise. We

break this simulation into two parts: equal bag size and unequal bag size. To be more spe­

cific, equal bag size means that the number of instances in different bags is equal through­

out a simulated dataset. However, unequal bag size represents that different bags have

different number of instances.

For the training and testing data of considering equal bag size, we set the number of

bags to be 200 and 10 instances in each bag (i.e., bag sizes are all equal to 10). There

are 2000 instances in total. Besides, we study two kinds of label noise: mislabeled bags

and using different rates to label bags. The former fixes the threshold at 0.35, meaning

a positive bag should include at least four positive instances. This mislabeling process

also changes 50 negative bag labels to positive ones and only operates on the bags with

the proportion of positive instances between 0.1 and 0.35. The latter assumes that two

different rates, 0.15 and 0.35, decide the bag labels. Each rate determines 100 bag labels,

respectively.

Furthermore, we setβ = (β0, β1, β2) = (−2, 3, 0.5) to generate linearMI data, where

β0 is the coefficient of the intercept, and define f(xij) = −3 cos(xij1) + 1
2
exp(xij2) for
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Bag Size

Unequal Bag Size
Different Rates (Table 4.5)

Mislabel (Table 4.4)

Equal Bag Size
Different Rates (Table 4.3)

Mislabel (Table 4.2)

Figure 4.1: The summary of all cases in Section 4.1

non­linearMI data, wherexij ∈ R2. We set the number of inducing points for the GPmod­

els to 10, approximating 0.005 of the total number of instances. Simulations are replicated

50 times on each MIL model, demonstrating their performances through AUC’s mean and

standard deviation on both instance and bag labels. While utilizing the LAM, tuning the

hyperparameters t and r is important. We consider all combinations of candidates for

t = {10, 100} and r = {0.15, 0.25, 0.35, 0.45}. We then rank these combinations from 1

to 8 twice based on the testing AUCs of instances and bags. Lastly, we sum each com­

bination’s ranking number of instance and bag, and choose the t and r with the highest

ranking for LAM. We also provide the sensitivity analysis on hyperparameters.

While considering unequal bag size, the settings are similar to those in equal bag size.

However, we do not fix the bag size for all 200 bags. Based on Table 4.1, we consider 100

bags with a size of 5 and another 100 bags with a size of 10, so there are 1500 instances in

total. Additionally, we only consider 7 inducing points in unequal bag size due to fewer

instances. The summary of all cases in this section is demonstrated in Figure 4.1.

Bags Bag Size Total Instances Inducing Points
Equal Bag Size 200 10 2000 10
Unequal Bag Size 100/100 5/10 1500 7

Table 4.1: Comparison between equal and unequal bag sizes.
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4.1.1 Results of Equal Bag Size

Table 4.2 (Mislabel) and Table 4.3 (Different rates) demonstrate the prediction results

for equal bag size, and these two kinds of label noise acquire similar results. Each label

noise operates simulation on both linear and non­linear MI data. For the linear MI data,

although AUCs of MILR­LAM does not significantly differ among all the other models,

except for GPMILR, as their 95% confidence intervals (CIs) of AUC overlap. A 95% CI

is computed by the formula: average AUC ± (1.96× standard deviation (Std)). MILR­

LAM still achieves the highest average AUC on instance and bag label predictions. This

result is reasonable since MILR­LAM is a linear model that addresses the label noise. For

the non­linear MI data, the models using GPs exhibit better prediction results regarding

averageAUC, especiallyGPMILR­LAM,which shows the highest one. In conclusion, our

proposedMILR­LAM and GPMILR­LAM achieve the best average AUC across different

data structures and are comparable to most benchmark methods.

Moreover, we gain insights into the sensitivity analysis of the hyperparameters of

LAM based on Figure 4.2 and Figure 4.3. Each plot exhibits eight boxplots of predicted

AUC according to the eight combinations of t and r. We take Figure 4.2 (c) and (d) as

examples, which show predicted AUC results by GPMILR­LAM on the mislabeled non­

linear MI data. Also, (c) is the result of the instance label, and (d) is for the bag label. We

can see similar patterns in the boxplots for t = 10 (blue) and t = 100 (purple). However,

when emphasizing a fixed number of t, there are noticeable differences in average AUCs

based on different r. This indicates the selection of r might be more sensitive than that

of t. Additionally, AUCs of GPMILR­LAM are more easily affected by the selection of

these hyperparameters than AUCs of MILR­LAM due to the complexity of the GP model.
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Train Test
instances bags instances bags

(Linear)
MILR 0.91(0.020) 0.69(0.032) 0.91(0.020) 0.80(0.036)

MILR (Gibbs) 0.91(0.022) 0.69(0.033) 0.91(0.021) 0.80(0.038)
MILR­LAM(10/0.25) 0.92(0.012) 0.71(0.029) 0.92(0.013) 0.85(0.030)
MILR­LAM(10/0.35) 0.92(0.009) 0.71(0.029) 0.92(0.011) 0.85(0.030)

VGPMIL 0.88(0.030) 0.73(0.027) 0.88(0.029) 0.82(0.034)
GPMILR 0.76(0.042) 0.72(0.041) 0.76(0.041) 0.66(0.045)

GPMILR­LAM(10/0.35) 0.86(0.035) 0.75(0.023) 0.86(0.036) 0.80(0.045)
(Non­linear)

MILR 0.60(0.040) 0.62(0.038) 0.60(0.045) 0.63(0.041)
MILR (Gibbs) 0.60(0.045) 0.62(0.039) 0.59(0.048) 0.62(0.049)

MILR­LAM(100/0.25) 0.63(0.028) 0.59(0.036) 0.63(0.032) 0.60(0.049)
VGPMIL 0.76(0.038) 0.68(0.037) 0.75(0.035) 0.70(0.056)
GPMILR 0.79(0.020) 0.76(0.031) 0.78(0.018) 0.71(0.040)

GPMILR­LAM(10/0.15) 0.78(0.029) 0.72(0.032) 0.78(0.023) 0.72(0.046)
Table 4.2: Fitted and predicted average AUCs (Std) results of equal bag size (Mislabel).

Figure 4.2: Equal bag size (Mislabel): predicted AUC results of instance and bag labels.
Each plot has eight boxplots with eight different combinations of r and t. (a) and (b):
operating MILR­LAM on the linear data. (c) and (d): operating GPMILR­LAM on the
non­linear data.
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Train Test
instances bags instances bags

(Linear)
MILR 0.92(0.017) 0.73(0.033) 0.91(0.017) 0.73(0.045)

MILR (Gibbs) 0.91(0.018) 0.73(0.033) 0.91(0.018) 0.73(0.043)
MILR­LAM(10/0.25) 0.92(0.008) 0.77(0.034) 0.92(0.009) 0.77(0.038)

VGPMIL 0.90(0.016) 0.78(0.032) 0.89(0.016) 0.75(0.041)
GPMILR 0.79(0.029) 0.75(0.041) 0.79(0.028) 0.64(0.043)

GPMILR­LAM(10/0.25) 0.88(0.017) 0.78(0.032) 0.87(0.017) 0.74(0.042)
GPMILR­LAM(10/0.35) 0.88(0.020) 0.78(0.031) 0.87(0.022) 0.73(0.042)

(Non­linear)
MILR 0.59(0.042) 0.65(0.039) 0.59(0.043) 0.61(0.040)

MILR (Gibbs) 0.59(0.053) 0.64(0.047) 0.58(0.055) 0.61(0.051)
MILR­LAM(100/0.35) 0.64(0.027) 0.60(0.044) 0.63(0.026) 0.58(0.044)

VGPMIL 0.78(0.033) 0.73(0.046) 0.78(0.031) 0.68(0.038)
GPMILR 0.79(0.018) 0.79(0.039) 0.79(0.019) 0.68(0.031)

GPMILR­LAM(10/0.15) 0.79(0.026) 0.76(0.037) 0.79(0.025) 0.69(0.036)
Table 4.3: Fitted and predicted average AUCs (Std) of equal bag size (Different rates).

Figure 4.3: Equal bag size (Different rates): predicted AUC results of instance and bag
labels. Each plot has eight boxplots with eight different combinations of r and t. (a) and
(b): operating MILR­LAM on the linear data. (c) and (d): operating GPMILR­LAM on
the non­linear data.
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4.1.2 Results of Unequal Bag Size

In the second part, we conduct simulations using a more complex MI data structure,

which includes two different bag sizes. Table 4.4 (Mislabel) and Table 4.5 (Different rates)

show the performance results. The outcomes of using the unequal bag size resemble those

of using an equal one, but some distinctions exist. Explicitly, although benchmark models

maintain the capabilities to classify instance labels correctly, they struggle with predicting

bag labels, resulting in lower average AUCs. This situation is reasonable to observe in the

models satisfying the MIL assumption, such as MILR and GPMILR. However, VGPMIL,

which does not fully meet the MIL assumption, also returns poor bag prediction results.

This is because the formulation of its bag likelihood has limitations when considering the

MI data with different bag sizes. It is apparent that the MI data with various bag sizes does

not easily influence the predicted performances of our proposed LAM.

Train Test
instances bags instances bags

(Linear)
MILR 0.92(0.010) 0.66(0.045) 0.92(0.011) 0.69(0.038)

MILR (Gibbs) 0.92(0.010) 0.66(0.045) 0.92(0.011) 0.69(0.040)
MILR­LAM(10/0.15) 0.92(0.008) 0.75(0.031) 0.92(0.008) 0.84(0.029)
MILR­LAM(10/0.25) 0.92(0.010) 0.75(0.031) 0.92(0.011) 0.85(0.030)

VGPMIL 0.88(0.024) 0.60(0.043) 0.88(0.023) 0.58(0.045)
GPMILR 0.80(0.024) 0.69(0.042) 0.78(0.025) 0.58(0.047)

GPMILR­LAM(100/0.35) 0.87(0.020) 0.94(0.014) 0.87(0.020) 0.78(0.036)
(Non­linear)

MILR 0.60(0.045) 0.58(0.048) 0.60(0.042) 0.54(0.045)
MILR (Gibbs) 0.61(0.044) 0.57(0.048) 0.61(0.041) 0.53(0.046)

MILR­LAM(100/0.15) 0.63(0.037) 0.60(0.038) 0.63(0.036) 0.61(0.047)
VGPMIL 0.68(0.076) 0.56(0.051) 0.68(0.074) 0.52(0.056)
GPMILR 0.80(0.021) 0.71(0.041) 0.79(0.024) 0.61(0.048)

GPMILR­LAM(100/0.15) 0.80(0.019) 0.91(0.020) 0.78(0.025) 0.73(0.040)
Table 4.4: Fitted and predicted average AUCs (Std) of unequal bag size (Mislabel).
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Train Test
instances bags instances bags

(Linear)
MILR 0.92(0.010) 0.70(0.048) 0.92(0.009) 0.68(0.037)

MILR (Gibbs) 0.92(0.009) 0.70(0.048) 0.92(0.009) 0.68(0.038)
MILR­LAM(10/0.25) 0.92(0.009) 0.79(0.034) 0.92(0.008) 0.78(0.030)

VGPMIL 0.87(0.019) 0.61(0.040) 0.89(0.015) 0.59(0.037)
GPMILR 0.81(0.027) 0.71(0.040) 0.80(0.023) 0.60(0.038)

GPMILR­LAM(10/0.35) 0.87(0.022) 0.82(0.027) 0.87(0.016) 0.74(0.035)
(Non­linear)

MILR 0.60(0.037) 0.59(0.047) 0.60(0.041) 0.56(0.039)
MILR (Gibbs) 0.60(0.041) 0.58(0.048) 0.60(0.045) 0.56(0.038)

MILR­LAM(100/0.35) 0.64(0.022) 0.61(0.032) 0.63(0.026) 0.59(0.045)
VGPMIL 0.73(0.056) 0.56(0.044) 0.72(0.056) 0.55(0.043)
GPMILR 0.80(0.016) 0.72(0.038) 0.79(0.018) 0.62(0.038)

GPMILR­LAM(100/0.15) 0.80(0.024) 0.90(0.019) 0.78(0.028) 0.74(0.038)
Table 4.5: Fitted and predicted average AUCs (Std) of unequal bag size (Different rates).

4.2 Impact of Different Bag Sizes on Model Performance

This simulation investigates four different simulated datasets, each having an equal

bag size. We set the number of bags to be 50 and apply {5, 10, 20, 40} to four datasets as

their bag size, respectively. To keep it simple, we only consider linear MI data and ignore

the non­linear case in this simulation. For generating simulated MI data, we utilize the

true coefficients β = (−2, 3, 0.5) for the linear setting, and the threshold for defining the

bag labels is set to be 0.35. When selecting the optimal t and r, we fix r to be 0.35 and only

tune the hyperparameter t = {10, 100} for LAM to reduce the computational workload.

Each simulation case is replicated 10 times on every model, and we record their average

AUCs. Lastly, 10 inducing points are used for the methods with GPs.
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4.2.1 Results

Based on Figure 4.4, we observe that average AUCs of methods involving the MIL

assumption, such asMILR,MILR (Gibbs), andGPMILR, drop significantly as the number

of bag size increases. However, the performance results of MILR­LAM and GPMILR­

LAMdecrease relativelymore slowly as the bag size grows. VGPMIL also gains favorable

outcomes when considering the fixed bag size for each MI dataset. Overall, our proposed

LAM demonstrates confidence in maintaining the performance levels, regardless of the

size of the bags.

Figure 4.4: Predicted average AUCs of instance and bag labels based on various bag sizes.

4.3 Impact of Varying Threshold Values on Model Per­

formance

In the last simulation, we evaluate the models’ effectiveness by the following set­

tings. Four studies are conducted by four different rates {0.1, 0.3, 0.6, 0.9}. The simu­

lated dataset in each study contains 100 bags, with a fixed bag size of 10, and uses one of
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{0.1, 0.3, 0.6, 0.9} as the threshold to determine the label of bags. Furthermore, we only

consider linear MI data here, and the true coefficients β are set differently for each of the

four studies to ensure the generated MI data have balanced bag labels. For the selection

of hyperparameters of LAM, we only tune t = {10, 100} and fix r to be the same as

the threshold value of the MI data to save computational time. Additionally, we set the

number of replications and inducing points to be the same as in simulation 2.

4.3.1 Results

We consider four different rates in the range from 0.1 to 0.9. As the rate value gets

larger, the generated MI data violates the MIL assumption more severely. Based on Fig­

ure 4.5, the average AUCs for MILR, MILR (Gibbs), and GPMILR decrease when the

rate increases. Nevertheless, MILR­LAM shows outstanding performance compared to

other methods. Especially for the study utilizing a rate of 0.9, the difference in average

AUCs becomes more apparent.

Figure 4.5: Predicted average AUCs of bag label based on four different rates.
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Chapter 5 Real Data Experiment

This chapter evaluates our models by using two datasets: Musk (Dietterich et al.,

1997) and Mutagenesis (Srinivasan et al., 1994). Both datasets are used for drug activity

prediction, a well­known task in MIL. The Musk data fully satisfies the MIL assumption

and is often used as the benchmark data in MIL. Table 5.1 exhibits that each dataset is

separated into two parts, and we will discuss their details in subsequent sections.

We operate the six algorithmsmentioned in Chapter 4 on all real datasets. All settings

remain the same as previously, except for choosing the number of inducing points, which

varies based on dataset size. The last column of Table 5.1 shows the number of inducing

points used in different datasets. We also normalize the training datasets before using them

and apply similar scaling to the testing data. We conduct 5­fold cross­validation for the

experiments. Furthermore, we use the cross­validation results to select the optimal t and

r for LAM according to the combinations of t = {10, 100} and r = {0.01, 0.1, 0.2, 0.5}.

Total Instances Bag Sizes Bags (Pos/Neg) Features Inducing Points
Musk 1 476 2∼40 92 (47/45) 166 10
Musk 2 6598 1∼1044 102 (39/63) 166 30

Mutagenesis 1 10486 28∼88 188 (125/63) 7 50
Mutagenesis 2 2132 26∼86 42 (13/29) 7 10

Table 5.1: Descriptions of real datasets.
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5.1 Musk

Both Musk 1 and Musk 2 datasets aim to identify whether a molecule can produce a

musky smell. The two Musk datasets contain molecules (bags) and their conformations

(instances), as mentioned in Section 1.2. Also, each conformation is described by 166

features. According to Table 5.1, the main differences between Musk 1 and Musk 2 are

the number of bag sizes and the total number of instances. The distributions of bag sizes of

two datasets are shown in Figure 5.1. Although the range of bag sizes in Musk 2 extends

from 1 to 1044, most bags are less than 100, with only a few exceeding 500. The bag sizes

of Musk 1 are mostly less than 10. Besides, it is evident that the total number of instances

in Musk 2 is much more than in Musk 1, so we consider more inducing points in the GP

models.

Figure 5.1: Histogram of the distribution of bag sizes in Musk 1 and Musk 2.

5.1.1 Results

We analyze the predicted results in Table 5.2 by considering linear and non­linear

models. The linear models, including MILR­LAM and MILR, can perfectly capture the

structures of two Musk datasets. In contrast, the non­linear models might be too complex

to predict accurately. Therefore, we mainly focus on the linear models: MILR, MILR
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(Gibbs), and MILR­LAM. Since the two Musk data satisfy the MIL assumption, it is

apparent that MILR, which fulfills the assumption, can perform well. MILR (Gibbs) has

similar results to MILR because they use the same model and only differ in their inference

methods. Our proposed MILR­LAM performs the best, particularly on Musk 1, which

contains few samples. This result might indicate that MILR­LAM’s performance is not

significantly affected by the sample size in the Musk data.

Additionally, we explain some predicted processes in GPMILR­LAM. The original

setting of length­scale is 1√
2
√
166

≈ 0.2. This value is too small, so it makes the model too

complex to capture the correct data structure, which results in testing AUCs always equal

to 0.5. Therefore, we conduct a larger length­scale value of
√
2 on both Musk 1 and Musk

2 datasets. Moreover, we examine the cross­validation process to decide the optimal value

of t by testing smaller values, as larger values tend to overfit the data. The predicted AUC

results of new settings are shown in Table 5.2.

Musk 1 Musk 2
Train Test Train Test

MILR 1.00 0.77 MILR 0.97 0.82
MILR (Gibbs) 1.00 0.76 MILR (Gibbs) 0.99 0.82

MILR­LAM(10/0.1) 0.95 0.89 MILR­LAM(100/0.1) 0.97 0.82
VGPMIL 0.78 0.63 VGPMIL 0.69 0.65
GPMILR 0.75 0.62 GPMILR 0.62 0.58

GPMILR­LAM(5/0.1) 1.00 0.66 GPMILR­LAM(3/0.1) 0.98 0.59
Table 5.2: Fitted and predicted AUC results of Musk 1 and Musk 2.

5.2 Mutagenesis

This data wants to identify the mutagenicity of molecules. There are a total of 230

molecules in the original Mutagenesis dataset. They are separated into Mutagenesis 1 and
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Mutagenesis 2, which include 188 and 42 molecules, respectively. As mentioned in Srini­

vasan et al. (1994), Mutagenesis 1 is more suitable for fitting statistical regression models

than Mutagenesis 2. Using regression models to predict Mutagenesis 2 may present a sig­

nificant challenge. Each bag represents a unique molecule in this dataset. If a molecule is

mutagenic, then it has a positive bag label. Otherwise, it is assigned a negative one. An

instance represents a molecule fragment instead of the whole molecule with different con­

formations. Each fragment is described by 7 features, which contain information about

atoms, bonds, their types, and so on.

Themajor differences betweenMutagenesis 1 andMutagenesis 2 are the total number

of instances and bags. Table 5.1 shows that Mutagenesis 1 is a larger dataset than Mutage­

nesis 2. Thus, we use more inducing points for GP models on Mutagenesis 1. Moreover,

Figure 5.2 indicates the bag sizes of two datasets are roughly evenly distributed between

20 and 90. This situation suggests that bag sizes may not be the factor to affect the per­

formance results between them.

Figure 5.2: Histogram of the distribution of bag sizes in Mutagenesis 1 and Mutagenesis
2.
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5.2.1 Results

Table 5.3 demonstrate the performance results of Mutagenesis 1 and Mutagenesis 2.

All the methods perform well on Mutagenesis 1 since their AUCs are all over 0.7, and

MILR shows the best­predicted results. On the other hand, Mutagenesis 2 only contains

42 bags, which makes it more challenging for the model to predict accurately due to the

small sample size. Moreover, its performance on regression models is poor according to

Srinivasan et al. (1994). As a result, most methods achieve AUCs below 0.7, except for

GPMILR­LAM and MILR­LAM. This result indicates that our proposed GPMILR­LAM

andMILR­LAM can still performwell on the data with the structure not easily captured by

traditional MI regression models. The situation where the predicted AUC is higher than

the fitted one may be caused by the small number of bags. With a 5­fold cross­validation

process, there are only approximately 8­9 bags to determine the predicted AUC.

Mutagenesis 1 Mutagenesis 2
Train Test Train Test

MILR 0.89 0.90 MILR 0.67 0.68
MILR (Gibbs) 0.88 0.87 MILR (Gibbs) 0.78 0.68

MILR­LAM(100/0.01) 0.80 0.77 MILR­LAM(100/0.1) 0.76 0.84
VGPMIL 0.72 0.71 VGPMIL 0.64 0.44
GPMILR 0.87 0.74 GPMILR 0.80 0.64

GPMILR­LAM(100/0.5) 0.89 0.75 GPMILR­LAM(10/0.5) 0.76 0.88
Table 5.3: Fitted and predicted AUC results of Mutagenesis 1 and Mutagenesis 2.
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Chapter 6 Conclusion

In summary, we propose the Logistic Aggregation Model (LAM), which relaxes

the strict MIL assumption presented in many existing MIL models. We use the Gibbs

sampling approach with Pólya­Gamma augmentation to infer models. Furthermore, our

LAM’s performance is evaluated using both simulated and real datasets. Nevertheless,

there are some limitations in this thesis, which we discuss below:

1. We only apply LAM to regression models, specifically MILR and GPMILR. These

two MIL models in IS possess the specific instance and bag models. Further re­

search can investigate applying the LAM to different kinds of MIL models in IS,

such as mi­SVM (Andrews et al., 2002), as mentioned previously, to enhance the

potential applicability of LAM.

2. Although we provide an explanation of hyperparameters t and r, we do not establish

an exact procedure for choosing them. We only randomly select some candidates

and determine the best ones based on the highest predicted AUC result. It will

be beneficial to develop systematic rules for selecting the optimal t and r in the

future, such as using Empirical Bayes methods. Specifically, we may adapt the

estimated instance labels from MILR and then calculate the estimated average rate

of positive instances in a bag. This estimated average rate can serve as a baseline
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for determining the threshold value in LAM.

3. This thesis only uses drug activity datasets to examine our LAM. Future works

should explore the application of LAM to MI data in other fields, such as medical

diagnosis or text classification. These investigations can provide more informative

insights into the capability and utility of LAM.
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