請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏志 | zh_TW |
| dc.contributor.advisor | Hung-Chih Yang | en |
| dc.contributor.author | 黃茂諮 | zh_TW |
| dc.contributor.author | Mao-Tzu Huang | en |
| dc.date.accessioned | 2025-09-22T16:10:07Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | International Agency for Research on Cancer. (2024). Cancer Today. World Health Organization. https://gco.iarc.fr/today
Llovet, J.M., Kelley, R.K., Villanueva, A. et al. Hepatocellular carcinoma. Nat Rev Dis Primers 7, 6 (2021).https://doi.org/10.1038/s41572-020-00240-3 Chang, I.-C., Huang, S.-F., Chen, P.-J., Chen, C.-L., Chen, C.-L., Wu, C.-C., Tsai, C.-C., Lee, P.-H., Chen, M.-F., Lee, C.-M., Yu, H.-C., Lo, G.-H., Yeh, C.-T., Hong, C.-C., Eng, H.-L., Wang, J., Tseng, H.-H., Hsiao, C.-H., Wu, H.-D. I., . . . Liaw, Y.-F. (2016). The Hepatitis Viral Status in Patients With Hepatocellular Carcinoma: a Study of 3843 Patients From Taiwan Liver Cancer Network. Medicine, 95(15), e3284. https://doi.org/10.1097/md.0000000000003284 Lee, J. S. (2015). The mutational landscape of hepatocellular carcinoma. Clin Mol Hepatol, 21(3), 220-229. https://doi.org/10.3350/cmh.2015.21.3.220 Llovet, J. M., Castet, F., Heikenwalder, M., Maini, M. K., Mazzaferro, V., Pinato, D. J., Pikarsky, E., Zhu, A. X., & Finn, R. S. (2022). Immunotherapies for hepatocellular carcinoma. Nature Reviews Clinical Oncology, 19(3), 151-172. https://doi.org/10.1038/s41571-021-00573-2 Xue, R., Zhang, Q., Cao, Q., Kong, R., Xiang, X., Liu, H., Feng, M., Wang, F., Cheng, J., Li, Z., Zhan, Q., Deng, M., Zhu, J., Zhang, Z., & Zhang, N. (2022). Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature, 612(7938), 141-147. https://doi.org/10.1038/s41586-022-05400-x Bruni, S., Mercogliano, M. F., Mauro, F. L., Cordo Russo, R. I., & Schillaci, R. (2023). Cancer immune exclusion: breaking the barricade for a successful immunotherapy [Review]. Frontiers in Oncology, Volume 13 - 2023. https://doi.org/10.3389/fonc.2023.1135456 Joyce, J. A., & Fearon, D. T. (2015). T cell exclusion, immune privilege, and the tumor microenvironment. Science, 348(6230), 74-80. https://doi.org/doi:10.1126/science.aaa6204 Ducreux, M., Abou-Alfa, G. K., Bekaii-Saab, T., Berlin, J., Cervantes, A., de Baere, T., Eng, C., Galle, P., Gill, S., Gruenberger, T., Haustermans, K., Lamarca, A., Laurent-Puig, P., Llovet, J. M., Lordick, F., Macarulla, T., Mukherji, D., Muro, K., Obermannova, R., . . . Van Cutsem, E. (2023). The management of hepatocellular carcinoma. Current expert opinion and recommendations derived from the 24th ESMO/World Congress on Gastrointestinal Cancer, Barcelona, 2022. ESMO Open, 8(3). https://doi.org/10.1016/j.esmoop.2023.101567 Yang, Y., Li, S., Wang, Y., Zhao, Y., & Li, Q. (2022). Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduction and Targeted Therapy, 7(1), 329. https://doi.org/10.1038/s41392-022-01168-8 Meng, L., Wu, H., Wu, J., Ding, P. a., He, J., Sang, M., & Liu, L. (2024). Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks. Cell Death & Disease, 15(1), 3. https://doi.org/10.1038/s41419-023-06389-5 Cappell, K. M., & Kochenderfer, J. N. (2023). Long-term outcomes following CAR T cell therapy: what we know so far. Nature Reviews Clinical Oncology, 20(6), 359-371. https://doi.org/10.1038/s41571-023-00754-1 Hou, B., Tang, Y., Li, W., Zeng, Q., & Chang, D. (2019). Efficiency of CAR-T Therapy for Treatment of Solid Tumor in Clinical Trials: A Meta-Analysis. Disease Markers, 2019(1), 3425291. https://doi.org/https://doi.org/10.1155/2019/3425291 Li, J., Zhang, Y., Fu, T., Xing, G., Cai, H., Li, K., Xu, Y., & Tong, Y. (2024). Clinical advances and challenges associated with TCR-T cell therapy for cancer treatment [Review]. Frontiers in Immunology, Volume 15 - 2024. https://doi.org/10.3389/fimmu.2024.1487782 Weber, E. W., Maus, M. V., & Mackall, C. L. (2020). The Emerging Landscape of Immune Cell Therapies. Cell, 181(1), 46-62. https://doi.org/10.1016/j.cell.2020.03.001 Mackay, C. R. (2001). Chemokines: immunology's high impact factors. Nature Immunology, 2(2), 95-101. https://doi.org/10.1038/84298 Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature Reviews Immunology, 17(9), 559-572. https://doi.org/10.1038/nri.2017.49 Teicher, B. A., & Fricker, S. P. (2010). CXCL12 (SDF-1)/CXCR4 Pathway in Cancer. Clinical Cancer Research, 16(11), 2927-2931. https://doi.org/10.1158/1078-0432.Ccr-09-2329 Ghanem, I., Riveiro, M. E., Paradis, V., Faivre, S., de Parga, P. M., & Raymond, E. (2014). Insights on the CXCL12-CXCR4 axis in hepatocellular carcinoma carcinogenesis. Am J Transl Res, 6(4), 340-352. Jin, L., Tao, H., Karachi, A., Long, Y., Hou, A. Y., Na, M., Dyson, K. A., Grippin, A. J., Deleyrolle, L. P., Zhang, W., Rajon, D. A., Wang, Q. J., Yang, J. C., Kresak, J. L., Sayour, E. J., Rahman, M., Bova, F. J., Lin, Z., Mitchell, D. A., & Huang, J. (2019). CXCR1- or CXCR2-modified CAR T cells co-opt IL-8 for maximal antitumor efficacy in solid tumors. Nature Communications, 10(1), 4016. https://doi.org/10.1038/s41467-019-11869-4 Tian, Y., Zhang, L., Ping, Y., Zhang, Z., Yao, C., Shen, C., Li, F., Wen, C., & Zhang, Y. (2025). CCR5 and IL-12 co-expression in CAR T cells improves antitumor efficacy by reprogramming tumor microenvironment in solid tumors. Cancer Immunology, Immunotherapy, 74(2), 55. https://doi.org/10.1007/s00262-024-03909-w Liu, G., Rui, W., Zheng, H., Huang, D., Yu, F., Zhang, Y., Dong, J., Zhao, X., & Lin, X. (2020). CXCR2-modified CAR-T cells have enhanced trafficking ability that improves treatment of hepatocellular carcinoma. European Journal of Immunology, 50(5), 712-724. https://doi.org/https://doi.org/10.1002/eji.201948457 Lesch, S., Blumenberg, V., Stoiber, S., Gottschlich, A., Ogonek, J., Cadilha, B. L., Dantes, Z., Rataj, F., Dorman, K., Lutz, J., Karches, C. H., Heise, C., Kurzay, M., Larimer, B. M., Grassmann, S., Rapp, M., Nottebrock, A., Kruger, S., Tokarew, N., . . . Kobold, S. (2021). T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours. Nature Biomedical Engineering, 5(11), 1246-1260. https://doi.org/10.1038/s41551-021-00737-6 Zheng, H. C., Xue, H., & Yun, W. J. (2023). An overview of mouse models of hepatocellular carcinoma. Infect Agent Cancer, 18(1), 49. https://doi.org/10.1186/s13027-023-00524-9 周學恩(2021)。在高度定量的肝癌小鼠模式中藉由解析腫瘤微環境來增進T細胞療法。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/xdb583。 Katoh, H., Wang, D., Daikoku, T., Sun, H., Dey, S. K., & Dubois, R. N. (2013). CXCR2-expressing myeloid-derived suppressor cells are essential to promote colitis-associated tumorigenesis. Cancer Cell, 24(5), 631-644. https://doi.org/10.1016/j.ccr.2013.10.009 Kurachi, M., Kurachi, J., Chen, Z., Johnson, J., Khan, O., Bengsch, B., Stelekati, E., Attanasio, J., McLane, L. M., Tomura, M., Ueha, S., & Wherry, E. J. (2017). Optimized retroviral transduction of mouse T cells for in vivo assessment of gene function. Nature Protocols, 12(9), 1980-1998. https://doi.org/10.1038/nprot.2017.083 Kerkar, S. P., Sanchez-Perez, L., Yang, S., Borman, Z. A., Muranski, P., Ji, Y., Chinnasamy, D., Kaiser, A. D. M., Hinrichs, C. S., Klebanoff, C. A., Scott, C. D., Gattinoni, L., Morgan, R. A., Rosenberg, S. A., & Restifo, N. P. (2011). Genetic Engineering of Murine CD8+ and CD4+ T Cells for Preclinical Adoptive Immunotherapy Studies. Journal of Immunotherapy, 34(4), 343-352. https://doi.org/10.1097/CJI.0b013e3182187600 Delville, M., Soheili, T., Bellier, F., Durand, A., Denis, A., Lagresle-Peyrou, C., Cavazzana, M., Andre-Schmutz, I., & Six, E. (2018). A Nontoxic Transduction Enhancer Enables Highly Efficient Lentiviral Transduction of Primary Murine T Cells and Hematopoietic Stem Cells. Molecular Therapy Methods & Clinical Development, 10, 341-347. https://doi.org/10.1016/j.omtm.2018.08.002 Mehta, A. K., Majumdar, S. S., Alam, P., Gulati, N., & Brahmachari, V. (2009). Epigenetic regulation of cytomegalovirus major immediate-early promoter activity in transgenic mice. Gene, 428(1), 20-24. https://doi.org/https://doi.org/10.1016/j.gene.2008.09.033 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99965 | - |
| dc.description.abstract | 肝細胞癌為一種原發性肝癌,其占比高達所有原發性肝癌之90%。治療方式常見的有手術切除、放射治療,或是藥物治療如酪胺酸酶抑制劑(TKI)和免疫製劑如免疫檢查點抑制劑(ICI)等。而近年來細胞治療逐漸盛行,尤其是CAR-T在治療血液腫瘤有所成果。然而在固態腫瘤上,細胞治療仍然無法有顯著治療效果,原因與腫瘤形成之免疫微環境有關。固態腫瘤如肝癌在細胞治療下無法達到有效的治療效果。原因可能與抑制性免疫微環境及T細胞排除現象有關。為了跨越此阻礙,我們設計能過量表現趨化因子接收器的T細胞。過去的研究證實趨化因子配體可以吸引有相對應接收器之T細胞進而增強T細胞浸潤。所以我們先分析自發性肝癌模型中的趨化因子表現概況,並聚焦於CXCR2。我們發現在HCC中存在大量CXCR2⁺細胞,且腫瘤細胞表現CXCR2相關的配體。因此我們選擇CXCR2作為T細胞基因改造的候選趨化因子受體。我們建立了轉導流程以產生基因改造細胞。不幸的是,我們以逆轉錄病毒或慢病毒載體轉導的CXCR2過度表現T細胞在體外或體內無法長時間維持。導致CXCR2過度表現細胞存活短暫的原因尚不明確,因此我們呈現了解決此問題的策略,以及在我們自發性 HCC 小鼠模型中進行體內移植性細胞治療的初步實驗結果。 | zh_TW |
| dc.description.abstract | Hepatocellular carcinoma (HCC) is a primary liver cancer with high prevalence and accounts for approximately 90% of all primary liver cancer. Common treatments include physical interventions such as surgical resection and radiotherapy, and pharmacological therapies including tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). In recent years, cellular therapies such as CAR-T and TCR-T have become increasingly prevalent in cancer treatment, especially the use of CAR-T cells in the treatment of hematologic malignancies. However, cell therapy has shown limited clinical efficacy in solid tumors due to the immunosuppressive tumor microenvironment (TME) and T cell exclusion. To overcome this barrier, we designed engineered CD8+ T cells expressing specific chemokine receptors. Previous research has shown that chemokine ligands in the TME can attract T cells expressing the corresponding chemokine receptors, thereby enhancing T cell infiltration. Following that we first analyzed the chemokine profile inside our spontaneous HCC model, focusing on CXCR2. We found many CXCR2⁺ cells in HCC, and CXCR2-related ligands were expressed by tumor cells. Therefore, we selected CXCR2 as our chemokine receptor candidate for T cell engineering. We established a transduction protocol for generating engineered cells using retroviral or lentiviral vectors. Unfortunately, our initial attempt to generate retroviral or lentiviral vector-transduced CXCR2-overexpressing T cells could not make them sustained in vitro and in vivo. The reason causing the short-living period of our retroviral transduced CXCR2-overexpression cells remained unclear. We thus presented the strategies we had adopted to troubleshoot this issue, and the results of our pilot experiment for in vivo adoptive cell therapy in our spontaneous HCC mouse model. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:10:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:10:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 2
致謝 3 摘要 4 Abstract 5 目次 7 圖次 10 表次 11 1. Introduction 12 1.1 Hepatocellular carcinoma 12 1.1.1 Background 12 1.1.2 Immunosuppressive features of tumor microenvironment in HCC 13 1.2 Therapies for HCC 14 1.2.1 Current treatment of HCC 14 1.2.2 Cell therapies and their barriers 15 1.2.3 Strategy to enhance cell therapies 17 1.3 Engineering T cells with chemokine receptors 18 1.3.1 Chemokine receptor and ligand 18 1.3.2 Chemokine distribution in the HCC TME 19 1.3.3 Current research on chemokine receptor-overexpressing engineered T cell 20 1.3.4 Application of CXCR2-overexpressing TCR-T cell against the spontaneous HCC mouse model 22 2. Specific aims 24 3. Materials and Methods 25 3.1 Mice 25 3.2 Spontaneous hepatocellular carcinoma mouse model 25 3.3 Lentivirus and retrovirus production 26 3.4 Primary T cell activation 27 3.5 Transduction of primary T cells 27 3.6 Isolation of Immune Cells from the Liver 28 3.7 Cell staining and flow cytometry 29 3.8 Immunofluorescence assay 29 3.9 Antibody 30 3.10 Bulk RNA-seq data analysis 31 3.11 Statistic analysis 31 4. Result 32 4.1 Establishment of a spontaneous HCC mouse model with identifiable and quantifiable tumor load and trackable tumor antigen-specific T cells 32 4.2 Differential chemokine receptor profiles of immune cells among normal liver, early tumors, and advanced tumors 33 4.3 Ly6G⁺ MDSCs showed high levels of infiltration in the tumor regions of HCC 35 4.4 CXCR2-associated ligands are highly expressed by HCC tumor cells 36 4.5 Engineering primary CD8+ T cells by transduction with the retroviral vector 37 4.6 Lentiviral transduced CD8⁺ T cells with CXCR2 could not sustain properly in vitro or in vivo 39 5. Discussion 41 5.1 Overview 41 5.2 The spontaneous HCC mouse model 42 5.3 Distribution of chemokine receptors and ligands in early and advanced HCC tumors 43 5.4 Generation and Evaluation of CXCR2-Overexpressing CD8⁺ T Cells 46 Figure 49 Table 74 Reference 75 | - |
| dc.language.iso | en | - |
| dc.subject | 肝細胞癌 | zh_TW |
| dc.subject | 自發性肝癌模型 | zh_TW |
| dc.subject | 趨化因子 | zh_TW |
| dc.subject | CXCR2 | zh_TW |
| dc.subject | 腫瘤微環境 | zh_TW |
| dc.subject | T細胞基因改造 | zh_TW |
| dc.subject | chemokine | en |
| dc.subject | Hepatocellular carcinoma(HCC) | en |
| dc.subject | tumor microenvironment (TME) | en |
| dc.subject | T cell engineering | en |
| dc.subject | CXCR2 | en |
| dc.subject | spontaneous HCC model | en |
| dc.title | 分析表現CXCR2之基因改造CD8 T細胞在自發性肝癌小鼠模式中抑制腫瘤之能力 | zh_TW |
| dc.title | To assess the antitumor efficacy of genetically engineered CD8+ T cells expressing CXCR2 in a spontaneous hepatocellular carcinoma mouse model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾岱宗;陳秉民;陳佑宗 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Chung Tseng;Ping-Min Chen;You-Tzung Chen | en |
| dc.subject.keyword | 肝細胞癌,自發性肝癌模型,趨化因子,CXCR2,腫瘤微環境,T細胞基因改造, | zh_TW |
| dc.subject.keyword | Hepatocellular carcinoma(HCC),spontaneous HCC model,chemokine,CXCR2,T cell engineering,tumor microenvironment (TME), | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202503482 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 微生物學研究所 | - |
| dc.date.embargo-lift | 2027-08-05 | - |
| 顯示於系所單位: | 微生物學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
