Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99960
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊宏志zh_TW
dc.contributor.advisorHung-Chih Yangen
dc.contributor.author林盈朱zh_TW
dc.contributor.authorYing-Chu Linen
dc.date.accessioned2025-09-22T16:08:56Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citation1. Sellers, S. A., Hagan, R. S., Hayden, F. G., & Fischer, W. A., 2nd (2017). The hidden burden of influenza: A review of the extra-pulmonary complications of influenza infection. Influenza and other respiratory viruses, 11(5), 372–393.
2. Conrad, A., Valour, F., & Vanhems, P. (2023). Burden of influenza in the elderly: a narrative review. Current opinion in infectious diseases, 36(4), 296–302.
3. Putri, W. C. W. S., Muscatello, D. J., Stockwell, M. S., & Newall, A. T. (2018). Economic burden of seasonal influenza in the United States. Vaccine, 36(27), 3960–3966.
4. Yu, H., Alonso, W. J., Feng, L., Tan, Y., Shu, Y., Yang, W., & Viboud, C. (2013). Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: spatio-temporal modeling of surveillance data. PLoS medicine, 10(11), e1001552.
5. Krammer, F., Smith, G. J. D., Fouchier, R. A. M., Peiris, M., Kedzierska, K., Doherty, P. C., Palese, P., Shaw, M. L., Treanor, J., Webster, R. G., & García-Sastre, A. (2018). Influenza. Nature reviews. Disease primers, 4(1), 3.
6. Taubenberger, J. K., Kash, J. C., & Morens, D. M. (2019). The 1918 influenza pandemic: 100 years of questions answered and unanswered. Science translational medicine, 11(502), eaau5485.
7. Asha, K., & Kumar, B. (2019). Emerging Influenza D Virus Threat: What We Know so Far!. Journal of clinical medicine, 8(2), 192.
8. Krammer, F., Pica, N., Hai, R., Margine, I., & Palese, P. (2013). Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. Journal of virology, 87(12), 6542–6550.
9. Parker, L., Wharton, S. A., Martin, S. R., Cross, K., Lin, Y., Liu, Y., Feizi, T., Daniels, R. S., & McCauley, J. W. (2016). Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses. The Journal of general virology, 97(6), 1333–1344.
10. Ekiert, D. C., Friesen, R. H., Bhabha, G., Kwaks, T., Jongeneelen, M., Yu, W., Ophorst, C., Cox, F., Korse, H. J., Brandenburg, B., Vogels, R., Brakenhoff, J. P., Kompier, R., Koldijk, M. H., Cornelissen, L. A., Poon, L. L., Peiris, M., Koudstaal, W., Wilson, I. A., & Goudsmit, J. (2011). A highly conserved neutralizing epitope on group 2 influenza A viruses. Science (New York, N.Y.), 333(6044), 843–850.
11. Corti, D., Voss, J., Gamblin, S. J., Codoni, G., Macagno, A., Jarrossay, D., Vachieri, S. G., Pinna, D., Minola, A., Vanzetta, F., Silacci, C., Fernandez-Rodriguez, B. M., Agatic, G., Bianchi, S., Giacchetto-Sasselli, I., Calder, L., Sallusto, F., Collins, P., Haire, L. F., Temperton, N., … Lanzavecchia, A. (2011). A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science (New York, N.Y.), 333(6044), 850–856.
12. Vogel, O. A., & Manicassamy, B. (2020). Broadly Protective Strategies Against Influenza Viruses: Universal Vaccines and Therapeutics. Frontiers in microbiology, 11, 135.
13. McMaster, S. R., Gabbard, J. D., Koutsonanos, D. G., Compans, R. W., Tripp, R. A., Tompkins, S. M., & Kohlmeier, J. E. (2015). Memory T cells generated by prior exposure to influenza cross react with the novel H7N9 influenza virus and confer protective heterosubtypic immunity. PloS one, 10(2), e0115725.
14. Sridhar, S., Begom, S., Bermingham, A., Hoschler, K., Adamson, W., Carman, W., Bean, T., Barclay, W., Deeks, J. J., & Lalvani, A. (2013). Cellular immune correlates of protection against symptomatic pandemic influenza. Nature medicine, 19(10), 1305–1312.
15. Paterson, S., Kar, S., Ung, S. K., Gardener, Z., Bergstrom, E., Ascough, S., Kalyan, M., Zyla, J., Maertzdorf, J., Mollenkopf, H. J., Weiner, J., Jozwik, A., Jarvis, H., Jha, A., Nicholson, B. P., Veldman, T., Woods, C. W., Mallia, P., Kon, O. M., Kaufmann, S. H. E., … Chiu, C. (2021). Innate-like Gene Expression of Lung-Resident Memory CD8+ T Cells during Experimental Human Influenza: A Clinical Study. American journal of respiratory and critical care medicine, 204(7), 826–841.
16. Tu, W., Mao, H., Zheng, J., Liu, Y., Chiu, S. S., Qin, G., Chan, P. L., Lam, K. T., Guan, J., Zhang, L., Guan, Y., Yuen, K. Y., Peiris, J. S., & Lau, Y. L. (2010). Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. Journal of virology, 84(13), 6527–6535.
17. Tsang, T. K., Lam, K. T., Liu, Y., Fang, V. J., Mu, X., Leung, N. H. L., Peiris, J. S. M., Leung, G. M., Cowling, B. J., & Tu, W. (2022). Investigation of CD4 and CD8 T cell-mediated protection against influenza A virus in a cohort study. BMC medicine, 20(1), 230.
18. Bui, H. H., Peters, B., Assarsson, E., Mbawuike, I., & Sette, A. (2007). Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 246–251.
19. Zheng, M. Z. M., & Wakim, L. M. (2022). Tissue resident memory T cells in the respiratory tract. Mucosal immunology, 15(3), 379–388.
20. Rotrosen, E., & Kupper, T. S. (2023). Assessing the generation of tissue resident memory T cells by vaccines. Nature reviews. Immunology, 23(10), 655–665.
21. Huang, Y. H., Khor, S. S., Zheng, X., Chen, H. Y., Chang, Y. H., Chu, H. W., Wu, P. E., Lin, Y. J., Liao, S. F., Shen, C. Y., Tokunaga, K., Lee, M. H., & HLA & KIR imputation network (HKimp.net) (2020). A high-resolution HLA imputation system for the Taiwanese population: a study of the Taiwan Biobank. The pharmacogenomics journal, 20(5), 695–704.
22. Kim, S. H., Españo, E., Padasas, B. T., Son, J. H., Oh, J., Webby, R. J., Lee, Y. R., Park, C. S., & Kim, J. K. (2024). Influenza Virus-Derived CD8 T Cell Epitopes: Implications for the Development of Universal Influenza Vaccines. Immune network, 24(3), e19.
23. Grant, E., Wu, C., Chan, K. F., Eckle, S., Bharadwaj, M., Zou, Q. M., Kedzierska, K., & Chen, W. (2013). Nucleoprotein of influenza A virus is a major target of immunodominant CD8+ T-cell responses. Immunology and cell biology, 91(2), 184–194.
24. Sui, Z., Chen, Q., Fang, F., Zheng, M., & Chen, Z. (2010). Cross-protection against influenza virus infection by intranasal administration of M1-based vaccine with chitosan as an adjuvant. Vaccine, 28(48), 7690–7698.
25. Uddbäck, I. E., Steffensen, M. A., Pedersen, S. R., Nazerai, L., Thomsen, A. R., & Christensen, J. P. (2016). PB1 as a potential target for increasing the breadth of T-cell mediated immunity to Influenza A. Scientific reports, 6, 35033.
26. Uddbäck, I., Kohlmeier, J. E., Thomsen, A. R., & Christensen, J. P. (2020). Harnessing Cross-Reactive CD8+ TRM Cells for Long-Standing Protection Against Influenza A Virus. Viral immunology, 33(3), 201–207.
27. Habel, J. R., Nguyen, A. T., Rowntree, L. C., Szeto, C., Mifsud, N. A., Clemens, E. B., Loh, L., Chen, W., Rockman, S., Nelson, J., Davies, J., Miller, A., Tong, S. Y. C., Rossjohn, J., Gras, S., Purcell, A. W., Hensen, L., Kedzierska, K., & Illing, P. T. (2022). HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people. PLoS pathogens, 18(3), e1010337.
28. Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and Methods for T- and B-Cell Epitope Prediction. Journal of immunology research, 2017, 2680160.
29. Purcell, A. W., Ramarathinam, S. H., & Ternette, N. (2019). Mass spectrometry-based identification of MHC-bound peptides for immunopeptidomics. Nature protocols, 14(6), 1687–1707.
30. Koutsakos, M., Illing, P. T., Nguyen, T. H. O., Mifsud, N. A., Crawford, J. C., Rizzetto, S., Eltahla, A. A., Clemens, E. B., Sant, S., Chua, B. Y., Wong, C. Y., Allen, E. K., Teng, D., Dash, P., Boyd, D. F., Grzelak, L., Zeng, W., Hurt, A. C., Barr, I., Rockman, S., … Kedzierska, K. (2019). Human CD8+ T cell cross-reactivity across influenza A, B and C viruses. Nature immunology, 20(5), 613–625.
31. Abelin, J. G., Keskin, D. B., Sarkizova, S., Hartigan, C. R., Zhang, W., Sidney, J., Stevens, J., Lane, W., Zhang, G. L., Eisenhaure, T. M., Clauser, K. R., Hacohen, N., Rooney, M. S., Carr, S. A., & Wu, C. J. (2017). Mass Spectrometry Profiling of HLA-Associated Peptidomes in Mono-allelic Cells Enables More Accurate Epitope Prediction. Immunity, 46(2), 315–326.
32. Hensen, L., Illing, P. T., Bridie Clemens, E., Nguyen, T. H. O., Koutsakos, M., van de Sandt, C. E., Mifsud, N. A., Nguyen, A. T., Szeto, C., Chua, B. Y., Halim, H., Rizzetto, S., Luciani, F., Loh, L., Grant, E. J., Saunders, P. M., Brooks, A. G., Rockman, S., Kotsimbos, T. C., Cheng, A. C., … Kedzierska, K. (2021). CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph. Nature communications, 12(1), 2931.
33. Menon, T., Illing, P. T., Chaurasia, P., McQuilten, H. A., Shepherd, C., Rowntree, L. C., Petersen, J., Littler, D. R., Khuu, G., Huang, Z., Allen, L. F., Rockman, S., Crowe, J., Flanagan, K. L., Wakim, L. M., Nguyen, T. H. O., Mifsud, N. A., Rossjohn, J., Purcell, A. W., van de Sandt, C. E., … Kedzierska, K. (2024). CD8+ T-cell responses towards conserved influenza B virus epitopes across anatomical sites and age. Nature communications, 15(1), 3387.
34. Ghanem, E., Fritzsche, S., Al-Balushi, M., Hashem, J., Ghuneim, L., Thomer, L., Kalbacher, H., van Endert, P., Wiertz, E., Tampé, R., & Springer, S. (2010). The transporter associated with antigen processing (TAP) is active in a post-ER compartment. Journal of cell science, 123(Pt 24), 4271–4279.
35. Bruno, P. M., Timms, R. T., Abdelfattah, N. S., Leng, Y., Lelis, F. J. N., Wesemann, D. R., Yu, X. G., & Elledge, S. J. (2023). High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nature biotechnology, 41(7), 980–992.
36. Kaseke, C., Park, R. J., Singh, N. K., Koundakjian, D., Bashirova, A., Garcia Beltran, W. F., Takou Mbah, O. C., Ma, J., Senjobe, F., Urbach, J. M., Nathan, A., Rossin, E. J., Tano-Menka, R., Khatri, A., Piechocka-Trocha, A., Waring, M. T., Birnbaum, M. E., Baker, B. M., Carrington, M., Walker, B. D., … Gaiha, G. D. (2021). HLA class-I-peptide stability mediates CD8+ T cell immunodominance hierarchies and facilitates HLA-associated immune control of HIV. Cell reports, 36(2), 109378.
37. Wu, T., Guan, J., Handel, A., Tscharke, D. C., Sidney, J., Sette, A., Wakim, L. M., Sng, X. Y. X., Thomas, P. G., Croft, N. P., Purcell, A. W., & La Gruta, N. L. (2019). Quantification of epitope abundance reveals the effect of direct and cross-presentation on influenza CTL responses. Nature communications, 10(1), 2846.
38. Nagler, A., Kalaora, S., Barbolin, C., Gangaev, A., Ketelaars, S. L. C., Alon, M., Pai, J., Benedek, G., Yahalom-Ronen, Y., Erez, N., Greenberg, P., Yagel, G., Peri, A., Levin, Y., Satpathy, A. T., Bar-Haim, E., Paran, N., Kvistborg, P., & Samuels, Y. (2021). Identification of presented SARS-CoV-2 HLA class I and HLA class II peptides using HLA peptidomics. Cell reports, 35(13), 109305.
39. Hussain, T., & Mulherkar, R. (2012). Lymphoblastoid Cell lines: a Continuous in Vitro Source of Cells to Study Carcinogen Sensitivity and DNA Repair. International journal of molecular and cellular medicine, 1(2), 75–87.
40. Koutsakos, M., McWilliam, H. E. G., Aktepe, T. E., Fritzlar, S., Illing, P. T., Mifsud, N. A., Purcell, A. W., Rockman, S., Reading, P. C., Vivian, J. P., Rossjohn, J., Brooks, A. G., Mackenzie, J. M., Mintern, J. D., Villadangos, J. A., Nguyen, T. H. O., & Kedzierska, K. (2019). Downregulation of MHC Class I Expression by Influenza A and B Viruses. Frontiers in immunology, 10, 1158.
41. Alves, P., Arnold, R. J., Clemmer, D. E., Li, Y., Reilly, J. P., Sheng, Q., Tang, H., Xun, Z., Zeng, R., & Radivojac, P. (2008). Fast and accurate identification of semi-tryptic peptides in shotgun proteomics. Bioinformatics (Oxford, England), 24(1), 102–109.
42. Zhang, J., Xin, L., Shan, B., Chen, W., Xie, M., Yuen, D., Zhang, W., Zhang, Z., Lajoie, G. A., & Ma, B. (2012). PEAKS DB: de novo sequencing assisted database search for sensitive and accurate peptide identification. Molecular & cellular proteomics : MCP, 11(4), M111.010587.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99960-
dc.description.abstract季節性流感每年在全球造成約十億人次感染,對公共衛生造成重大負擔。流感病毒的表面抗原,如HA和NA,經常發生細微的突變,稱為抗原漂移(antigenic drift),導致病毒株持續變異。此外,流感病毒基因組的重配現象,稱為抗原轉換(antigenic shift),可能產生新型病毒株,使病毒逃避免疫系統的識別,降低現有疫苗的效力。因此,現有疫苗的保護效果通常較為短暫,迫切需要開發具廣泛保護力的流感疫苗。
相較於依賴表面抗原的傳統疫苗,以T細胞為標的的疫苗策略可針對病毒內部較為保守的蛋白,提供與抗原變異無關的長效保護。研究也顯示,T細胞免疫在抵禦流感病毒感染中扮演關鍵角色。由於CD8⁺ T細胞的活化依賴於識別由第Ⅰ型主要組織相容性複合體(MHC I)呈現的抗原表位,鑑定與特定HLA等位基因相關的表位是發展T細胞疫苗的重要步驟。
目前T細胞表位的鑑定策略主要分為電腦預測與實驗鑑定。本研究使用表現單一白血球抗原基因型的細胞株 (monoallelic HLA cell lines) 以降低實驗誤差。這些細胞株過度表現目標抗原後,透過免疫沉澱法分離peptide–HLA -I複合物,並利用高效液相層析(High Performance Liquid Chromatography, HPLC)結合液相層析串聯質譜儀(LC-MS/MS)進行分析。
針對臺灣族群中常見的HLA-I等位基因,我們鑑定出HLA-A*11:01 (約占台灣人口47%) 呈現的20個流感病毒胜肽,且其中6個於A型流感病毒中具超過95%的保守性;於HLA-A*02:01和HLA-A*24:02中則分別鑑定出13與4條流感病毒胜肽,其中各有2與1條具高度保守性(>95%)。後續將以半年內感染流感者的人類外周血單核細胞(peripheral blood mononuclear cell, PBMC)進行免疫原性(Immunogenicity)測試,以得到能作為廣效型流感 T 細胞疫苗的候選抗原表位組合。
zh_TW
dc.description.abstractSeasonal influenza continues to cause approximately one billion infections worldwide each year, posing a significant healthcare burden. The surface antigens of influenza viruses, such as hemagglutinin (HA) and neuraminidase (NA), are prone to frequent minor mutations, known as antigenic drift, which leads to the continuous emergence of viral variants. In addition, reassortment of influenza viral genome, known as antigenic shift, may occur and generate novel viral strains, allowing them to evade immune recognition and reduce the effectiveness of existing vaccines. As a result, the protective effect of current vaccines is often short-lived, highlighting the urgent need for the development of broadly protective influenza vaccines. Unlike traditional vaccines that rely on frequently mutating surface antigens, T cell–based vaccine strategies target the more conserved internal proteins of the virus that are less affected by antigenic variation. Studies have also shown that T cell immunity plays a crucial role in the protection against influenza virus infection. Since CD8⁺ T cell activation depends on the recognition of antigenic epitopes presented by class I major histocompatibility complex, identifying allele-specific epitopes is a key step towards the development of T cell–based vaccines. Current strategies for T cell epitope identification can be classified into computational prediction and experimental validation. In this study, we aimed to use monoallelic class I HLA (HLA-I) cell lines that express a single HLA allele to reduce experimental complexity for immunopeptidomics analysis. Peptide–HLA-I complexes of these cells overexpressing desired antigens were isolated through immunoprecipitation and followed by high-performance liquid chromatography (HPLC) coupled with liquid chromatography–tandem mass spectrometry (LC-MS/MS) analysis. Focusing on HLA-I alleles common in the Taiwanese population, we identified 20 influenza-derived peptides presented by HLA-A*11:01, the most prevalent allele in Taiwan (approximately 47% of the population), of which 6 showed over 95% conservation among influenza A viruses. In HLA-A*02:01 and HLA-A*24:02, we identified 13 and 4 peptides, respectively, with 2 and 1 of them exhibiting high conservation (>95%). The immunogenicity of these peptides will be evaluated using peripheral blood mononuclear cells (PBMCs) from individuals who have been infected with influenza within the past six months, aiming to identify promising candidates for the development of a broadly protective T cell–based influenza vaccine.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:08:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:08:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌 謝 ii
中文摘要 iii
Abstract v
1. Introduction 1
1.1 Seasonal and pandemic influenza 1
1.2 Genome of influenza A virus 2
1.3 Current influenza vaccine approaches 3
1.4 T cell-based influenza vaccine 5
1.5 Human leukocyte antigen class I polymorphism with regional prevalence 7
1.6 Conserved CD8+ T cells epitopes of influenza virus for wide population coverage 7
1.7 Strategies and challenges of current T cell epitope mapping 9
1.8 Mono-allelic cells facilitate more precise identification of epitopes 10
1.9 HLA class-I-peptide stability mediates CD8+ T cell immunodominance hierarchies 11
2. Specific Aims 14
3. Material and Methods 15
3.1 Cell lines 15
3.2 Plasmids 15
3.3 Virus 16
3.4 Plaque assay 17
3.5 Analyzation of protein expression levels post-transfection 17
3.6 Analyzation of cells condition post-infection 18
3.7 Large-scale DNA transfection and infection for immunopeptidome analysis 19
3.8 Immunoprecipitation of HLA–peptide complexes 20
3.9 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis 21
3.10 Bioinformatic analysis of mass spectrometry data 22
3.11 HLA-I stabilization assay 22
4. Results 23
4.1 Generation and validation of conserved viral genes derived from TW126 IAV 23
4.2 Identification of NP and PB1 derived HLA-A*11:01-restricted T cell epitopes by the overexpression strategy 24
4.3 The expression of HLA-I and viral genes in HLA-I monoallelic 293T cells infected by TW126 25
4.4 Identification of HLA-A*11:01 restricted IAV CD8+ T cell epitopes by infection strategy 26
4.5 Improved IAV epitopes identification results with additional 8h post-infection timepoint 27
4.6 Confirmation of the binding stability of HLA-A*11:01-restricted IAV conserved peptides 29
4.7 Identification of HLA-A*02:01 and HLA-A*24:02 restricted IAV CD8+ T cell epitopes by infection strategy 30
4.8 Improved peptide detection by increasing input cell number to reduce polymer interference 31
4.9 Adjustment of infection timing following detection of HLA surface downregulation 32
5 Discussion 35
5.1 Progress and limitations in advancing universal T cell-based influenza vaccine design 35
5.2 Limitations of 293T monoallelic HLA-I cell lines and development of APC-derived alternatives 36
5.3 Variability in infection conditions across different monoallelic HLA 293T cell lines 37
5.4 Impact of data analysis software on epitope identification outcomes 39
5.5 Preliminary comparison of PEAKS-based immunopeptidomics results 40
6. Figures 42
Figure 1. Frequency of mutation sites in TW126 and efficiency of viral protein expression after mutation 42
Figure 2. Identification of HLA-A*11:01-restricted mutated NP and PB1-derived peptides by overexpression strategy 44
Figure 3. Analysis of surface HLA expression and viral protein production in monoallelic HLA-A*11:01 cells following IAV infection 46
Figure 4. Identification of HLA-A*11:01-restricted IAV peptides by infection strategy 48
Figure 5. HLA-A*11:01-restricted IAV peptides identified at 8- and 24-hours post-infection 50
Figure 6. Confirmation of true binding of HLA-A*11:01-restricted conserved IAV peptides 52
Figure 7. Identification of HLA-A*02:01- and HLA-A*24:02-restricted IAV peptides by infection strategy 54
Figure 8. Identification of HLA-A*02:01 IAV peptides after increasing input cell numbers 56
Figure 9. Identification of HLA-A*02:01- and HLA-A*24:02-restricted IAV peptides under optimized infection conditions. 58
7. Tables 61
Table 1. Comparison of nucleotide and amino acid frequencies at a specific locus between TW126 and other Influenza A virus strains 61
Table 2. Identified HLA-A*11:01-restricted IAV-derived peptides 61
Table 3. Identified HLA-A*11:01-restricted IAV-derived peptides with additional 8 h.p.i timepoint 62
Table 4. Identified HLA-A*02:01-restricted IAV-derived peptides 63
Table 5. Identified HLA-A*24:02-restricted IAV-derived peptides 64
Table 6. Identification of HLA-A*02:01 IAV peptides after increasing input cell numbers 64
Table 7. Identification of HLA-A*02:01-restricted IAV peptides under optimized infection conditions 65
Table 8. Identification of HLA-A*24:02-restricted IAV peptides under optimized infection conditions 65
8. Reference 66
9. Supplementary Information 73
Supplementary table 1. Primer sequence for NP and PB1 mutagenesis. 73
Supplementary figure 1. MS spectrum of NP342-350 derived from cells transfected with mutant NP construct. 73
Supplementary figure 2. MS spectra of IAV peptides presented by HLA-A*11:01 in TW126-infected cells. 73
Supplementary figure 3. MS spectra of HLA-A*11:01-restricted IAV peptides at 8 and 24 hours post TW126 infection. 75
Supplementary figure 4. MS spectra of HLA-A*02:01-restricted IAV peptides at 8 and 24 hours post TW126 infection. 80
Supplementary figure 5. MS spectra of HLA-A*24:02-restricted IAV peptides at 8 and 24 hours post TW126 infection. 83
Supplementary figure 6. MS spectra of IAV peptides identified after increasing HLA-A*02:01 cell input. 84
Supplementary figure 7. MS spectra of HLA-A*02:01-restricted IAV peptides under optimized infection conditions. 85
Supplementary figure 8. MS spectra of HLA-A*24:02-restricted IAV peptides under optimized infection conditions. 85
-
dc.language.isoen-
dc.subject流感病毒zh_TW
dc.subjectCD8⁺ T 細胞抗原表位zh_TW
dc.subject免疫胜肽體學zh_TW
dc.subject抗原表位保守性zh_TW
dc.subject廣效型疫苗zh_TW
dc.subjectImmunopeptidomicsen
dc.subjectInfluenza virusen
dc.subjectUniversal vaccineen
dc.subjectEpitope conservationen
dc.subjectCD8⁺ T cell epitopesen
dc.title利用免疫胜肽組譜學鑑定三種台灣常見第一型人類白血球抗原呈現之流感病毒胜肽zh_TW
dc.titleIdentification of influenza virus peptides restricted by three common Taiwanese class-I HLAs using immunopeptidomicsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃冠穎;王弘毅;吳欣怡zh_TW
dc.contributor.oralexamcommitteeKuan-Ying Huang;Hurng-Yi Wang;Hsin-Yi Wuen
dc.subject.keyword流感病毒,CD8⁺ T 細胞抗原表位,免疫胜肽體學,抗原表位保守性,廣效型疫苗,zh_TW
dc.subject.keywordInfluenza virus,CD8⁺ T cell epitopes,Immunopeptidomics,Epitope conservation,Universal vaccine,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202503505-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
dc.date.embargo-lift2027-07-30-
Appears in Collections:微生物學科所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Until 2027-07-30
10.22 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved