Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99958
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor洪維廷zh_TW
dc.contributor.advisorWei-Ting Hungen
dc.contributor.author陳彥鈞zh_TW
dc.contributor.authorYen-Chun Chenen
dc.date.accessioned2025-09-22T16:08:31Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-07-26-
dc.identifier.citation1. Cagan, A. et al. Somatic mutation rates scale with lifespan across mammals. Nature 604, 517–524 (2022).
2. The importance of aging in cancer research. Nat. Aging 2, 365–366 (2022).
3. Balmain, A. The critical roles of somatic mutations and environmental tumor-promoting agents in cancer risk. Nat. Genet. 52, 1139–1143 (2020).
4. Martincorena, I. & Campbell, P. J. Somatic mutation in cancer and normal cells. Science 349, 1483–1489 (2015).
5. Jaiswal, S. & Ebert, B. L. Clonal hematopoiesis in human aging and disease. Science 366, eaan4673 (2019).
6. Coorens, T. H. H. et al. The somatic mutation landscape of normal gastric epithelium. Nature 640, 418–426 (2025).
7. Kinnersley, B. et al. Analysis of 10,478 cancer genomes identifies candidate driver genes and opportunities for precision oncology. Nat. Genet. 56, 1868–1877 (2024).
8. McGranahan, N. & Swanton, C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. Cell 168, 613–628 (2017).
9. Frankell, A. M. et al. The evolution of lung cancer and impact of subclonal selection in TRACERx. Nature 616, 525–533 (2023).
10. Tarabichi, M. et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nat. Methods 18, 144–155 (2021).
11. Turajlic, S. et al. Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 173, 595-610.e11 (2018).
12. Naxerova, K. et al. Origins of lymphatic and distant metastases in human colorectal cancer. Science 357, 55–60 (2017).
13. Reiter, J. G. et al. Lymph node metastases develop through a wider evolutionary bottleneck than distant metastases. Nat. Genet. 52, 692–700 (2020).
14. Coorens, T. H. H. et al. Embryonal precursors of Wilms tumor. Science 366, 1247–1251 (2019).
15. Lahtinen, A. et al. Evolutionary states and trajectories characterized by distinct pathways stratify patients with ovarian high grade serous carcinoma. Cancer Cell 41, 1103-1117.e12 (2023).
16. George, J. et al. Evolutionary trajectories of small cell lung cancer under therapy. Nature 627, 880–889 (2024).
17. Wang, W. et al. Heterogeneity and evolution of tumour immune microenvironment in metastatic gastroesophageal adenocarcinoma. Gastric Cancer 25, 1017–1030 (2022).
18. Li, L. et al. Resolving tumor evolution: a phylogenetic approach. J. Natl. Cancer Cent. 4, 97–106 (2024).
19. Sakamoto, H. et al. The Evolutionary Origins of Recurrent Pancreatic Cancer. Cancer Discov. 10, 792–805 (2020).
20. Mullen, K. M. et al. The Evolutionary Forest of Pancreatic Cancer. Cancer Discov. 15, 329–345 (2025).
21. Reiter, J. G. et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 361, 1033–1037 (2018).
22. Naxerova, K. Evolutionary paths towards metastasis. Nat. Rev. Cancer (2025) doi:10.1038/s41568-025-00814-x.
23. Laplane, L. & Maley, C. C. The evolutionary theory of cancer: challenges and potential solutions. Nat. Rev. Cancer 24, 718–733 (2024).
24. Naxerova, K. et al. Hypermutable DNA chronicles the evolution of human colon cancer. Proc. Natl. Acad. Sci. 111, (2014).
25. Suehnholz, S. P. et al. Quantifying the Expanding Landscape of Clinical Actionability for Patients with Cancer. Cancer Discov. 14, 49–65 (2024).
26. Hudock, N. L. et al. Future trends in incidence and long-term survival of metastatic cancer in the United States. Commun. Med. 3, 76 (2023).
27. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 12, 31–46 (2022).
28. Riggio, A. I., Varley, K. E. & Welm, A. L. The lingering mysteries of metastatic recurrence in breast cancer. Br. J. Cancer 124, 13–26 (2021).
29. Paget, S. THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST. The Lancet 133, 571–573 (1889).
30. Li, Y. et al. Invasion and metastasis in cancer: molecular insights and therapeutic targets. Signal Transduct. Target. Ther. 10, 57 (2025).
31. Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A. & Fares, Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct. Target. Ther. 5, 28 (2020).
32. Chen, W., Hoffmann, A. D., Liu, H. & Liu, X. Organotropism: new insights into molecular mechanisms of breast cancer metastasis. Npj Precis. Oncol. 2, 4 (2018).
33. He, K. et al. Metastasis organotropism in colorectal cancer: advancing toward innovative therapies. J. Transl. Med. 21, 612 (2023).
34. Roth, L. et al. Peritoneal Metastasis: Current Status and Treatment Options. Cancers 14, 60 (2021).
35. Tanaka, M. et al. Meta-analysis of recurrence pattern after resection for pancreatic cancer. Br. J. Surg. 106, 1590–1601 (2019).
36. Franko, J. et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 17, 1709–1719 (2016).
37. Fu, X., Wang, Q., Du, H. & Hao, H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front. Immunol. 14, 1159061 (2023).
38. Cortés-Guiral, D. et al. Primary and metastatic peritoneal surface malignancies. Nat. Rev. Dis. Primer 7, 91 (2021).
39. Riihimäki, M., Hemminki, A., Sundquist, K., Sundquist, J. & Hemminki, K. Metastatic spread in patients with gastric cancer. Oncotarget 7, 52307–52316 (2016).
40. Yeung, T.-L. et al. Cellular and molecular processes in ovarian cancer metastasis. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am. J. Physiol.-Cell Physiol. 309, C444–C456 (2015).
41. Deng, K. et al. Sites of distant metastases and overall survival in ovarian cancer: A study of 1481 patients. Gynecol. Oncol. 150, 460–465 (2018).
42. Zhao, J. J. et al. Spatially Resolved Niche and Tumor Microenvironmental Alterations in Gastric Cancer Peritoneal Metastases. Gastroenterology S0016508524053484 (2024) doi:10.1053/j.gastro.2024.08.007.
43. Pei, G. et al. Spatial mapping of transcriptomic plasticity in metastatic pancreatic cancer. Nature 642, 212–221 (2025).
44. Conroy, T. et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 987–1002 (2023).
45. Torre, L. A. et al. Ovarian cancer statistics, 2018. CA. Cancer J. Clin. 68, 284–296 (2018).
46. the PSOGI Working Group et al. Peritoneal Carcinomatosis of Rare Ovarian Origin Treated by Cytoreductive Surgery and Hyperthermic Intraperitoneal Chemotherapy: A Multi-Institutional Cohort from PSOGI and BIG-RENAPE. Ann. Surg. Oncol. 25, 1668–1675 (2018).
47. Wassenaar, E. C. et al. A unique interplay of access and selection shapes peritoneal metastasis evolution in colorectal cancer. Preprint at https://doi.org/10.1101/2024.09.25.614736 (2024).
48. Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 20, 289–290 (2004).
49. Blohmer, M. et al. Quantifying cell divisions along evolutionary lineages in cancer. Nat. Genet. (2025) doi:10.1038/s41588-025-02078-5.
50. Garcia, M. et al. Sarek: A portable workflow for whole-genome sequencing analysis of germline and somatic variants. F1000Research 9, 63 (2020).
51. Hanssen, F. et al. Scalable and efficient DNA sequencing analysis on different compute infrastructures aiding variant discovery. NAR Genomics Bioinforma. 6, lqae031 (2024).
52. Vasimuddin, Md., Misra, S., Li, H. & Aluru, S. Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. in 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS) 314–324 (IEEE, Rio de Janeiro, Brazil, 2019). doi:10.1109/IPDPS.2019.00041.
53. Van Der Auwera, G. A. et al. From FastQ Data to High‐Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinforma. 43, (2013).
54. Van Loo, P. et al. Allele-specific copy number analysis of tumors. Proc. Natl. Acad. Sci. 107, 16910–16915 (2010).
55. Chakravarty, D. et al. OncoKB: A Precision Oncology Knowledge Base. JCO Precis. Oncol. 1–16 (2017) doi:10.1200/PO.17.00011.
56. Grigoriadis, K. et al. CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction. Nat. Protoc. 19, 159–183 (2024).
57. Reiter, J. G. et al. Reconstructing metastatic seeding patterns of human cancers. Nat. Commun. 8, 14114 (2017).
58. Ubellacker, J. M. et al. Lymph protects metastasizing melanoma cells from ferroptosis. Nature 585, 113–118 (2020).
59. Hausser, J. & Alon, U. Tumour heterogeneity and the evolutionary trade-offs of cancer. Nat. Rev. Cancer 20, 247–257 (2020).
60. Marusyk, A. & Polyak, K. Tumor heterogeneity: Causes and consequences. Biochim. Biophys. Acta BBA - Rev. Cancer 1805, 105–117 (2010).
61. El-Sayes, N., Vito, A. & Mossman, K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy. Cancers 13, 806 (2021).
62. Rijken, A. et al. Incidence, Treatment, and Survival of Synchronous Peritoneal Metastases in Pancreatic Cancer: Update of a Nationwide Cohort. Pancreas 50, 827–833 (2021).
63. Guchelaar, N. A. D. et al. The prognostic value of peritoneal metastases in patients with gastric cancer: a nationwide population-based study. eClinicalMedicine 81, 103109 (2025).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99958-
dc.description.abstract腹膜轉移所面臨的轉移瓶頸在不同癌症類型間仍缺乏系統性的比較,而癌症演化學為此議題提供了更加透徹的洞見。目前仍不清楚,究竟是原發腫瘤中的所有細胞皆具有轉移潛力,還是僅有特定子群的細胞能夠成功產生轉移。在本研究中,分析了三種癌症中腹膜轉移的演化軌跡:透明細胞卵巢癌(Clear Cell Ovarian Cancer)、胃腺癌(Gastric Adenocarcinoma)和胰臟管腺癌(Pancreatic Ductal Adenocarcinoma)。為了量化轉移瓶頸,我開發了一種基於演化樹結構的新指標(Quintet Homogeneity Index,QHI)。結果顯示三種癌症在轉移瓶頸上存在差異:卵巢癌展現出最寬鬆的轉移瓶頸,胰臟癌則最為狹窄,胃癌介於兩者之間。胰臟癌與胃癌這些轉移瓶頸較窄的癌種的腹膜轉移通常會距離(Genetic Distance)原發腫瘤較遠。以區域性淋巴結轉移作為參考時,我們觀察到胰臟癌的腹膜轉移往往來自與淋巴結轉移不同的祖先克隆,顯示其轉移來源更具獨特性;相對地,卵巢癌的腹膜轉移則未出現明顯獨立的克隆,暗示其轉移過程較為寬鬆。在克隆架構分析中,我們發現負責腹膜轉移的祖先克隆,在卵巢癌的原發腫瘤中即已佔有較高比例的癌細胞,進一步呼應其較為寬鬆的轉移瓶頸。了解腫瘤異質性可以幫助我們了解癌症在轉移的各個階段所遇到的瓶頸效應,從離開原位腫瘤到腹膜中開始增生,異質性是透過成對基因距離(pairwise genetic distance)進行評估,我們發現三種癌症的原發腫瘤在異質性上存在顯著差異,且這些差異似乎會影響其腹膜轉移的異質性。然而,三種癌症的腹膜轉移在不同病灶之間的異質性水平相對接近。值得注意的是,復發性腹膜轉移表現出更高的異質性,可能與轉移後細胞分裂次數增加有關。本研究揭示了腹膜轉移過程中癌症類型特異的轉移瓶頸差異,並提出原發腫瘤異質性如何塑造轉移多樣性的初步證據。這些發現為後續探討腹膜轉移演化動態提供了基礎。zh_TW
dc.description.abstractA systematic comparison of the metastatic bottlenecks faced by peritoneal metastasis across different cancer types is still lacking, and cancer evolutionary biology offers deeper insights into this issue. Whether all cells in a primary tumor possess metastatic potential, or if only a restricted subset can give rise to metastases. In this study, I analyzed the evolutionary trajectories of peritoneal metastases in three cancers: clear cell ovarian carcinoma, gastric adenocarcinoma, and pancreatic ductal adenocarcinoma. To quantify metastatic bottleneck, I developed the Quintet Homogeneity Index (QHI), a novel metric based on tree topology. The results reveal differences: ovarian cancer exhibits the broadest metastatic bottleneck, pancreatic cancer the narrowest, with gastric cancer falling in between. These findings are further supported by genetic distance, where peritoneal metastases are distant from primary tumor in pancreatic and gastric cancers. Using regional lymph node metastases as a reference, pancreatic cancer peritoneal metastases frequently arise from genetically distinct clones, whereas ovarian cancer peritoneal metastases often share a common origin with lymph node metastases, suggesting a more permissive metastatic route. Clonal architecture analysis showed that the ancestral clones of peritoneal metastases tend to have higher cancer cell fractions in ovarian cancer, consistent with a broad bottleneck. Bottleneck at each step of metastasis, from detachment from the primary tumor to proliferation in the peritoneal cavity, can be captured through tumor heterogeneity. Tumor heterogeneity was assessed via pairwise genetic distances. Primary tumor heterogeneity significantly differed across the three cancer types and appeared to influence the heterogeneity of their peritoneal metastases. However, peritoneal metastases themselves exhibited similar levels of inter-lesion heterogeneity across cancer types. Notably, metachronous peritoneal metastases showed elevated genetic divergence, likely driven by more post-seeding cell divisions. Treatment effects do not alter the pattern of inter-lesion heterogeneity across cancer types. Overall, this study highlights cancer-type-specific differences in the metastatic bottleneck of peritoneal dissemination and presents preliminary evidence for how primary tumor heterogeneity shapes metastatic diversity. These findings provide a foundation for future investigations into the evolutionary dynamics of peritoneal metastasis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:08:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:08:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
Acknowledgements ii
摘要 iii
Abstract v
Contents vii
List of figures x
List of tables xi
Chapter I – Introduction 1
1.1 Cancer: mutations, progression and evolution 1
1.2 Indels in Polyguanine Repeats 5
1.3 Cancer Metastasis 6
1.4 Research gap in peritoneal metastasis 7
1.5 Metastatic Bottleneck of Peritoneal Metastasis 9
Chapter II - Materials and Methods 12
2.1 Patients and tumor samples 12
2.2 Tumor sample process 12
2.3 Polyguanine profiling and analysis 12
2.4 Phylogeny reconstruction 13
2.5 Quintet Homogeneity Index (QHI) 13
2.6 Root Diversity Score (RDS) 14
2.7 Coalescene Ratios (CoaR) 14
2.8 Origin Ratios 15
2.9 Association of deep-invading regions 15
2.10 Whole Exome Sequencing 16
2.11 WES Data Analysis 16
2.12 Statistics and other analyses 17
Chapter III - Results 18
3.1 Cohort Overview 18
3.2 Metastatic Randomness Inferred from Phylogenetic Trees Across Cancer Types 19
3.3 Quantifying the Metastatic Bottleneck in Each Cancer Type 20
3.4 Distinct Clonal Origins of Locoregional and Peritoneal Metastases in Pancreatic Cancer 23
3.5 Genetic Proximity Between Deep-Invasive Primary Tumor Regions and Peritoneal Metastases in Gastric Cancer 24
3.6 Tumor Heterogeneity Reflects the Evolutionary History of Cancer Progression 25
3.7 Genetic Alterations and Subclonal Architecture of Peritoneal Metastases 27
Chapter IV – Discussion 32
Figures 37
Tables 48
Reference 51
Appendix 57
-
dc.language.isoen-
dc.subject胰臟癌zh_TW
dc.subject腹膜轉移zh_TW
dc.subject腫瘤演化學zh_TW
dc.subject胃癌zh_TW
dc.subject亮細胞卵巢癌zh_TW
dc.subjectClear Cell Ovarian Canceren
dc.subjectGastric Canceren
dc.subjectTumor Evolutionen
dc.subjectPancreatic Canceren
dc.subjectPeritoneal Metastasisen
dc.title探索卵巢癌、胃癌及胰臟癌於腹膜轉移之轉移瓶頸zh_TW
dc.titleExploring the Metastatic Bottleneck of Peritoneal Metastasis across Ovarian, Gastric, and Pancreatic Cancersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭永銘;蘇剛毅;柯俊榮;陳佑宗zh_TW
dc.contributor.oralexamcommitteeYung-Ming Jeng;Kang-Yi Su;Chun-Jung Ko;You-Tzung Chenen
dc.subject.keyword腹膜轉移,胰臟癌,亮細胞卵巢癌,胃癌,腫瘤演化學,zh_TW
dc.subject.keywordPeritoneal Metastasis,Pancreatic Cancer,Clear Cell Ovarian Cancer,Gastric Cancer,Tumor Evolution,en
dc.relation.page80-
dc.identifier.doi10.6342/NTU202502465-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-07-28-
dc.contributor.author-college醫學院-
dc.contributor.author-dept基因體暨蛋白體醫學研究所-
dc.date.embargo-lift2030-07-24-
Appears in Collections:基因體暨蛋白體醫學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
6.09 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved