請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99947完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周綠蘋 | zh_TW |
| dc.contributor.advisor | Lu-Ping Chow | en |
| dc.contributor.author | 施佩吟 | zh_TW |
| dc.contributor.author | Pei-Yin Shih | en |
| dc.date.accessioned | 2025-09-22T16:06:12Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Bray, F., M. Laversanne, H. Sung, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229–263.
Siegel, R.L., A.N. Giaquinto, and A. Jemal, Cancer statistics, 2024. CA Cancer J Clin, 2024. 74(1): p. 12–49. Ilic, M. and I. Ilic, Epidemiology of pancreatic cancer. World J Gastroenterol, 2016. 22(44): p. 9694–9705. Hu, J.-X., C.-F. Zhao, W.-B. Chen, et al., Pancreatic cancer: A review of epidemiology, trend, and risk factors. World J Gastroenterol, 2021. 27(27): p. 4298–4321. Collaborators, G.B.D.P.C., The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol, 2019. 4(12): p. 934–947. Klein, A.P., Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors. Nat Rev Gastroenterol Hepatol, 2021. 18(7): p. 493–502. Roberts, N.J., A.L. Norris, G.M. Petersen, et al., Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer. Cancer Discov, 2016. 6(2): p. 166–75. Abe, T., A.L. Blackford, K. Tamura, et al., Deleterious Germline Mutations Are a Risk Factor for Neoplastic Progression Among High-Risk Individuals Undergoing Pancreatic Surveillance. J Clin Oncol, 2019. 37(13): p. 1070–1080. Brune, K.A., B. Lau, E. Palmisano, et al., Importance of age of onset in pancreatic cancer kindreds. J Natl Cancer Inst, 2010. 102(2): p. 119–26. Astiazaran-Symonds, E. and A.M. Goldstein, A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. Journal of Gastroenterology, 2021. 56(8): p. 713–721. de Bruijn, I., R. Kundra, B. Mastrogiacomo, et al., Analysis and Visualization of Longitudinal Genomic and Clinical Data from the AACR Project GENIE Biopharma Collaborative in cBioPortal. Cancer Res, 2023. 83(23): p. 3861–3867. Michaud, D.S., E. Giovannucci, W.C. Willett, et al., Physical Activity, Obesity, Height, and the Risk of Pancreatic Cancer. JAMA, 2001. 286(8): p. 921–929. Alan A. Arslan, Kathy J. Helzlsouer, Charles Kooperberg, et al., Anthropometric measures, body mass index, and pancreatic cancer: a pooled analysis from the Pancreatic Cancer Cohort Consortium (PanScan). Archives of Internal Medicine, 2010. 170(9): p. 791–802. Bosetti, C., E. Lucenteforte, D.T. Silverman, et al., Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Ann Oncol, 2012. 23(7): p. 1880–8. Lucenteforte, E., C. La Vecchia, D. Silverman, et al., Alcohol consumption and pancreatic cancer: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol, 2012. 23(2): p. 374–82. Park, B.K., J.H. Seo, K.J. Son, et al., Risk of pancreatic cancer after acute pancreatitis: A population-based matched cohort study. Pancreatology, 2023. 23(5): p. 449–455. Sadr-Azodi, O., V. Oskarsson, A. Discacciati, et al., Pancreatic Cancer Following Acute Pancreatitis: A Population-based Matched Cohort Study. Am J Gastroenterol, 2018. 113(11): p. 1711–1719. Duell, E.J., E. Lucenteforte, S.H. Olson, et al., Pancreatitis and pancreatic cancer risk: a pooled analysis in the International Pancreatic Cancer Case-Control Consortium (PanC4). Ann Oncol, 2012. 23(11): p. 2964–2970. Pang, Y., C. Kartsonaki, Y. Guo, et al., Diabetes, plasma glucose and incidence of pancreatic cancer: A prospective study of 0.5 million Chinese adults and a meta-analysis of 22 cohort studies. Int J Cancer, 2017. 140(8): p. 1781–1788. Lee, H.S., W. Chae, M.J. Sung, et al., Difference of Risk of Pancreatic Cancer in New-Onset Diabetes and Long-standing Diabetes: A Population-based Cohort Study. J Clin Endocrinol Metab, 2023. 108(6): p. 1338–1347. Hart, P.A., M.D. Bellin, D.K. Andersen, et al., Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol Hepatol, 2016. 1(3): p. 226–237. Lichtenstein P, Holm NV, Verkasalo PK, et al., Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. The New England Journal of Medicine, 2000. 343(2): p. 78–85. Conroy, T., F. Castan, A. Lopez, et al., Five-Year Outcomes of FOLFIRINOX vs Gemcitabine as Adjuvant Therapy for Pancreatic Cancer: A Randomized Clinical Trial. JAMA Oncol, 2022. 8(11): p. 1571–1578. Uesaka, K., N. Boku, A. Fukutomi, et al., Adjuvant chemotherapy of S-1 versus gemcitabine for resected pancreatic cancer: a phase 3, open-label, randomised, non-inferiority trial (JASPAC 01). Lancet, 2016. 388(10041): p. 248–57. Palmer, D.H., R. Jackson, C. Springfeld, et al., Pancreatic Adenocarcinoma: Long-Term Outcomes of Adjuvant Therapy in the ESPAC4 Phase III Trial. J Clin Oncol, 2025. 43(10): p. 1240–1253. Hester, C.A. and M.H.G. Katz, A patient-centered, multidisciplinary approach to treating borderline resectable pancreatic adenocarcinoma. Chin Clin Oncol, 2022. 11(6): p. 45. Rompen, I.F., J.R. Habib, C.L. Wolfgang, et al., Anatomical and Biological Considerations to Determine Resectability in Pancreatic Cancer. Cancers (Basel), 2024. 16(3). Conroy, T., P. Pfeiffer, V. Vilgrain, et al., Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol, 2023. 34(11): p. 987–1002. Brown, Z.J., V. Heh, H.E. Labiner, et al., Surgical resection rates after neoadjuvant therapy for localized pancreatic ductal adenocarcinoma: meta-analysis. Br J Surg, 2022. 110(1): p. 34–42. Mackay, T.M., A.E.J. Latenstein, S. Augustinus, et al., Implementation of Best Practices in Pancreatic Cancer Care in the Netherlands: A Stepped-Wedge Randomized Clinical Trial. JAMA Surg, 2024. 159(4): p. 429–437. Stoop, T.F., A.A. Javed, A. Oba, et al., Pancreatic cancer. Lancet, 2025. 405(10485): p. 1182–1202. Hariharan, D., A. Saied, and H.M. Kocher, Analysis of mortality rates for pancreatic cancer across the world. HPB (Oxford), 2008. 10(1): p. 58–62. Li, X., Y. Chen, G. Qiao, et al., 5-Year survival rate over 20 % in pancreatic ductal adenocarcinoma: A retrospective study from a Chinese high-volume center. Cancer Lett, 2025. 619: p. 217658. Walter, F.M., K. Mills, S.C. Mendonca, et al., Symptoms and patient factors associated with diagnostic intervals for pancreatic cancer (SYMPTOM pancreatic study): a prospective cohort study. Lancet Gastroenterol Hepatol, 2016. 1(4): p. 298–306. Pereira, S.P., L. Oldfield, A. Ney, et al., Early detection of pancreatic cancer. Lancet Gastroenterol Hepatol, 2020. 5(7): p. 698–710. Bergquist, J.R., C.A. Puig, C.R. Shubert, et al., Carbohydrate Antigen 19-9 Elevation in Anatomically Resectable, Early Stage Pancreatic Cancer Is Independently Associated with Decreased Overall Survival and an Indication for Neoadjuvant Therapy: A National Cancer Database Study. J Am Coll Surg, 2016. 223(1): p. 52–65. Boyd, L.N.C., M. Ali, M.M.G. Leeflang, et al., Diagnostic accuracy and added value of blood-based protein biomarkers for pancreatic cancer: A meta-analysis of aggregate and individual participant data. EClinicalMedicine, 2023. 55: p. 101747. Poruk, K.E., M.A. Firpo, D.G. Adler, et al., Screening for pancreatic cancer: why, how, and who? Ann Surg, 2013. 257(1): p. 17–26. Grote, V.A., S. Rohrmann, A. Nieters, et al., Diabetes mellitus, glycated haemoglobin and C-peptide levels in relation to pancreatic cancer risk: a study within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Diabetologia, 2011. 54(12): p. 3037–46. Lucio Gullo, Raffaele Pezzilli, Antonio Maria Morselli-Labate, et al., Diabetes and the Risk of Pancreatic Cancer. The New England Journal of Medicine, 1994. 331(2): p. 81–84. Chari, S.T., C.L. Leibson, K.G. Rabe, et al., Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology, 2005. 129(2): p. 504–11. Rahul Pannala, Ananda Basu, Gloria M Petersen, et al., New-onset diabetes: a potential clue to the early diagnosis of pancreatic cancer. The Lancet Oncology, 2009. 10(1): p. 88–95. Sah, R.P., S.J. Nagpal, D. Mukhopadhyay, et al., New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol, 2013. 10(7): p. 423–33. Chari, S.T., C.L. Leibson, K.G. Rabe, et al., Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology, 2008. 134(1): p. 95–101. Andersen, D.K., M. Korc, G.M. Petersen, et al., Diabetes, Pancreatogenic Diabetes, and Pancreatic Cancer. Diabetes, 2017. 66(5): p. 1103–1110. Sharma, A., H. Kandlakunta, S.J.S. Nagpal, et al., Model to Determine Risk of Pancreatic Cancer in Patients With New-Onset Diabetes. Gastroenterology, 2018. 155(3): p. 730–739 e3. Pelaez-Luna, M., N. Takahashi, J.G. Fletcher, et al., Resectability of presymptomatic pancreatic cancer and its relationship to onset of diabetes: a retrospective review of CT scans and fasting glucose values prior to diagnosis. Am J Gastroenterol, 2007. 102(10): p. 2157–63. Pannala, R., J.B. Leirness, W.R. Bamlet, et al., Prevalence and clinical profile of pancreatic cancer-associated diabetes mellitus. Gastroenterology, 2008. 134(4): p. 981–7. Aggarwal G, Kamada P, and C. ST., Prevalence of diabetes mellitus in pancreatic cancer compared to common cancers. Pancreas, 2013. 42(2): p. 198–201. Prentki, M. and C.J. Nolan, Islet beta cell failure in type 2 diabetes. J Clin Invest, 2006. 116(7): p. 1802–12. Sah, R.P., A. Sharma, S. Nagpal, et al., Phases of Metabolic and Soft Tissue Changes in Months Preceding a Diagnosis of Pancreatic Ductal Adenocarcinoma. Gastroenterology, 2019. 156(6): p. 1742–1752. Basso, D., C. Millino, E. Greco, et al., Altered glucose metabolism and proteolysis in pancreatic cancer cell conditioned myoblasts: searching for a gene expression pattern with a microarray analysis of 5000 skeletal muscle genes. Gut, 2004. 53(8): p. 1159–66. Gao, W., Y. Zhou, Q. Li, et al., Analysis of global gene expression profiles suggests a role of acute inflammation in type 3C diabetes mellitus caused by pancreatic ductal adenocarcinoma. Diabetologia, 2015. 58(4): p. 835–44. Wang F, Larsson J, Adrian TE, et al., In vitro influences between pancreatic adenocarcinoma cells and pancreatic islets. Journal of Surgical Research, 1998. 79(1): p. 13–19. Chen, L., R. Chen, H. Wang, et al., Mechanisms Linking Inflammation to Insulin Resistance. Int J Endocrinol, 2015. 2015: p. 508409. Romorini, L., X. Garate, G. Neiman, et al., AKT/GSK3beta signaling pathway is critically involved in human pluripotent stem cell survival. Sci Rep, 2016. 6: p. 35660. Hagiwara, A., M. Cornu, N. Cybulski, et al., Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab, 2012. 15(5): p. 725–38. Zatterale, F., M. Longo, J. Naderi, et al., Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front Physiol, 2019. 10: p. 1607. Kojta, I., M. Chacinska, and A. Blachnio-Zabielska, Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients, 2020. 12(5). Kahn, S.E., R.L. Hull, and K.M. Utzschneider, Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 2006. 444(7121): p. 840–6. Zhou X and Y. S., Rosiglitazone inhibits hepatic insulin resistance induced by chronic pancreatitis and IKK-β/NF-κB expression in liver. Pancreas, 2014. 43(8): p. 1291–1298. Lukic, L., N.M. Lalic, N. Rajkovic, et al., Hypertension in obese type 2 diabetes patients is associated with increases in insulin resistance and IL-6 cytokine levels: potential targets for an efficient preventive intervention. Int J Environ Res Public Health, 2014. 11(4): p. 3586–98. Serrano-Marco, L., E. Barroso, I. El Kochairi, et al., The peroxisome proliferator-activated receptor (PPAR) beta/delta agonist GW501516 inhibits IL-6-induced signal transducer and activator of transcription 3 (STAT3) activation and insulin resistance in human liver cells. Diabetologia, 2012. 55(3): p. 743–51. Yin J, Hao Z, Ma Y, et al., Concomitant activation of the PI3K/Akt and ERK1/2 signalling is involved in cyclic compressive force-induced IL-6 secretion in MLO-Y4 cells. Cell Biology International, 2014. 38(5): p. 591–598. Li, Y., T.J. Soos, X. Li, et al., Protein kinase C Theta inhibits insulin signaling by phosphorylating IRS1 at Ser(1101). J Biol Chem, 2004. 279(44): p. 45304–7. Wang, C., M. Liu, R.A. Riojas, et al., Protein kinase C theta (PKCtheta)-dependent phosphorylation of PDK1 at Ser504 and Ser532 contributes to palmitate-induced insulin resistance. J Biol Chem, 2009. 284(4): p. 2038–44. Yuan M, Konstantopoulos N, Lee J, et al., Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science, 2001. 293(5535): p. 1673–1677. Sinha, S., G. Perdomo, N.F. Brown, et al., Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem, 2004. 279(40): p. 41294–301. Tirosh, A., R. Potashnik, N. Bashan, et al., Oxidative stress disrupts insulin-induced cellular redistribution of insulin receptor substrate-1 and phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. A putative cellular mechanism for impaired protein kinase B activation and GLUT4 translocation. J Biol Chem, 1999. 274(15): p. 10595–602. JeBailey, L., O. Wanono, W. Niu, et al., Ceramide- and oxidant-induced insulin resistance involve loss of insulin-dependent Rac-activation and actin remodeling in muscle cells. Diabetes, 2007. 56(2): p. 394–403. Zakaria, N.F., M. Hamid, and M.E. Khayat, Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients, 2021. 13(7). DeFronzo, R.A., R. Eldor, and M. Abdul-Ghani, Pathophysiologic approach to therapy in patients with newly diagnosed type 2 diabetes. Diabetes Care, 2013. 36 Suppl 2(Suppl 2): p. S127–38. Weir, G.C. and S. & Bonner-Weir, Five stages of evolving β‑cell dysfunction during progression to diabetes. Diabetes, 2004. 53 (Supplement 3): p. S16–S21. Amo-Shiinoki, K., K. Tanabe, Y. Hoshii, et al., Islet cell dedifferentiation is a pathologic mechanism of long-standing progression of type 2 diabetes. JCI Insight, 2021. 6(1). John AN, Morahan G, and J. F., Incomplete re-expression of neuroendocrine progenitor/stem cell markers is a key feature of β-cell dedifferentiation. Journal of Neuroendocrinology, 2017. 29(6). Tellez, N., M. Vilaseca, Y. Marti, et al., beta-Cell dedifferentiation, reduced duct cell plasticity, and impaired beta-cell mass regeneration in middle-aged rats. Am J Physiol Endocrinol Metab, 2016. 311(3): p. E554–63. Alejandro, E.U., B. Gregg, M. Blandino-Rosano, et al., Natural history of beta-cell adaptation and failure in type 2 diabetes. Mol Aspects Med, 2015. 42: p. 19–41. Brereton, M.F., M. Rohm, K. Shimomura, et al., Hyperglycaemia induces metabolic dysfunction and glycogen accumulation in pancreatic beta-cells. Nat Commun, 2016. 7: p. 13496. Guo, S., C. Dai, M. Guo, et al., Inactivation of specific beta cell transcription factors in type 2 diabetes. J Clin Invest, 2013. 123(8): p. 3305–16. Butler, A.E., S. Dhawan, J. Hoang, et al., beta-Cell Deficit in Obese Type 2 Diabetes, a Minor Role of beta-Cell Dedifferentiation and Degranulation. J Clin Endocrinol Metab, 2016. 101(2): p. 523–32. Scheuner, D. and R.J. Kaufman, The unfolded protein response: a pathway that links insulin demand with beta-cell failure and diabetes. Endocr Rev, 2008. 29(3): p. 317–33. Fonseca, S.G., J. Gromada, and F. Urano, Endoplasmic reticulum stress and pancreatic beta-cell death. Trends Endocrinol Metab, 2011. 22(7): p. 266–74. Masters, S.L., A. Dunne, S.L. Subramanian, et al., Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1beta in type 2 diabetes. Nat Immunol, 2010. 11(10): p. 897–904. Marchetti, P., M. Suleiman, C. De Luca, et al., A direct look at the dysfunction and pathology of the beta cells in human type 2 diabetes. Semin Cell Dev Biol, 2020. 103: p. 83–93. Zhong, J., Q. Gong, and A. Mima, Inflammatory Regulation in Diabetes and Metabolic Dysfunction. J Diabetes Res, 2017. 2017: p. 5165268. Sedaghat F and N. A, S100 protein family and its application in clinical practice. Hippokratia, 2008. 12(4): p. 198–204. Donato R, Cannon BR, Sorci G, et al., Functions of S100 proteins. Current Molecular Medicine, 2013. 13(1): p. 24–57. Eckert, R.L., A.M. Broome, M. Ruse, et al., S100 proteins in the epidermis. J Invest Dermatol, 2004. 123(1): p. 23–33. Roth J, Burwinkel F, Van den Bos C, et al., MRP8 and MRP14, S-100-like proteins associated with myeloid differentiation, are translocated to plasma membrane and intermediate filaments in a calci- um-dependent manner. Blood, 1993. 82(6): p. 1875–1883. Van den Bos C, Roth J, Koch HG, et al., Phosphorylation of MRP14, an S100 protein expressed during monocytic differentiation, modulates Ca(2+)-dependent translocation from cytoplasm to membranes and cytoskeleton. J Immunol, 1996. 156(3): p. 1247–1254. Vogl, T., S. Ludwig, M. Goebeler, et al., MRP8 and MRP14 control microtubule reorganization during transendothelial migration of phagocytes. Blood, 2004. 104(13): p. 4260–8. Goebeler M, Roth J, Van den Bos C, et al., Increase of calcium levels in epithelial cells induces translocation of calcium-binding proteins migration inhibitory factor-related protein 8 (MRP8) and MRP14 to keratin intermediate filaments. Biochem J, 1995. 309(Pt 2): p. 419–424. Benedyk, M., C. Sopalla, W. Nacken, et al., HaCaT keratinocytes overexpressing the S100 proteins S100A8 and S100A9 show increased NADPH oxidase and NF-kappaB activities. J Invest Dermatol, 2007. 127(8): p. 2001–11. Han, C., H. Huang, M. Hu, et al., Time-dependent expression of leukotriene B4 receptors in rat collagen-induced arthritis. Prostaglandins Other Lipid Mediat, 2007. 83(3): p. 225–30. Zhan, X., R. Wu, X.H. Kong, et al., Elevated neutrophil extracellular traps by HBV-mediated S100A9-TLR4/RAGE-ROS cascade facilitate the growth and metastasis of hepatocellular carcinoma. Cancer Commun (Lond), 2023. 43(2): p. 225–245. Delgado-Rizo, V., M.A. Martinez-Guzman, L. Iniguez-Gutierrez, et al., Neutrophil Extracellular Traps and Its Implications in Inflammation: An Overview. Front Immunol, 2017. 8: p. 81. Kaltenmeier, C., H.O. Yazdani, K. Morder, et al., Neutrophil Extracellular Traps Promote T Cell Exhaustion in the Tumor Microenvironment. Front Immunol, 2021. 12: p. 785222. Yang, D. and J. Liu, Neutrophil Extracellular Traps: A New Player in Cancer Metastasis and Therapeutic Target. J Exp Clin Cancer Res, 2021. 40(1): p. 233. Gao, H., X. Zhang, Y. Zheng, et al., S100A9-induced release of interleukin (IL)-6 and IL-8 through toll-like receptor 4 (TLR4) in human periodontal ligament cells. Mol Immunol, 2015. 67(2 Pt B): p. 223–32. S.S. Cross, F.C. Hamdy, and J.C. Deloulme, Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays: S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology, 2005. 46(3): p. 256–269. Huang, M., R. Wu, L. Chen, et al., S100A9 Regulates MDSCs-Mediated Immune Suppression via the RAGE and TLR4 Signaling Pathways in Colorectal Carcinoma. Front Immunol, 2019. 10: p. 2243. De Veirman, K., N. De Beule, K. Maes, et al., Extracellular S100A9 Protein in Bone Marrow Supports Multiple Myeloma Survival by Stimulating Angiogenesis and Cytokine Secretion. Cancer Immunol Res, 2017. 5(10): p. 839–846. Meng, L., Q. Tang, J. Zhao, et al., S100A9 Derived From Myeloma Associated Myeloid Cells Promotes TNFSF13B/TNFRSF13B-Dependent Proliferation and Survival of Myeloma Cells. Front Oncol, 2021. 11: p. 691705. Zhong, C., Y. Niu, W. Liu, et al., S100A9 Derived from Chemoembolization-Induced Hypoxia Governs Mitochondrial Function in Hepatocellular Carcinoma Progression. Adv Sci (Weinh), 2022. 9(30): p. e2202206. Lv, Z., W. Li, and X. Wei, S100A9 promotes prostate cancer cell invasion by activating TLR4/NF-kappaB/integrin beta1/FAK signaling. Onco Targets Ther, 2020. 13: p. 6443–6452. Nedjadi, T., A. Evans, A. Sheikh, et al., S100A8 and S100A9 proteins form part of a paracrine feedback loop between pancreatic cancer cells and monocytes. BMC Cancer, 2018. 18(1): p. 1255. Kung, P.J., T.Y. Lai, J. Cao, et al., The role of S100A9 in the interaction between pancreatic ductal adenocarcinoma cells and stromal cells. Cancer Immunol Immunother, 2022. 71(3): p. 705–718. Jing, X., F. Yang, C. Shao, et al., Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer, 2019. 18(1): p. 157. Brown, J.M. and A.J. & Giaccia, The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Research, 1998. 58(7): p. 1408–1416. Schito L and S. GL., Hypoxia-inducible factors: master regulators of cancer progression. . Trends in Cancer, 2016. 2(12): p. 758–770. Chen, P.S., W.T. Chiu, P.L. Hsu, et al., Pathophysiological implications of hypoxia in human diseases. J Biomed Sci, 2020. 27(1): p. 63. Kim, J.W., I. Tchernyshyov, G.L. Semenza, et al., HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab, 2006. 3(3): p. 177–85. Cui X-G, Han Z-T, He S-H, et al., HIF1/2α mediates hypoxia-induced LDHA expression in human pancreatic cancer cells. Oncotarget, 2017. 8(15): p. 24840–24852. Forsythe JA, Jiang BH, Iyer NV, et al., Activation of vascular endothelial growth factor gene transcription by hypoxia‑inducible factor 1. American Journal of Physiology – Cell Physiology., 1996. 271(4 Pt 1): p. C1172–C1180. Erler, J.T. and A.J. Giaccia, Lysyl oxidase mediates hypoxic control of metastasis. Cancer Res, 2006. 66(21): p. 10238–41. Tan Z, Xu J, Zhang B, et al., Hypoxia: a barricade to conquer the pancreatic cancer. Cell Mol Life Sci., 2020. 77(16): p. 3077–3083. Talks, K.L., H. Turley, K.C. Gatter, et al., The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol, 2000. 157(2): p. 411–21. Oba, T., N. Sato, Y. Adachi, et al., Hypoxia increases KIAA1199/CEMIP expression and enhances cell migration in pancreatic cancer. Sci Rep, 2021. 11(1): p. 18193. Domanegg, K., J.P. Sleeman, and A. Schmaus, CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel), 2022. 14(20). Liu, X., M. Feng, X. Hao, et al., m6A methylation regulates hypoxia-induced pancreatic cancer glycolytic metabolism through ALKBH5-HDAC4-HIF1alpha positive feedback loop. Oncogene, 2023. 42(25): p. 2047–2060. Erkan, M., C. Reiser-Erkan, C.W. Michalski, et al., Cancer-stellate cell interactions perpetuate the hypoxia-fibrosis cycle in pancreatic ductal adenocarcinoma. Neoplasia, 2009. 11(5): p. 497–508. Dang, E.V., J. Barbi, H.Y. Yang, et al., Control of T(H)17/T(reg) balance by hypoxia-inducible factor 1. Cell, 2011. 146(5): p. 772–84. Noman, M.Z., G. Desantis, B. Janji, et al., PD-L1 is a novel direct target of HIF-1alpha, and its blockade under hypoxia enhanced MDSC-mediated T cell activation. J Exp Med, 2014. 211(5): p. 781–90. Doedens, A.L., C. Stockmann, M.P. Rubinstein, et al., Macrophage expression of hypoxia-inducible factor-1 alpha suppresses T-cell function and promotes tumor progression. Cancer Res, 2010. 70(19): p. 7465–75. Estaras M, G.A., Modulation of cell physiology under hypoxia in pancreatic cancer. World Journal of Gastroenterology, 2021. 27(28): p. 4582–4602. Sternberg, C., A. Armstrong, R. Pili, et al., Randomized, Double-Blind, Placebo-Controlled Phase III Study of Tasquinimod in Men With Metastatic Castration-Resistant Prostate Cancer. J Clin Oncol, 2016. 34(22): p. 2636–43. Jain RK, Au P, Tam J, et al., Engineering vascularized tissue. Nature Biotechnology, 2005. 23(7): p. 821–823. Olsson, A., A. Björk, J. Vallon-Christersson, et al., Tasquinimod (ABR-215050), a quinoline-3-carboxamide anti-angiogenic agent, modulates the expression of thrombospondin-1 in human prostate tumors. Mol Cancer, 2010. 9: p. 107. Corzo CA, Condamine T, Lu L, et al., HIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironment. Journal of Experimental Medicine, 2010. 207(11): p. 2439–2453. Kujawski, M., M. Kortylewski, H. Lee, et al., Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest, 2008. 118(10): p. 3367–77. Kallberg, E., T. Vogl, D. Liberg, et al., S100A9 interaction with TLR4 promotes tumor growth. PLoS One, 2012. 7(3): p. e34207. Ramachandran, I.R., C. Lin, T. Chase, et al., A Novel Agent Tasquinimod Demonstrates a Potent Anti-Tumor Activity in Pre-Clinical Models of Multiple Myeloma. Blood, 2014. 124(21): p. 5729–5729. Isaacs, J.T., L. Antony, S.L. Dalrymple, et al., Tasquinimod Is an Allosteric Modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res, 2013. 73(4): p. 1386–99. Bottomley, M.J., P. Lo Surdo, P. Di Giovine, et al., Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain. J Biol Chem, 2008. 283(39): p. 26694–704. Lahm, A., C. Paolini, M. Pallaoro, et al., Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A, 2007. 104(44): p. 17335–40. Cheng, C., J. Yang, S.W. Li, et al., HDAC4 promotes nasopharyngeal carcinoma progression and serves as a therapeutic target. Cell Death Dis, 2021. 12(2): p. 137. Li, Z., Y.H. Wu, Y.Q. Guo, et al., Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway. Korean J Physiol Pharmacol, 2025. 29(2): p. 191–204. Raymond, E., A. Dalgleish, J.E. Damber, et al., Mechanisms of action of tasquinimod on the tumour microenvironment. Cancer Chemother Pharmacol, 2014. 73(1): p. 1–8. Gebhardt, C., A. Riehl, M. Durchdewald, et al., RAGE signaling sustains inflammation and promotes tumor development. J Exp Med, 2008. 205(2): p. 275–85. Tao, J., G. Yang, W. Zhou, et al., Targeting hypoxic tumor microenvironment in pancreatic cancer. J Hematol Oncol, 2021. 14(1): p. 14. Williamson, S.C., A.E. Hartley, and R. Heer, A review of tasquinimod in the treatment of advanced prostate cancer. Drug Des Devel Ther, 2013. 7: p. 167–74. Zhanwei Zhao, Chaojun Zhang, and Q. Zhao, S100A9 as a novel diagnostic and prognostic biomarker in human gastric cancer. Scand J Gastroenterol., 2020. 55(3): p. 338–346. Qiankun Ji, Zibo Li, Yazhou Guo, et al., S100A9, as a potential predictor of prognosis and immunotherapy response for GBM, promotes the malignant progression of GBM cells and migration of M2 macrophages. Aging (Albany NY), 2024. 16(15): p. 11513–11534. Zha, H., X. Li, H. Sun, et al., S100A9 promotes the proliferation and migration of cervical cancer cells by inducing epithelial‑mesenchymal transition and activating the Wnt/beta‑catenin pathway. Int J Oncol, 2019. 55(1): p. 35–44. Kwon, C.H., H.J. Moon, H.J. Park, et al., S100A8 and S100A9 promotes invasion and migration through p38 mitogen-activated protein kinase-dependent NF-kappaB activation in gastric cancer cells. Mol Cells, 2013. 35(3): p. 226–34. Li, S., J. Zhang, S. Qian, et al., S100A8 promotes epithelial-mesenchymal transition and metastasis under TGF-beta/USF2 axis in colorectal cancer. Cancer Commun (Lond), 2021. 41(2): p. 154–170. Qin, F., Y. Song, Z. Li, et al., S100A8/A9 induces apoptosis and inhibits metastasis of CasKi human cervical cancer cells. Pathol Oncol Res, 2010. 16(3): p. 353–60. Basso D, Bozzato D, Padoan A, et al., Inflammation and pancreatic cancer: molecular and functional interactions between S100A8, S100A9, NT‑S100A8 and TGFβ1. Cell Communication and Signaling., 2014. 12(1): p. 20. Panwar, V., A. Singh, M. Bhatt, et al., Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther, 2023. 8(1): p. 375. Massagué J, Blain SW, and L. RS., TGFβ signaling in growth control, cancer, and heritable disorders. Cell, 2000. 103(2): p. 295–309. Manning, B.D. and L.C. Cantley, AKT/PKB signaling: navigating downstream. Cell, 2007. 129(7): p. 1261–74. Ikebe, M., Y. Kitaura, M. Nakamura, et al., Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TLR4/MyD88 signaling pathway. J Surg Oncol, 2009. 100(8): p. 725–31. Yin, H., N. Pu, Q. Chen, et al., Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-kappaB pathway in pancreatic cancer. Cell Death Dis, 2021. 12(11): p. 1033. Raphael BJ, Hruban RH, Aguirre AJ, et al., Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2017. 32(2): p. 185–203. Gukovsky, I., N. Li, J. Todoric, et al., Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer. Gastroenterology, 2013. 144(6): p. 1199–209 e4. Azizan, N., M.A. Suter, Y. Liu, et al., RAGE maintains high levels of NFkappaB and oncogenic Kras activity in pancreatic cancer. Biochem Biophys Res Commun, 2017. 493(1): p. 592–597. Kang, R., W. Hou, Q. Zhang, et al., RAGE is essential for oncogenic KRAS-mediated hypoxic signaling in pancreatic cancer. Cell Death Dis, 2014. 5(10): p. e1480. Singh, P.K. and M.A. Hollingsworth, Cell surface-associated mucins in signal transduction. Trends Cell Biol, 2006. 16(9): p. 467–76. Chaika, N.V., T. Gebregiworgis, M.E. Lewallen, et al., MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc Natl Acad Sci U S A, 2012. 109(34): p. 13787–92. McDonald, P.C., S.C. Chafe, W.S. Brown, et al., Regulation of pH by Carbonic Anhydrase 9 Mediates Survival of Pancreatic Cancer Cells With Activated KRAS in Response to Hypoxia. Gastroenterology, 2019. 157(3): p. 823–837. Zeng, Z., Y. Zhao, Q. Chen, et al., Hypoxic exosomal HIF-1alpha-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene, 2021. 40(36): p. 5505–5517. Liao, W.C., B.S. Huang, Y.H. Yu, et al., Galectin-3 and S100A9: Novel Diabetogenic Factors Mediating Pancreatic Cancer-Associated Diabetes. Diabetes Care, 2019. 42(9): p. 1752–1759. Aggarwal, G., V. Ramachandran, N. Javeed, et al., Adrenomedullin is up‑regulated in patients with pancreatic cancer and causes insulin resistance in β cells and mice. Gastroenterology, 2012. 143(6): p. 1510‑1517.e1. Bosch, F.T.M., F. Dijk, S. Briede, et al., Tumor gene expression is associated with venous thromboembolism in patients with ductal pancreatic adenocarcinoma. Thromb Res, 2025. 246: p. 109240. Grebhardt, S., C. Veltkamp, P. Strobel, et al., Hypoxia and HIF-1 increase S100A8 and S100A9 expression in prostate cancer. Int J Cancer, 2012. 131(12): p. 2785–94. Fan, C., J. Li, Y. Li, et al., Hypoxia-inducible factor-1alpha regulates the interleukin-6 production by B cells in rheumatoid arthritis. Clin Transl Immunology, 2023. 12(5): p. e1447. Kou, K., S. Li, W. Qiu, et al., Hypoxia-inducible factor 1alpha/IL-6 axis in activated hepatic stellate cells aggravates liver fibrosis. Biochem Biophys Res Commun, 2023. 653: p. 21–30. Rodriguez-Barrueco, R., J. Yu, L.P. Saucedo-Cuevas, et al., Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers. Genes Dev, 2015. 29(15): p. 1631–48. Rius, J., M. Guma, C. Schachtrup, et al., NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature, 2008. 453(7196): p. 807–11. D'Ignazio, L., D. Bandarra, and S. Rocha, NF-kappaB and HIF crosstalk in immune responses. FEBS J, 2016. 283(3): p. 413–24. Duan, L., R. Wu, X. Zhang, et al., HBx-induced S100A9 in NF-kappaB dependent manner promotes growth and metastasis of hepatocellular carcinoma cells. Cell Death Dis, 2018. 9(6): p. 629. Jiang, C., J. Sun, Y. Dai, et al., HIF-1A and C/EBPs transcriptionally regulate adipogenic differentiation of bone marrow-derived MSCs in hypoxia. Stem Cell Res Ther, 2015. 6(1): p. 21. Jauch-Speer, S.L., M. Herrera-Rivero, N. Ludwig, et al., C/EBPdelta-induced epigenetic changes control the dynamic gene transcription of S100a8 and S100a9. Elife, 2022. 11. Hao, S., Z. Yao, and Y. Liu, LINC00847 drives pancreatic cancer progression by targeting the miR-455-3p/HDAC4 axis. Arch Med Sci, 2024. 20(3): p. 847–862. Yang, J., C. Chheda, A. Lim, et al., HDAC4 Mediates Smoking-Induced Pancreatic Cancer Metastasis. Pancreas, 2022. 51(2): p. 190–195. Geng, H., C.T. Harvey, J. Pittsenbarger, et al., HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem, 2011. 286(44): p. 38095–38102. Fan, R., H. Satilmis, N. Vandewalle, et al., Tasquinimod suppresses tumor cell growth and bone resorption by targeting immunosuppressive myeloid cells and inhibiting c-MYC expression in multiple myeloma. J Immunother Cancer, 2023. 11(1). Rodriguez-Manzaneque, J.C., T.F. Lane, M.A. Ortega, et al., Thrombospondin-1 suppresses spontaneous tumor growth and inhibits activation of matrix metalloproteinase-9 and mobilization of vascular endothelial growth factor. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12485–90. Olsson, A., J. Nakhle, A. Sundstedt, et al., Tasquinimod triggers an early change in the polarization of tumor associated macrophages in the tumor microenvironment. J Immunother Cancer, 2015. 3: p. 53. Yuan, Y., G. Hilliard, T. Ferguson, et al., Cobalt inhibits the interaction between hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible factor-alpha. J Biol Chem, 2003. 278(18): p. 15911–6. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99947 | - |
| dc.description.abstract | 胰臟癌是一種高度致死率的腫瘤,其臨床特徵包括進展迅速、診斷困難以及預後不良。由於約 80-90% 的患者在疾病晚期才被確診,錯失手術治療的時機,導致五年內生存率普遍低於 10%。研究顯示,約有半數胰臟癌患者在確診前一年內出現新生糖尿病,而此類患者於後續一至三年間罹患胰臟癌的風險顯著升高,顯示與胰臟惡性腫瘤相關的新生糖尿病 (PCDM) 可能為胰臟癌的潛在早期徵兆。本實驗室先前研究發現, PCDM 患者的腫瘤組織中,具有高度表現的 S100A9,此分子會導致骨骼肌產生胰島素阻抗,並降低胰島 β 細胞的胰島素生成能力。然而, S100A9 在胰臟癌細胞中表現上升的機制,及其對胰臟癌惡性行為的影響仍有待釐清。
本研究建立了 S100A9 過表現之胰臟癌細胞株 MIA PaCa-2,結果顯示 S100A9 可促進癌細胞之增生、遷移與侵襲能力;此外,我們發現 S100A9 表現會在缺氧環境中進一步上升。 Tasquinimod 作為一種 HDAC4 抑制劑,在缺氧條件下能減少 HDAC4、 HDAC3 與 HIF-1α 之間的交互作用,同時抑制 HIF-1α 表現,進而降低 S100A9 蛋白表現。進一步在臨床檢體中驗證, PCDM 患者腫瘤組織中的 S100A9 與 HIF-1α 表現皆明顯高於非糖尿病胰臟癌 (PC) 患者。 綜合上述結果, S100A9 在胰臟癌增生與轉移,以及在 PCDM 形成中具有關鍵調控角色,極具潛力作為胰臟癌早期生物標誌; Tasquinimod 具備同時抑制胰臟癌進展及緩解糖尿病相關症狀的潛力,未來可望作為治療 PCDM 的創新治療策略。 | zh_TW |
| dc.description.abstract | Pancreatic cancer is a highly lethal malignancy, characterized by its insidious onset and the limited sensitivity of current diagnostic tools. As a result, approximately 80–90% of patients are diagnosed at an advanced stage, making them ineligible for surgical resection and contributing to a poor overall long-term survival rate of only 1–5%. Previous studies have shown that around 50% of pancreatic cancer patients develop new- onset diabetes approximately one year before diagnosis. Moreover, individuals with new- onset diabetes have a 5- to 8-fold increased risk of being diagnosed with pancreatic cancer within the subsequent 1 to 3 years. These findings suggest that pancreatic cancer-induced diabetes (PCDM) may serve as a potential early indicator of the disease. Our previous study demonstrated that tumor tissues from PCDM exhibit markedly elevated levels of S100A9, a diabetogenic factor that induces insulin resistance in skeletal muscle and impairing insulin production in pancreatic β cells. However, the molecular mechanisms driving S100A9 upregulation in pancreatic cancer cells and its role in tumor progression remain unclear.
In this study, we established a S100A9-overexpressing pancreatic cancer cell line (MIA PaCa-2) and found that S100A9 promotes cancer cell proliferation, migration, and invasion. Furthermore, S100A9 expression was found to be further increased under hypoxic conditions. Tasquinimod, an HDAC4 inhibitor, was shown to disrupt the interaction among HDAC4, HDAC3, and HIF-1α under hypoxia, thereby downregulating both HIF-1α and S100A9 expression. Immunohistochemical staining of clinical specimens confirmed that S100A9 and HIF-1α levels were significantly elevated in tumor tissues from PCDM patients compared to those from non-diabetic pancreatic cancer (PC) patients. Taken together, these findings demonstrate that S100A9 plays a pivotal role in promoting pancreatic cancer cell proliferation and metastasis, and the pathogenesis of PCDM. S100A9 may serve as a promising early biomarker for pancreatic cancer. In addition, Tasquinimod shows potential as a novel therapeutic strategy capable of both inhibiting pancreatic cancer progression and alleviating diabetes-associated symptoms in PCDM patients. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:06:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:06:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝誌 ii 中文摘要 iii 英文摘要 iv 縮寫 vi 目次 viii 圖次 xiii 附錄 xiv 第一章 導論 1 1.1 胰臟癌 (Pancreatic cancer) 1 1.1.1 胰臟癌之流行病學 1 1.1.2 胰臟癌種類 1 1.1.3 胰臟惡性腫瘤之潛在危險因素 2 1.1.4 治療方式 5 1.1.5 胰臟癌的初期診斷與臨床挑戰 8 1.2 胰臟癌相關之新發糖尿病 (Pancreatic cancer-associated diabetes, PCDM)11 1.2.1 疾病介紹 11 1.2.2 疾病機轉 12 1.2.3 疾病特性 13 1.3 S100A9蛋白功能與特性 16 1.3.1 S100 蛋白家族的種類與特性 16 1.3.2 S100A9 的生理功能 17 1.3.3 S100A9 在癌症中的角色 18 1.4 缺氧 (Hypoxia) 20 1.4.1 缺氧的定義及相關機轉 20 1.4.2 缺氧誘導因子 (Hypoxia-inducible factor 1-alpha, HIF-1α) 21 1.4.3 缺氧對胰臟癌的影響 22 1.5 Tasquinimod 23 1.5.1 Tasquinimod 介紹以及抗腫瘤效果 23 1.5.2 Tasquinimod 的作用機制 23 1.6 研究動機 25 第二章 實驗材料 26 2.1 胰臟癌細胞株 26 2.2 胰臟癌組織切片 26 2.2.1 患者資訊 26 2.3 儀器與裝置 26 2.4 細胞培養耗材 27 2.5 抗體 28 2.6 試劑與藥品 29 2.7 數據分析軟體與生物資料庫 34 第三章 實驗方法 35 3.1 細胞培養 35 3.1.1 細胞繼代 35 3.1.2 細胞計數 35 3.1.3 細胞冷凍 35 3.2 建立過表現S100A9的細胞株 36 3.2.1 質體建構與純化 36 3.2.2 質體轉染細胞 (Transform) 37 3.3 細胞內分子機制分析 38 3.3.1 缺氧條件誘發 38 3.3.2 抑制劑處理 38 3.4 西方墨點法 (Western Blot) 40 3.4.1 細胞蛋白萃取 40 3.4.2 蛋白質定量 40 3.4.3 電泳 (SDS-PAGE) 40 3.4.4 蛋白轉漬 (Western Blot Transfer) 41 3.4.5 蛋白質免疫分析 (Immunoblotting analysis) 41 3.5 免疫共沉澱 (Co-Immunoprecipitation) 42 3.6 免疫螢光染色 (Immunofluorescence Staining) 43 3.6.1 細胞培養 43 3.6.2 抗體偵測蛋白 43 3.6.3 影像分析 43 3.7 細胞活性測定 (Cell viability assay) 44 3.7.1 藥物毒性分析 44 3.7.2 細胞增生能力分析 44 3.8 細胞遷移能力分析 (Would healing assay) 45 3.9 細胞侵襲實驗 (Transwell invasion assay) 45 3.10 組織免疫染色 (Immunohistochemistry staining analysis) 46 3.11 生物資訊學分析 47 第四章 實驗分析結果 48 4.1 S100A9 在胰臟癌中的功能角色與其上游調控路徑 48 4.1.1 S100A9 可增強胰臟癌細胞之增生、遷移與侵襲能力 48 4.1.2 HIF-1α 可能參與調控胰臟癌中 S100A9 的表現 49 4.1.3 TLR4 受體參與調控胰臟癌中 S100A9 的表現 49 4.2 Tasquinimod 在胰臟癌細胞中的藥理作用與相關機制 50 4.2.1 Tasquinimod 可於缺氧環境下抑制胰臟癌細胞生長並下調 S100A9 蛋白表現 50 4.2.2 Tasquinimod 干擾 HIF-1α、HDAC4 與 HDAC3 之間的交互作用 51 4.3 PC與PCDM患者胰臟組織中的缺氧情況 52 4.3.1 PCDM患者胰臟組織中HIF-1α與S100A9表現上升 52 第五章 討論 53 5.1 S100A9 對胰臟癌的影響 53 5.1.1 探討 S100A9 在腫瘤細胞生長與擴散能力中的功能角色 53 5.1.2 S100A9 參與胰臟癌進展的潛在分子機制 53 5.2 缺氧與胰臟惡性腫瘤引發之新生糖尿病(PCDM)的關聯性 54 5.2.1 HIF-1α在胰臟癌相關糖尿病(PCDM)的表現 54 5.2.2 HIF-1α 與調控 S100A9 上調之因子 55 5.2.3 S100A9 受體與 HIF-1α、S100A9 表現上調之關係 56 5.3 探討 Tasquinimod 對胰臟癌相關糖尿病的影響 57 5.3.1 Tasquinimod 對胰臟癌細胞之抑制效果與潛在機轉 57 5.3.2 Tasquinimod 調控 HIF-1α 表現的可能機制 57 5.3.3 Tasquinimod 抑制胰臟癌中 S100A9 表現的相關機制 58 5.4 結論與展望 60 第六章 參考文獻 61 圖表 72 附錄圖表 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 胰臟癌誘導之新生糖尿病 | zh_TW |
| dc.subject | 缺氧誘導因子 | zh_TW |
| dc.subject | 胰臟癌 | zh_TW |
| dc.subject | 胰島 β 細胞功能障礙 | zh_TW |
| dc.subject | 胰島素阻抗 | zh_TW |
| dc.subject | S100A9 | zh_TW |
| dc.subject | Pancreatic cancer | en |
| dc.subject | β cell dysfunction | en |
| dc.subject | insulin resistance | en |
| dc.subject | HIF-1α | en |
| dc.subject | S100A9 | en |
| dc.subject | Pancreatic cancer-associated diabetes | en |
| dc.title | 探討胰臟癌誘導糖尿病中 HIF-1α介導的S100A9表現機轉以及功能 | zh_TW |
| dc.title | Investigating the HIF-1α-Mediated Signaling Pathway and the Function of S100A9 in Pancreatic Cancer-Associated Diabetes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 李明學 | zh_TW |
| dc.contributor.coadvisor | Ming-Shyue Lee | en |
| dc.contributor.oralexamcommittee | 潘思樺;黃楓婷 | zh_TW |
| dc.contributor.oralexamcommittee | Szu-Hua Pan;Feng-Ting Huang | en |
| dc.subject.keyword | 胰臟癌,胰臟癌誘導之新生糖尿病,胰島素阻抗,胰島 β 細胞功能障礙,S100A9,缺氧誘導因子, | zh_TW |
| dc.subject.keyword | Pancreatic cancer,Pancreatic cancer-associated diabetes,insulin resistance,β cell dysfunction,S100A9,HIF-1α, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202503118 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
