Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99971
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林能裕zh_TW
dc.contributor.advisorNeng-Yu Linen
dc.contributor.author余沁緹zh_TW
dc.contributor.authorChin-Ti Yuen
dc.date.accessioned2025-09-22T16:11:20Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-07-14-
dc.identifier.citation1. Aibar-Almazán A, Voltes-Martínez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile MdC, López-Ruiz E. Current status of the diagnosis and management of osteoporosis. International journal of molecular sciences. 2022;23(16):9465.
2. Fan Y, Li Q, Liu Y, Miao J, Zhao T, Cai J, et al. Sex-and Age-Specific Prevalence of Osteopenia and Osteoporosis: Sampling Survey. JMIR Public Health and Surveillance. 2024;10(1):e48947.
3. Xiao P-L, Cui A-Y, Hsu C-J, Peng R, Jiang N, Xu X-H, et al. Global, regional prevalence, and risk factors of osteoporosis according to the World Health Organization diagnostic criteria: a systematic review and meta-analysis. Osteoporosis International. 2022;33(10):2137-53.
4. Lee M-T, Fu S-H, Hsu C-C, Chen H-M, Lin J-W, Tsai K-S, et al. Epidemiology and clinical impact of osteoporosis in Taiwan: A 12-year trend of a nationwide population-based study. Journal of the Formosan Medical Association. 2023;122:S21-S35.
5. Klibanski A, Adams-Campbell L, Bassford T, Blair SN, Boden SD, Dickersin K, et al. Osteoporosis prevention, diagnosis, and therapy. Journal of the American medical association. 2001;285(6):785-95.
6. Kemmak AR, Rezapour A, Jahangiri R, Nikjoo S, Farabi H, Soleimanpour S. Economic burden of osteoporosis in the world: A systematic review. Medical journal of the Islamic Republic of Iran. 2020;34:154.
7. Chaudhary NK, Sunuwar DR, Sapkota MR, Pant S, Pradhan M, Bhandari KK. Prevalence of osteoporosis and associated factors among people aged 50 years and older in the Madhesh province of Nepal: a community-based cross-sectional study. Journal of Health, Population and Nutrition. 2024;43(1):100.
8. Qin A, Cheng TS, Pavlos N, Lin Z, Dai K, Zheng M. V-ATPases in osteoclasts: structure, function and potential inhibitors of bone resorption. The international journal of biochemistry & cell biology. 2012;44(9):1422-35.
9. Juliet E, Compston M. R. & McClung, WDL Osteoporosis. Lancet. 2019;393:364-76.
10. Song S, Guo Y, Yang Y, Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacology & therapeutics. 2022;237:108168.
11. Kenkre J, Bassett J. The bone remodelling cycle. Annals of clinical biochemistry. 2018;55(3):308-27.
12. Rowe P, Koller A, Sharma S. Physiology, bone remodeling. 2018.
13. Hadjidakis DJ, Androulakis II. Bone remodeling. Annals of the New York academy of sciences. 2006;1092(1):385-96.
14. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. Journal of biological chemistry. 2010;285(33):25103-8.
15. Feng X, McDonald JM. Disorders of bone remodeling. Annual Review of Pathology: Mechanisms of Disease. 2011;6(1):121-45.
16. Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 subunit in secretory lysosome trafficking in osteoclasts. Biological and Pharmaceutical Bulletin. 2022;45(10):1426-31.
17. Lacombe J, Karsenty G, Ferron M. Regulation of lysosome biogenesis and functions in osteoclasts. Cell cycle. 2013;12(17):2744-52.
18. Ahmadzadeh K, Vanoppen M, Rose CD, Matthys P, Wouters CH. Multinucleated giant cells: current insights in phenotype, biological activities, and mechanism of formation. Frontiers in cell and developmental biology. 2022;10:873226.
19. Duan X, Yang S, Zhang L, Yang T. V-ATPases and osteoclasts: ambiguous future of V-ATPases inhibitors in osteoporosis. Theranostics. 2018;8(19):5379.
20. Stransky L, Cotter K, Forgac M. The function of V-ATPases in cancer. Physiological reviews. 2016;96(3):1071-91.
21. Jansen EJ, Holthuis JC, McGrouther C, Burbach JPH, Martens GJ. Intracellular trafficking of the vacuolar H+-ATPase accessory subunit Ac45. Journal of Cell Science. 1998;111(20):2999-3006.
22. Qin A, Cheng TS, Lin Z, Pavlos NJ, Jiang Q, Xu J, et al. Versatile roles of V-ATPases accessory subunit Ac45 in osteoclast formation and function. PloS one. 2011;6(11):e27155.
23. Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone. 2001;28(5):513-23.
24. Bi H, Chen X, Gao S, Yu X, Xiao J, Zhang B, et al. Key triggers of osteoclast-related diseases and available strategies for targeted therapies: a review. Frontiers in medicine. 2017;4:234.
25. He M, Zhou X, Wang X. Glycosylation: mechanisms, biological functions and clinical implications. Signal Transduction and Targeted Therapy. 2024;9(1):194.
26. Thompson N, Wakarchuk W. O-glycosylation and its role in therapeutic proteins. Bioscience Reports. 2022;42(10):BSR20220094.
27. Bennett EP, Mandel U, Clausen H, Gerken TA, Fritz TA, Tabak LA. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 2012;22(6):736-56.
28. Magalhães A, Duarte HO, Reis CA. The role of O-glycosylation in human disease. Molecular Aspects of Medicine. 2021;79:100964.
29. Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Current opinion in structural biology. 2011;21(5):576-82.
30. Shan A, Lu J, Xu Z, Li X, Xu Y, Li W, et al. Polypeptide N-acetylgalactosaminyltransferase 18 non-catalytically regulates the ER homeostasis and O-glycosylation. Biochimica et Biophysica Acta (BBA)-General Subjects. 2019;1863(5):870-82.
31. Reily C, Stewart TJ, Renfrow MB, Novak J. Glycosylation in health and disease. Nature Reviews Nephrology. 2019;15(6):346-66.
32. Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, et al. T n and sialyl‐Tn antigens, aberrant O‐glycomics as human disease markers. PROTEOMICS–Clinical Applications. 2013;7(9-10):618-31.
33. Xia T, Xiang T, Xie H. Update on the role of C1GALT1 in cancer. Oncology Letters. 2022;23(3):1-11.
34. Lin M-C, Chien P-H, Wu H-Y, Chen S-T, Juan H-F, Lou P-J, et al. C1GALT1 predicts poor prognosis and is a potential therapeutic target in head and neck cancer. Oncogene. 2018;37(43):5780-93.
35. Ju T, Brewer K, D'Souza A, Cummings RD, Canfield WM. Cloning and expression of human core 1 β1, 3-galactosyltransferase. Journal of Biological Chemistry. 2002;277(1):178-86.
36. Sun X, Zhan M, Sun X, Liu W, Meng X. C1GALT1 in health and disease. Oncology letters. 2021;22(2):1-15.
37. Schoonderwoert VTG, Martens GJ. Targeted disruption of the mouse gene encoding the V-ATPase accessory subunit Ac45. Molecular membrane biology. 2002;19(1):67-71.
38. Jansen EJ, Timal S, Ryan M, Ashikov A, Van Scherpenzeel M, Graham LA, et al. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation. Nature communications. 2016;7(1):11600.
39. Louagie E, Taylor NA, Flamez D, Roebroek AJ, Bright NA, Meulemans S, et al. Role of furin in granular acidification in the endocrine pancreas: identification of the V-ATPase subunit Ac45 as a candidate substrate. Proceedings of the National Academy of Sciences. 2008;105(34):12319-24.
40. Yang DQ, Feng S, Chen W, Zhao H, Paulson C, Li YP. V‐ATPase subunit ATP6AP1 (Ac45) regulates osteoclast differentiation, extracellular acidification, lysosomal trafficking, and protease exocytosis in osteoclast‐mediated bone resorption. Journal of bone and mineral research. 2012;27(8):1695-707.
41. Wang L, Wu D, Robinson CV, Wu H, Fu T-M. Structures of a complete human V-ATPase reveal mechanisms of its assembly. Molecular cell. 2020;80(3):501-11. e3.
42. Schoonderwoert VTG, Jansen EJ, Martens GJ. The fate of newly synthesized V‐ATPase accessory subunit Ac45 in the secretory pathway. European journal of biochemistry. 2002;269(7):1844-53.
43. Campos D, Freitas D, Gomes J, Magalhaes A, Steentoft C, Gomes C, et al. Probing the O-glycoproteome of gastric cancer cell lines for biomarker discovery*[S]. Molecular & Cellular Proteomics. 2015;14(6):1616-29.
44. Char R, Liu Z, Jacqueline C, Davieau M, Delgado M-G, Soufflet C, et al. RUFY3 regulates endolysosomes perinuclear positioning, antigen presentation and migration in activated phagocytes. Nature Communications. 2023;14(1):4290.
45. Pascale MC, Erra MC, Malagolini N, Serafini-Cessi F, Leone A, Bonatti S. Post-translational processing of an O-glycosylated protein, the human CD8 glycoprotein, during the intracellular transport to the plasma membrane. J Biol Chem. 1992;267(35):25196-201.
46. Fei Y, Yan X, Liang M, Zhou S, Xu D, Li L, et al. Lysosomal gene ATP6AP1 promotes doxorubicin resistance via up-regulating autophagic flux in breast cancer. Cancer Cell Int. 2024;24(1):394.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99971-
dc.description.abstract原發性骨質疏鬆症是一種潛在且慢性的疾病,其主要特徵為雌激素缺乏導致的骨密度降低,進而增加骨折風險。在正常骨組織中,骨質動態由蝕骨細胞(osteoclasts)與成骨細胞(osteoblasts)協同維持,兩者在骨吸收與骨生成間保持平衡。蝕骨細胞負責骨質降解,藉由分泌酸與蛋白酶來溶解礦化基質與膠原蛋白,V-ATPase(質子幫浦)在此過程中扮演關鍵角色。V-ATPase 是一種 ATP 驅動的氫離子幫浦,主要分布於蝕骨細胞的皺摺緣(ruffled border)與溶酶體中。於皺摺緣,V-ATPase 將氫離子(H⁺)輸送至蝕骨陷窩(resorption lacunae),造成局部酸化以促進骨基質的溶解;而在細胞內,則調控溶酶體 pH,進而影響蛋白酶活性與胞器運輸,調節蝕骨細胞功能。氧型醣基化(O-glycosylation)是一種影響蛋白質摺疊、定位、穩定性與活性的醣修飾機制。Core 1 β1,3-半乳糖基轉移酶(C1GALT1)為參與氧型醣基化的重要酵素,負責催化 Core 1 結構的形成,該修飾主要發生於細胞膜蛋白上。本研究旨在探討氧型醣基化酵素 C1GALT1 對 V-ATPase 活性及其細胞內運輸的調控角色。我們在 HeLa 細胞中敲低 C1GALT1 表現,並以長柔毛野豌豆(VVA)凝集素進行 lectin pull-down 分析。結果顯示,C1GALT1 調控 ATP6AP1 的氧型醣基化,卻不影響 ATP6V1A 或 ATP6VoA1。為進一步探討 C1GALT1 在蝕骨細胞中對 V-ATPase 的影響,我們利用 C1GALT1 條件式剔除小鼠之骨髓細胞進行蝕骨細胞分化。免疫螢光染色結果顯示,C1GALT1 缺失不影響 V-ATPase 的組裝與亞基交互作用,但會干擾 ATP6V1A 與 ATP6VoA3 正確定位至早期內體與溶酶體,並降低這些亞基(ATP6V1A、ATP6VoA3、ATP6AP1)於細胞膜上的分布。此外,C1GALT1 抑制亦導致內體和溶酶體聚集,改變其細胞內分布。綜合而言,我們的研究發現 C1GALT1 透過調控 ATP6AP1 的氧型醣基化,參與 V-ATPase 的細胞內運輸與功能。儘管 C1GALT1 缺失不影響 V-ATPase 的亞基表現與組裝,卻會干擾其定位與溶酶體酸化,導致溶酶體 pH 升高,影響蛋白酶活性,進而抑制蝕骨細胞的骨吸收能力。zh_TW
dc.description.abstractPrimary osteoporosis, a major public health concern, is characterized by excessive osteoclast-mediated bone resorption, leading to decreased bone density and an increased risk of fracture. Osteoclasts degrade bone matrix through vacuolar-type H⁺-ATPase (V-ATPase), an ATP-dependent proton pump that is essential for acidifying the resorption lacuna. Proper V-ATPase localization and function rely on protein modifications, yet the role of O-glycosylation in this process remains poorly understood. Core 1 β1,3-galactosyltransferase (C1GALT1), a key enzyme in O-linked glycosylation, is crucial for protein stability, trafficking, and function. While glycosylation defects are implicated in lysosomal dysfunction, the specific impact of C1GALT1 mediated O-glycosylation on osteoclast activity and V-ATPase regulation is unclear. Our previous findings indicated that C1GALT1 deficiency leads to multivesicular body accumulation and increased lysosomal pH, suggesting a role in regulating lysosomal acidification. Here, we investigate whether C1GALT1 regulates osteoclast function by modulating V-ATPase trafficking. Using HeLa cells and VVA lectin pull-down assays, we found that C1GALT1 is required for ATP6AP1 O-glycosylation, whereas ATP6V1A and ATP6VoA1 do not exhibit detectable O-glycosylation. Despite this, C1GALT1 knockdown does not alter V-ATPase subunit mRNA and protein expression levels or assembly but instead disrupts proper subunit trafficking and localization. To further assess its role in osteoclastogenesis, we differentiated bone marrow-derived osteoclasts from C1GALT1 flox/ flox LysM-Cre mice. Immunofluorescence staining showed that C1GALT1 deficiency did not affect the assembly of V-ATPase or the interaction between its subunits. However, it impaired the proper localization of ATP6V1A and ATP6VoA3 to early endosomes and lysosomes, and reduced the membrane distribution of these subunits, including ATP6V1A, ATP6VoA3, and ATP6AP1. Our findings demonstrate that C1GALT1 plays a critical role in osteoclast-mediated bone resorption by regulating the intracellular trafficking of V-ATPase. Specifically, C1GALT1-mediated O-glycosylation of ATP6AP1 is essential for the proper localization of V-ATPase subunits, which in turn facilitates lysosomal acidification and function in osteoclasts. Although C1GALT1 deficiency does not alter the expression or assembly of V-ATPase subunits, it disrupts their trafficking and impairs lysosomal function, ultimately leading to reduced bone resorption. These results reveal a novel function for O-glycosylation in osteoclast activity and suggest that targeting C1GALT1-mediated O glycosylation could be a potential therapeutic strategy for osteoporosis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:11:20Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:11:20Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
中文摘要 III
ABSTRACT IV
CHAPTER ONE INTRODUCTION 1
1.1 Implications for Osteoclast Function and Osteoporosis Therapy 1
1.11 Osteoporosis 1
1.12 Overview of Bone Homeostasis 2
1.13 Bone remodeling 3
1.14 Bone resorption 4
1.2 The Role of V-ATPase in Osteoclast Function and Bone Resorption 7
1.3 Protein Glycosylation and ATP6AP1 10
1.3.1 Glycosylation 10
1.3.2 N-glycosylation 11
1.3.4 C1GALT1 12
1.3.5 ATP6AP1 14
CHAPTER TWO SPECIFIC AIMS AND HYPOTHESIS 17
CHAPTER THREE MATERIALS AND METHODS 18
3.1 Materials 18
3.1.1 Antibody 18
3.1.2 RNA interference 19
3.1.3 Primers 19
3.1.4 CRISPR Ca9 19
3.1.5 Plasmid 20
3.1.6 Chemicals and Reagents 20
3.2 Methods 22
3.2.1 Cell line and Cell culture 22
3.2.2 plasmid constructs 22
3.2.3 Transfection of Hela cells with cDNA constructs 23
3.2.4 Osteoclast differentiation assay 23
3.2.5 Western blot 24
3.2.6 RNA extraction 25
3.2.8 Quantitative real-time PCR 25
3.2.9 Lectin pull down and Immunoprecipitation 26
3.2.10 Immunoprecipitation (IP) 26
3.2.11 Immunofluorescence (IF) 27
3.2.12 Quantification and statistical analysis 28
CHAPTER FOUR RESULTS 29
4.1 C1GALT1 regulates the O-glycosylation of the V-ATPase subunit 29
4.2 C1GALT1 knockdown does not affect the expression of V-ATPase subunits at the mRNA or protein level. 30
4.3 C1GALT1 knockdown does not regulate V-ATPase assembly, localization, or subunit interactions. 31
4.4 C1GALT1 knockdown impairs ATP6V1A and ATP6VoA3 localization to early endosomes. 32
4.5 C1GALT1 knockdown disrupts ATP6V1A and ATP6VoA3 localization to lysosomes. 33
4.6 C1GALT1 knockdown decreases the distribution of V-ATPase subunits (ATP6V1A, ATP6VoA3, and ATP6AP1) to the cell membrane. 34
4.7 C1GALT1 Knockout Alters the Spatial Distribution of Endolysosomal Compartments and V-ATPase Localization in Osteoclasts. 35
CHAPTER FIVE. DISCUSSION 36
5.1 C1GALT1 Knockout Affects V-ATPase Plasma Membrane Targeting and Osteoclast Function. 36
5.2 C1GALT1 Knockdown Disrupts Endosome-Lysosome Transport and V-ATPase Localization. 37
5.3 Investigating the Role of ATP6AP1 O-Glycosylation in Lysosomal Acidification. 38
CHAPTER SIX. FIGURES 39
REFERENCES 60
-
dc.language.isoen-
dc.subject溶酶體酸化zh_TW
dc.subject蝕骨細胞zh_TW
dc.subjectC1GALT1zh_TW
dc.subject氧型醣基化zh_TW
dc.subjectATP6AP1zh_TW
dc.subjectV-ATPasezh_TW
dc.subjectC1GALT1en
dc.subjectOsteoclasten
dc.subjectLysosomal acidificationen
dc.subjectO-glycosylationen
dc.subjectATP6AP1en
dc.title探討O-連接型醣基化對V-ATPase活性的影響zh_TW
dc.titleTo investigate the impact of targeting O-linked glycosylation on V-ATPase activityen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭靜穎;陳政彰zh_TW
dc.contributor.oralexamcommitteeChing-Ying Kuo;Cheng-Chang Chenen
dc.subject.keyword蝕骨細胞,溶酶體酸化,V-ATPase,ATP6AP1,氧型醣基化,C1GALT1,zh_TW
dc.subject.keywordOsteoclast,Lysosomal acidification,ATP6AP1,O-glycosylation,C1GALT1,en
dc.relation.page63-
dc.identifier.doi10.6342/NTU202501391-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept解剖學暨細胞生物學研究所-
dc.date.embargo-lift2030-07-05-
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved