Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99972
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇偉儁zh_TW
dc.contributor.advisorWei-Jiun Suen
dc.contributor.author陳泓聿zh_TW
dc.contributor.authorHung-Yu Chenen
dc.date.accessioned2025-09-23T16:04:08Z-
dc.date.available2025-09-24-
dc.date.copyright2025-09-23-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation[1] A. Erturk and D. J. Inman, "A distributed Parameter electromechanical model for cantilevered piezoelectric energy harvesters," 2008.
[2] A. Erturk and D. J. Inman, "An experimentally validated bimorph cantilever model for piezoelectric energy harvestingfrom base excitations," Smart materials and structures, vol. 18, no. 2, p. 025009, 2009.
[3] S. Qi, R. Shuttleworth, S. O. Oyadiji, and J. Wright, "Design of a multiresonant beam for broadband piezoelectric energy harvesting," Smart Materials and Structures, vol. 19, no. 9, p. 094009, 2010.
[4] B. Zhang, H. Li, S. Zhou, J. Liang, J. Gao, and D. Yurchenko, "Modeling and analysis of a three-degree-of-freedom piezoelectric vibration energy harvester for broadening bandwidth," Mechanical Systems and Signal Processing, vol. 176, p. 109169, 2022.
[5] H. Wu, L. Tang, Y. Yang, and C. K. Soh, "Development of a broadband nonlinear two-degree-of-freedom piezoelectric energy harvester," Journal of Intelligent Material Systems and Structures, vol. 25, no. 14, pp. 1875–1889, 2014.
[6] A. Erturk, J. M. Renno, and D. J. Inman, "Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs," Journal of intelligent material systems and structures, vol. 20, no. 5, pp. 529–544, 2009.
[7] W. G. Li, S. He, and S. Yu, "Improving power density of a cantilever piezoelectric power harvester through a curved L-shaped proof mass," IEEE Transactions On Industrial Electronics, vol. 57, no. 3, pp. 868–876, 2009.
[8] Y.-H. Shin et al., "Automatic resonance tuning mechanism for ultra-wide bandwidth mechanical energy harvesting," Nano Energy, vol. 77, p. 104986, 2020.
[9] L. Yu, L. Tang, and T. Yang, "Piezoelectric Passive self-tuning energy harvester based on a beam-slider structure," Journal of Sound and Vibration, vol. 489, p. 115689, 2020.
[10] G. Shi et al., "A sensorless self-tuning resonance system for piezoelectric broadband vibration energy harvesting," IEEE Transactions on Industrial Electronics, vol. 68, no. 3, pp. 2225–2235, 2020.
[11] H.-H. Chen, S.-K. You, and W.-J. Su, "The design, fabrication and analysis of a cantilever-based tensile-mode nonlinear piezoelectric energy harvester," Mechanical Systems and Signal Processing, vol. 212, p. 111317, 2024.
[12] S. M. Osinaga, S. P. Machado, and M. Febbo, "An analytical model of the electromechanical coupling for a piezoelectric stepped buckled beam for energy harvesting applications," Mechanical Systems and Signal Processing, vol. 179, p. 109355, 2022.
[13] Y. Fan, M. H. Ghayesh, T.-F. Lu, and M. Amabili, "Design, development, and theoretical and experimental tests of a nonlinear energy harvester via piezoelectric arrays and motion limiters," International Journal of Non-Linear Mechanics, vol. 142, p. 103974, 2022.
[14] Y. Qin, T. Wei, Y. Zhao, and H. Chen, "Simulation and experiment on bridge-shaped nonlinear piezoelectric vibration energy harvester," Smart Materials and Structures, vol. 28, no. 4, p. 045015, 2019.
[15] L. Tang and Y. Yang, "A nonlinear piezoelectric energy harvester with magnetic oscillator," Applied Physics Letters, vol. 101, no. 9, 2012.
[16] S. Zhou, J. Cao, A. Erturk, and J. Lin, "Enhanced broadband piezoelectric energy harvesting using rotatable magnets," Applied physics letters, vol. 102, no. 17, 2013.
[17] H.-X. Zou et al., "Design, modeling and experimental investigation of a magnetically coupled flextensional rotation energy harvester," Smart Materials and Structures, vol. 26, no. 11, p. 115023, 2017.
[18] Z. Yan, W. Sun, M. R. Hajj, W. Zhang, and T. Tan, "Ultra-broadband piezoelectric energy harvesting via bistable multi-hardening and multi-softening," Nonlinear Dynamics, vol. 100, pp. 1057–1077, 2020.
[19] Y. Yang, H. Wu, and C. K. Soh, "Experiment and modeling of a two-dimensional piezoelectric energy harvester," Smart Materials and Structures, vol. 24, no. 12, p. 125011, 2015.
[20] R. Chen, L. Ren, H. Xia, X. Yuan, and X. Liu, "Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester," Sensors and Actuators A: Physical, vol. 230, pp. 1–8, 2015.
[21] Q. Gao et al., "Enhancing the output performance of energy harvesters using hierarchical auxetic structure and optimization techniques," IEEE Transactions on Industrial Electronics, vol. 71, no. 9, pp. 11641–11649, 2023.
[22] F. Ebrahimian, Z. Kabirian, D. Younesian, and P. Eghbali, "Auxetic clamped-clamped resonators for high-efficiency vibration energy harvesting at low-frequency excitation," Applied Energy, vol. 295, p. 117010, 2021.
[23] K. Chen, Q. Gao, S. Fang, D. Zou, Z. Yang, and W.-H. Liao, "An auxetic nonlinear piezoelectric energy harvester for enhancing efficiency and bandwidth," Applied Energy, vol. 298, p. 117274, 2021.
[24] K. Chen, S. Fang, Q. Gao, D. Zou, J. Cao, and W.-H. Liao, "An enhanced nonlinear piezoelectric energy harvester with multiple rotating square unit cells," Mechanical Systems and Signal Processing, vol. 173, 2022, doi: 10.1016/j.ymssp.2022.109065.
[25] K. Chen, S. Fang, Z. Lai, J. Cao, and W.-H. Liao, "A frequency up-conversion rotational energy harvester with auxetic structures for high power output," Smart Materials and Structures, vol. 32, no. 4, p. 045019, 2023.
[26] J. A. Krishnaswamy, F. C. Buroni, E. García-Macías, R. Melnik, L. Rodriguez-Tembleque, and A. Saez, "Design of lead-free PVDF/CNT/BaTiO3 piezocomposites for sensing and energy harvesting: the role of polycrystallinity, nanoadditives, and anisotropy," Smart Materials and Structures, vol. 29, no. 1, p. 015021, 2019.
[27] D. Shen, J.-H. Park, J. Ajitsaria, S.-Y. Choe, H. C. Wikle, and D.-J. Kim, "The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting," Journal of Micromechanics and Microengineering, vol. 18, no. 5, p. 055017, 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99972-
dc.description.abstract傳統懸臂梁式壓電能量採集器具有頻寬狹窄、應變分佈不均及發電效率偏低等問題,限制其於實際應用中的能量轉換效能與穩定性。本研究提出一種基於拉脹結構之雙夾持拉伸式壓電能量採集器,採用SUS301不鏽鋼梁作為主體基梁,其自由端連接PVDF壓電材料,並於下方黏貼以PLA製成之拉脹結構,形成兼具柔性與幾何非線性的彈性梁。本研透過ANSYS Workbench、APDL建立三維有限元素模型,模擬幾何結構與材料參數對系統響應之影響,並製作原型進行實驗驗證。於ANSYS中進行模態、靜態與暫態分析,並探討七種不同參數之拉脹結構採集器與無拉脹結構採集器,分別藉由調整拉脹結構厚度與壓電片厚度使各模型第一模態共振頻率一致,作為比較基準。接著製作無拉脹結構採集器與拉脹結構採集器原型,於 0.3 g至0.5 g 掃頻激振加速度下量測電壓、位移響應並與暫態模擬比對;模擬能準確預測峰值頻率與幅值,驗證模型可靠,但由於壓電片僅具單軸壓電效應即"e_32 遠小於e_31,因此拉脹結構採集器在實驗結果中較無明顯的效能提升,凸顯雙向壓電材料對能量耦合的重要性。最後,在理想條件e_32 = e_31 下進行純模擬評估,並透過靜態分析選出於不同參數組的拉脹結構採集器在橫向應力和縱向應力表現較佳的三組拉脹結構採集器與無拉脹結構採集器之定頻暫態響應;結果顯示最佳參數組拉脹結構採集器於0.5 g激振時電壓可達8.87 V,較無拉脹結構採集器提升4.01倍,並於最佳負載 10 MΩ下達到最大功率54.4 µW,增幅3.4倍。zh_TW
dc.description.abstractConventional cantilever type piezoelectric energy harvesters suffer from narrow operational bandwidth, non-uniform strain distribution, and low power conversion efficiency, all of which undermine practical performance and stability. To address these drawbacks, this study proposes a clamped clamped tensile auxetic piezoelectric energy harvester (APEH). The device consists of an SUS301 stainless steel beam bonded to a PVDF piezoelectric layer at its free end, with a PLA auxetic lattice attached beneath to create a flexible beam that exhibits pronounced geometric nonlinearity. A three dimensional finite element model was developed in ANSYS Workbench and APDL to explore the influence of geometry and material Parameters, and prototypes were fabricated for validation. Seven auxetic designs with different Parameter sets, together with one non auxetic harvester, were analyzed. By jointly adjusting the auxetic lattice and PVDF thickness, the first bending mode frequency of every model was aligned to provide a fair comparison baseline. Prototypes of the non-auxetic and auxetic harvesters were tested under base excitation sweeps from 0.3 g to 0.5 g. Transient simulations closely reproduced the measured peak frequencies and amplitudes, confirming model reliability. However, because the PVDF film has an almost negligible transverse piezoelectric coefficient (e_32 ≪ e_31), the auxetic prototype showed little performance gain, underscoring the need for biaxial piezoelectric materials to maximize coupling. Under the ideal condition e_32 = e_31 , purely numerical studies were conducted. Static analyses identified three auxetic configurations with the best combination of transverse and longitudinal stresses; their steady state responses were compared with the non-auxetic baseline. The optimal auxetic harvester achieved 8.87 V at 0.5 g, 4.01 times higher than the device without the auxetic structure, and produced 54.4 µW at the optimal 10 MΩ load, and 3.4 times increase.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-23T16:04:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-23T16:04:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口委審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 x
符號表 xi
Chapter 1 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.3 研究動機與方法 9
1.4 論文架構 10
Chapter 2 壓電能量擷取理論 11
2.1 壓電效應 11
2.2 壓電本構方程式 13
Chapter 3 壓電能量採集器模型建構和分析 15
3.1 採集器模擬分析方法與程序 15
3.1.1 拉脹結構設計介紹 15
3.1.2 元素選用與網格劃分 18
3.1.3 採集器幾何配置與模擬方式 22
3.2 參數設定 28
3.2.1 壓電材料參數設定 28
3.2.2 結構材料參數設定 30
Chapter 4 實驗設計 31
4.1 原型設計和製作 31
4.2 實驗設備 34
4.3 實驗流程 37
Chapter 5 結果驗證與討論 39
5.1 掃頻驗證 41
5.2 模擬分析與探討 47
5.2.1 模態分析 47
5.2.2 靜態分析 50
5.2.3 暫態分析 58
5.3 系統功率與最佳阻抗 68
Chapter 6 結論與未來展望 72
6.1 結論 72
6.2 未來展望 73
參考文獻 74
附錄A 不同w4拉脹結構採集器之第一模態圖形 76
附錄B 不同"w4" 拉脹結構採集器之應變與變形圖 78
-
dc.language.isozh_TW-
dc.subject壓電能量採集器zh_TW
dc.subject拉脹結構zh_TW
dc.subject軸向拉伸zh_TW
dc.subject非線性硬化zh_TW
dc.subjectAuxetic structureen
dc.subjectAxial stretchingen
dc.subjectPiezoelectric energy harvesteren
dc.subjectNonlinear hardeningen
dc.title探討拉脹結構對於拉伸式非線性壓電能量採集器之性能影響zh_TW
dc.titleInvestigation of the Performance Impact of Auxetic Structures on Tensile-Mode Nonlinear Piezoelectric Energy Harvestersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳蓉珊;王建凱zh_TW
dc.contributor.oralexamcommitteeJung-San Chen;Chien-Kai Wangen
dc.subject.keyword壓電能量採集器,拉脹結構,軸向拉伸,非線性硬化,zh_TW
dc.subject.keywordPiezoelectric energy harvester,Auxetic structure,Axial stretching,Nonlinear hardening,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202501965-
dc.rights.note未授權-
dc.date.accepted2025-07-22-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved