請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99973完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪英超 | zh_TW |
| dc.contributor.advisor | Ying-Chao Hung | en |
| dc.contributor.author | 詹詠迪 | zh_TW |
| dc.contributor.author | Yung-Ti Chan | en |
| dc.date.accessioned | 2025-09-23T16:04:32Z | - |
| dc.date.available | 2025-09-24 | - |
| dc.date.copyright | 2025-09-23 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-29 | - |
| dc.identifier.citation | Taipei Open Data Platform: https://data.taipei/dataset/detail?id=c6bc8aed-557d-41d5-bfb1-8da24f78f2fb
Fu Chiang, Yen Barbara and Yeh Chia-Jung (2024). "The analysis of the shared bike usage pattern: Application of survival model to Taiwan YouBike." Asian Transport Studies 10: 100125. Eren Ezgi and Uz Volkan Emre (2020). "A review on bike-sharing: The factors affecting bike- sharing demand." Sustainable cities and society 54: 101882. 周佰賢 (2015).考慮需求變化狀況及增設臨停區之公共自行車共享系統租借站分群與車輛調度策略研究.工業與資訊管理學系.國立成功大學. Sinaga, Kristina P. and Yang Miin-Shen (2020). "Unsupervised K-Means Clustering Algorithm." IEEE Access 8: 80716-80727. Wolsey Laurence A. (2020). Integer programming, John Wiley & Sons. 楊子瑢 (2022).臺北市YouBike共享單車車數預測系統之實作.資訊學院資訊學程.國立陽明交通大學. Chen Tianqi and Guestrin Carlos (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining. Li Yexin and Zheng Yu (2019). "Citywide bike usage prediction in a bike-sharing system." IEEE Transactions on Knowledge and Data Engineering 32(6): 1079-1091. Lin Yan-Hui, Ding Ze-Qi and Li Yan-Fu (2023). "Similarity based remaining useful life prediction based on Gaussian Process with active learning." Reliability Engineering & System Safety 238: 109461. Kariya, Takeaki and Hiroshi Kurata (2004). Generalized least squares, John Wiley & Sons. Ashutosh Kumar Dubey, Abhishek Kumar, Vicente García-Díaz, Arpit Kumar Sharma and Kishan Kanhaiya (2021). "Study and analysis of SARIMA and LSTM in forecasting time series data." Sustainable Energy Technologies and Assessments 47: 101474. Breiman Leo (2001). "Random forests." Machine learning 45: 5-32. Yang Zidong, Chen Jiming, Hu Ji, Shu Yuanchao and Cheng Peng (2019). "Mobility modeling and data-driven closed-loop prediction in bike-sharing systems." IEEE Transactions on Intelligent Transportation Systems 20(12): 4488-4499. Hung, Ying-Chao and Chen Wei-Cheng (2017). "Simulation of some multivariate distributions related to the Dirichlet distribution with application to Monte Carlo simulations." Communications in Statistics-Simulation and Computation 46(6): 4281-4296. Lu Eric Hsueh-Chan and Lin Zhan-Qing (2020). "Rental prediction in bicycle-sharing system using recurrent neural network." IEEE Access 8: 92262-92274. Oliver Kramer (2017). Genetic algorithms, Springer. Wang Dongshu, Dapei Tan, and Lei Liu (2018). "Particle swarm optimization algorithm: an overview." Soft computing 22(2): 387-408. Delahaye Daniel, Supatcha Chaimatanan, and Marcel Mongeau (2018). Simulated annealing: From basics to applications. Handbook of metaheuristics, Springer: 1-35. 林家瑜 (2022).共享單車最佳運補策略之研究-以台北市Youbike2.0為例.資訊管理系.國立臺灣科技大學. 劉宜青 (2012).以模擬最佳化求解公共自行車共享系統之初始車輛配置策略.工業與資訊管理學系專班.國立成功大學. David Goldsman and Paul Goldsman (2015). Discrete-event simulation. Modeling and Simulation in the Systems Engineering Life Cycle: Core Concepts and Accompanying Lectures, Springer: 103-109. 柯召璇 (2015).公共自行車分區及運補策略最佳化模型之研究.運輸管理學系碩士班.淡江大學. Borovkov Alexandr (2012). Stochastic processes in queueing theory, Springer Science & Business Media. Tal Raviv and Ofer Kolka (2013). "Optimal inventory management of a bike-sharing station." Iie Transactions 45(10): 1077-1093. Shu Jia, Chou Mabel, Liu Qizhang, Teo Chung-Piaw and Wang I-Lin (2013). "Models for effective deployment and redistribution of bicycles within public bicycle-sharing systems." Operations Research 61(6): 1346-1359. Adan Ivo and Jacques Resing (2015). "Department of Mathematics and Computing Science Eindhoven University of Technology PO Box 513, 5600 MB Eindhoven, The Netherlands March 26, 2015." Froehlich Jon, Joachim Neumann and Nuria Oliver (2009). Sensing and predicting the pulse of the city through shared bicycling. IJCAI. Guillermo Cabrera-Guerrero, Pablo A. Maya-Duque, Isaac Fernandez, Maximiliano Beltran and Carolina Lagos (2024). A Clustering Algorithm to Improve Local Search’s Performance for a Public Bicycle Sharing System. International Conference on Optimization, Learning Algorithms and Applications, Springer. Liu Yixuan, Zeng Lingfei and Lu Yifu (2021). Spatial-temporal features of Bicycle-sharing transportation based on Density-Based Spatial Clustering of Applications with Noise Algorithm. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT), IEEE. 易子安 (2024).利用非對稱相異性度量求解充電車系統規劃與其他應用之最佳化問題. 工業工程學研究所.國立臺灣大學. Google Maps API: https://developers.google.com/maps/documentation/distance-matrix/overview?hl=zh-tw | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99973 | - |
| dc.description.abstract | 近年來共享單車系統(Bike-sharing system)的普及使大眾的使用率大幅提升,目前此系統在人口密集的大城市中面臨的重大問題是使用者常常遇到無車可借或無位可還的窘境。為了改善此問題,YouBike公司現行的做法是派遣運補車到附近的車站進行運補,但是目前運補的依據和準則仍有許多缺陷,例如在尖峰時間使用者的流量較大,等到車站無車可借或無位可還時再派車進行運補往往為時過晚。本研究提出一個共享單車使用者的租借與歸環機率模型,並利用實際的單車數量資料變化來進行使用者流量的估計,最後結合排隊理論建構出運補車的最佳運補決策,藉此減少無車可借或無位可還的情況,並提出一個分群演算法配置最佳的運補車據點位置以提升運補效率。本研究將以台北市YouBike 2.0的車站資料為例,以模擬的方式來驗證所提研究方法的成效。 | zh_TW |
| dc.description.abstract | In recent years, the widespread adoption of bike-sharing systems (BSS) has led to a significant increase in their usage. However, a major issue faced by such systems in densely populated cities is the frequent unavailability of bikes or docking spaces for users. To address this problem, YouBike currently dispatches rebalancing trucks to nearby stations to redistribute bikes. However, the current rebalancing criteria and policies have many shortcomings. For example, during peak hours, user traffic increases significantly, and waiting until a station runs out of bikes or docking spaces to dispatch trucks is often too late. To overcome the shortcomings, this study proposes a rental and return probability model for users, estimating the users’ flow based on actual bike count data. Furthermore, by integrating queueing theory, we construct an optimal dispatching policy for rebalancing trucks to reduce situations where users cannot find available bikes or docking spaces and proposes a clustering algorithm to determine the optimal locations for rebalancing truck depot to improve rebalancing efficiency. The study will use data from Taipei's YouBike 2.0 stations and employ simulations to verify the effectiveness of the proposed methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-23T16:04:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-23T16:04:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vi LIST OF TABLES viii Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Objectives 2 1.3 Structure of the Thesis 3 Chapter 2 Literature Review 5 2.1 Bike-Sharing Systems 5 2.2 Bike Availability Forecasting 7 2.3 Dispatching Policies and Optimization Algorithms 9 2.4 Queueing Theory 10 2.5 Clustering Algorithms for Solving Facility Location Problem 12 2.6 Summary 13 Chapter 3 Methodology and Fundamental Queueing Theory 15 3.1 Optimization Problems in Bike-Sharing Systems 15 3.2 Dispatching Policy for Single-Station Systems 17 3.2.1 Real-time Estimation of Rental and Return Flow Rates 17 3.2.2 Predictive Dispatching Policy 24 3.2.3 Assumptions 26 3.2.4 Rebalancing Volume based on Queueing Theory 26 3.2.5 Real-time Dispatching Policy 35 3.2.6 Real-time Half-Capacity Dispatching Policy 37 3.3 Dispatching Policy for Multi-Stations Systems 40 3.4 Algorithms for Solving Rebalancing Truck Depot Location Problem 43 3.4.1 Reversed Directed Partitioning Around Medoids (RDiPAM) Algorithm 45 3.4.2 Weighted RDiPAM (WRDiPAM) Algorithm 50 3.5 Summary 52 Chapter 4 Simulation Analysis 54 4.1 Results for the Single-Station Problem 54 4.1.1 Optimal Dispatch Solutions 54 4.1.2 Performance Comparison and Evaluation 56 4.2 Results for the Multi-Station Problem 60 4.2.1 Optimal Rebalancing Truck Depot Locations 60 4.2.2 Performance Comparison and Evaluation 63 4.3 Summary 72 Chapter 5 Conclusion and Future Works 74 5.1 Conclusion 74 5.2 Future Works 75 REFERENCE 77 | - |
| dc.language.iso | en | - |
| dc.subject | 共享單車系統 | zh_TW |
| dc.subject | 流量估計 | zh_TW |
| dc.subject | 運補車 | zh_TW |
| dc.subject | 運補決策 | zh_TW |
| dc.subject | 排隊理論 | zh_TW |
| dc.subject | 分群演算法 | zh_TW |
| dc.subject | rebalancing truck | en |
| dc.subject | Bike-sharing system | en |
| dc.subject | rebalancing truck depot location problem | en |
| dc.subject | queueing theory | en |
| dc.subject | predictive dispatching policy | en |
| dc.subject | flow forecasting | en |
| dc.title | 共享單車系統之即時需求預測與運補決策 | zh_TW |
| dc.title | Real-time Demand Forecasting and Dispatching Policies for Bike-Sharing Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 喻奉天;黃道宏 | zh_TW |
| dc.contributor.oralexamcommittee | Vincent F. Yu;Dow-hon Huang | en |
| dc.subject.keyword | 共享單車系統,流量估計,運補車,運補決策,排隊理論,分群演算法, | zh_TW |
| dc.subject.keyword | Bike-sharing system,flow forecasting,rebalancing truck,predictive dispatching policy,queueing theory,rebalancing truck depot location problem, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202502614 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-30 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-27 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
