請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁 | zh_TW |
| dc.contributor.advisor | Fang-Jen Lee | en |
| dc.contributor.author | 蔡佩娟 | zh_TW |
| dc.contributor.author | Pei-Juan Cai | en |
| dc.date.accessioned | 2025-09-22T16:06:00Z | - |
| dc.date.available | 2025-09-23 | - |
| dc.date.copyright | 2025-09-22 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-22 | - |
| dc.identifier.citation | Alston, R.W., M. Lasagna, G.R. Grimsley, J.M. Scholtz, G.D. Reinhart, and C.N. Pace. 2008. Peptide sequence and conformation strongly influence tryptophan fluorescence. Biophys J. 94:2280-2287.
Aoh, Q.L., L.M. Graves, and M.C. Duncan. 2011. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell. 22:3671-3683. Aoh, Q.L., C.W. Hung, and M.C. Duncan. 2013. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell. 24:832-847. Barr, F.A., M. Puype, J. Vandekerckhove, and G. Warren. 1997. GRASP65, a Protein Involved in the Stacking of Golgi Cisternae. Cell. 91:253-262. Behnia, R., B. Panic, J.R. Whyte, and S. Munro. 2004. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nat Cell Biol. 6:405-413. Bonifacino, J.S. 2014. Vesicular transport earns a Nobel. Trends Cell Biol. 24:3-5. Bonifacino, J.S., and B.S. Glick. 2004. The mechanisms of vesicle budding and fusion. Cell. 116:153-166. Celenza, J.L., and M. Carlson. 1989. Mutational Analysis of the Saccharomyces cerevisiae SNF1 Protein Kinase and Evidence for Functional Interaction with the SNF4 Protein. Molecular and Cellular Biology. 9:5034-5044. Cha, H., B.L. Smith, K. Gallo, C.E. Machamer, and P. Shapiro. 2004. Phosphorylation of golgin-160 by mixed lineage kinase 3. J Cell Sci. 117:751-760. Chen, K.-Y., P.-C. Tsai, Y.-W. Liu, and F.-J.S. Lee. 2012. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. Journal of Cell Science. 125:4586-4596. Chen, K.Y., P.C. Tsai, J.W. Hsu, H.C. Hsu, C.Y. Fang, L.C. Chang, Y.T. Tsai, C.J. Yu, and F.J. Lee. 2010. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci. 123:3478-3489. Chen, Y.-C., P.-H. Jiang, H.-M. Chen, C.-H. Chen, Y.-T. Wang, Y.-J. Chen, C.-J. Yu, and S.-C. Teng. 2018. Glucose intake hampers PKA-regulated HSP90 chaperone activity. eLife. 7:e39925. Chen, Y.T., I.H. Wang, Y.H. Wang, W.Y. Chiu, J.H. Hu, W.H. Chen, and F.S. Lee. 2019. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network. Mol Biol Cell. 30:1008-1019. Cui, L., H. Li, Y. Xi, Q. Hu, H. Liu, J. Fan, Y. Xiang, X. Zhang, W. Shui, and Y. Lai. 2022. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol Biomed. 3:29. Dechant, R., S. Saad, Alfredo J. Ibáñez, and M. Peter. 2014. Cytosolic pH Regulates Cell Growth through Distinct GTPases, Arf1 and Gtr1, to Promote Ras/PKA and TORC1 Activity. Molecular Cell. 55:409-421. Donaldson, J.G., and C.L. Jackson. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews Molecular Cell Biology. 12:362-375. Fröhlich, F., R. Christiano, and T.C. Walther. 2013. Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. Mol Cell Proteomics. 12:1995-2005. Freemantle, J.B., M.C. Towler, E.R. Hudson, T. Macartney, M. Zwirek, D.J.K. Liu, D.A. Pan, S. Ponnambalam, and D.G. Hardie. 2024. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. J Cell Sci. 137. Gietz, R.D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74:527-534. Gillingham, A.K., and S. Munro. 2016. Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends in cell biology. 26:399-408. Glick, B.S., and A. Luini. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol. 3:a005215. Golemis, E.A., and V. Khazak. 1997. Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol Biol. 63:197-218. Hedbacker, K., and M. Carlson. 2006. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot Cell. 5:1950-1956. Hicks, S.W., and C.E. Machamer. 2002. The NH2-terminal domain of Golgin-160 contains both Golgi and nuclear targeting information. J Biol Chem. 277:35833-35839. Hong, S.P., F.C. Leiper, A. Woods, D. Carling, and M. Carlson. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 100:8839-8843. Hornbeck, P.V., J.M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek, B. Murray, V. Latham, and M. Sullivan. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research. 40:D261-D270. Hsu, J.-W., Z.-J. Chen, Y.-W. Liu, and F.-J.S. Lee. 2014. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. Journal of cell science. 127:2615. Hsu, J.-W., P.-H. Tang, I.H. Wang, C.-L. Liu, W.-H. Chen, P.-C. Tsai, K.-Y. Chen, K.-J. Chen, C.-J. Yu, and F.-J.S. Lee. 2016. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proceedings of the National Academy of Sciences. 113:E1683-E1690. Huang, C., and A. Chang. 2011. pH-dependent cargo sorting from the Golgi. J Biol Chem. 286:10058-10065. Ishida, R., A. Yamamoto, K. Nakayama, M. Sohda, Y. Misumi, T. Yasunaga, and N. Nakamura. 2015. GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. Febs j. 282:2232-2244. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 153:163-168. Jain, B.K., P.S. Thapa, A. Varma, and D. Bhattacharyya. 2018. Identification and characterization of GRIP domain Golgin PpImh1 from Pichia pastoris. Yeast (Chichester, England). 35:499-506. Jesch, S.A., T.S. Lewis, N.G. Ahn, and A.D. Linstedt. 2001. Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol Biol Cell. 12:1811-1817. King, G.A., R. Wettstein, J.M. Varberg, K. Chetlapalli, M.E. Walsh, L.C.J. Gillet, C. Hernández-Armenta, P. Beltrao, R. Aebersold, S.L. Jaspersen, J. Matos, and E. Ünal. 2022. Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. Journal of Cell Biology. 222:e202204039. Lanz, M.C., K. Yugandhar, S. Gupta, E.J. Sanford, V.M. Faça, S. Vega, A.M.N. Joiner, J.C. Fromme, H. Yu, and M.B. Smolka. 2021. In‐depth and 3‐dimensional exploration of the budding yeast phosphoproteome. EMBO reports. 22:e51121. Lee, Y.J., G.R. Jeschke, F.M. Roelants, J. Thorner, and B.E. Turk. 2012. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol. 32:4705-4717. Levi, S.K., D. Bhattacharyya, R.L. Strack, J.R. Austin, 2nd, and B.S. Glick. 2010. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Traffic. 11:1168-1179. Lin, M.C., C.J. Yu, and F.S. Lee. 2022. Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A. 119:e2207414119. Liu, Y.-W., C.-F. Huang, K.-B. Huang, and F.-J.S. Lee. 2005. Role for Gcs1p in Regulation of Arl1p at Trans-Golgi Compartments. Molecular Biology of the Cell. 16:4024-4033. Liu, Y.W., S.W. Lee, and F.J. Lee. 2006. Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci. 119:3845-3855. Lo, W.S., L. Duggan, N.C. Emre, R. Belotserkovskya, W.S. Lane, R. Shiekhattar, and S.L. Berger. 2001. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science. 293:1142-1146. Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14:953-961. Lowe, M. 2019. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol. 7:94. Lowe, M., C. Rabouille, N. Nakamura, R. Watson, M. Jackman, E. Jämsä, D. Rahman, D.J. Pappin, and G. Warren. 1998. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell. 94:783-793. Lu, L., and W. Hong. 2003. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell. 14:3767-3781. Lu, L., G. Tai, M. Wu, H. Song, and W. Hong. 2006. Multilayer interactions determine the Golgi localization of GRIP golgins. Traffic. 7:1399-1407. Luini, A. 2011. A brief history of the cisternal progression-maturation model. Cell Logist. 1:6-11. Mao, L., N. Li, Y. Guo, X. Xu, L. Gao, Y. Xu, L. Zhou, and W. Liu. 2013. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci. 126:1498-1505. McCartney, R.R., L. Garnar-Wortzel, D.G. Chandrashekarappa, and M.C. Schmidt. 2016. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochim Biophys Acta. 1864:1518-1528. Miyamoto, T., E. Rho, V. Sample, H. Akano, M. Magari, T. Ueno, K. Gorshkov, M. Chen, H. Tokumitsu, J. Zhang, and T. Inoue. 2015. Compartmentalized AMPK Signaling Illuminated by Genetically Encoded Molecular Sensors and Actuators. Cell Reports. 11:657-670. Mizuno-Yamasaki, E., F. Rivera-Molina, and P. Novick. 2012. GTPase networks in membrane traffic. Annu Rev Biochem. 81:637-659. Munro, S. 2011. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol. 3. Muschalik, N., and S. Munro. 2018. Golgins. Curr Biol. 28:R374-r376. Nakamura, N., M. Lowe, T.P. Levine, C. Rabouille, and G. Warren. 1997. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell. 89:445-455. Nath, N., R.R. McCartney, and M.C. Schmidt. 2003. Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol. 23:3909-3917. Panic, B., O. Perisic, D.B. Veprintsev, R.L. Williams, and S. Munro. 2003. Structural Basis for Arl1-Dependent Targeting of Homodimeric GRIP Domains to the Golgi Apparatus. Molecular Cell. 12:863-874. Rak, A., O. Pylypenko, T. Durek, A. Watzke, S. Kushnir, L. Brunsveld, H. Waldmann, R.S. Goody, and K. Alexandrov. 2003. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science. 302:646-650. Rao, X.S., X.X. Cong, X.K. Gao, Y.P. Shi, L.J. Shi, J.F. Wang, C.Y. Ni, M.J. He, Y. Xu, C. Yi, Z.X. Meng, J. Liu, P. Lin, L.L. Zheng, and Y.T. Zhou. 2021. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ. 28:3214-3234. Ribaric, S., D. Peterec, and J. Sketelj. 1996. Computer aided data acquisition and analysis of acetlycholinesterase velocity sedimentation profiles. Computer Methods and Programs in Biomedicine. 49:149-156. Schmidt, A., and A. Hall. 2002. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587-1609. Schmidt, M.C., and R.R. McCartney. 2000. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. Embo j. 19:4936-4943. Schmitt, K., N. Smolinski, P. Neumann, S. Schmaul, V. Hofer-Pretz, G.H. Braus, and O. Valerius. 2017. Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol. 37. Schuck, P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78:1606-1619. Setty, S.R., M.E. Shin, A. Yoshino, M.S. Marks, and C.G. Burd. 2003. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol. 13:401-404. Sherman, F. 2002. Getting started with yeast. In Methods in Enzymology. Vol. 350. C. Guthrie and G.R. Fink, editors. Academic Press. 3-41. Shirra, M.K., J. Patton-Vogt, A. Ulrich, O. Liuta-Tehlivets, S.D. Kohlwein, S.A. Henry, and K.M. Arndt. 2001. Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol. 21:5710-5722. Singer-Kruger, B., M. Lasic, A.M. Burger, A. Hausser, R. Pipkorn, and Y. Wang. 2008. Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution. EMBO J. 27:1423-1435. Song, S., W. Cong, S. Zhou, Y. Shi, W. Dai, H. Zhang, X. Wang, B. He, and Q. Zhang. 2019. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci. 14:30-39. Swaney, D.L., P. Beltrao, L. Starita, A. Guo, J. Rush, S. Fields, N.J. Krogan, and J. Villén. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods. 10:676-682. Tran, D.T., J. Adhikari, and M.C. Fitzgerald. 2014. StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics. 13:1800-1813. Treitel, M.A., S. Kuchin, and M. Carlson. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol. 18:6273-6280. Tsai, P.C., J.W. Hsu, Y.W. Liu, K.Y. Chen, and F.J. Lee. 2013. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proceedings of the National Academy of Sciences of the United States of America. 110:E668-677. Vernet, T., D. Dignard, and D.Y. Thomas. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 52:225-233. Vincent, O., R. Townley, S. Kuchin, and M. Carlson. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104-1114. Wang, Y.H., W.Y. Chiu, Y.T. Chen, P.J. Cai, Y.C. Wu, J.L. Wu, B.H. Chen, Y.W. Liu, C.J. Yu, and F.S. Lee. 2022. Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep. 38:110488. Wei, J.-H., and J. Seemann. 2009. Mitotic division of the mammalian Golgi apparatus. Seminars in Cell & Developmental Biology. 20:810-816. Witkos, T.M., and M. Lowe. 2015. The Golgin Family of Coiled-Coil Tethering Proteins. Front Cell Dev Biol. 3:86. Wong, M., and S. Munro. 2014. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science (New York, N.Y.). 346:1256898. Yadav, S., M.A. Puthenveedu, and A.D. Linstedt. 2012. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 23:153-165. Yin, G., J. Huang, J. Petela, H. Jiang, Y. Zhang, S. Gong, J. Wu, B. Liu, J. Shi, and Y. Gao. 2023. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther. 8:212. Yu, C.-J., and F.-J.S. Lee. 2017. Multiple activities of Arl1 GTPase in the trans-Golgi network. Journal of Cell Science. 130:1691. Zaman, S., S.I. Lippman, L. Schneper, N. Slonim, and J.R. Broach. 2009. Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol. 5:245. Zhou, X., W. Li, Y. Liu, and A. Amon. 2021. Cross-compartment signal propagation in the mitotic exit network. Elife. 10. Alston, R.W., M. Lasagna, G.R. Grimsley, J.M. Scholtz, G.D. Reinhart, and C.N. Pace. 2008. Peptide sequence and conformation strongly influence tryptophan fluorescence. Biophys J. 94:2280-2287. Aoh, Q.L., L.M. Graves, and M.C. Duncan. 2011. Glucose regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell. 22:3671-3683. Aoh, Q.L., C.W. Hung, and M.C. Duncan. 2013. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell. 24:832-847. Back, S.H., M. Schröder, K. Lee, K. Zhang, and R.J. Kaufman. 2005. ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods. 35:395-416. Barr, F.A., M. Puype, J. Vandekerckhove, and G. Warren. 1997. GRASP65, a Protein Involved in the Stacking of Golgi Cisternae. Cell. 91:253-262. Behnia, R., B. Panic, J.R. Whyte, and S. Munro. 2004. Targeting of the Arf-like GTPase Arl3p to the Golgi requires N-terminal acetylation and the membrane protein Sys1p. Nature cell biology. 6:405-413. Bigay, J., J.F. Casella, G. Drin, B. Mesmin, and B. Antonny. 2005. ArfGAP1 responds to membrane curvature through the folding of a lipid packing sensor motif. Embo j. 24:2244-2253. Bonifacino, J.S. 2014. Vesicular transport earns a Nobel. Trends Cell Biol. 24:3-5. Bonifacino, J.S., and B.S. Glick. 2004. The mechanisms of vesicle budding and fusion. Cell. 116:153-166. Celenza, J.L., and M. Carlson. 1989. Mutational Analysis of the Saccharomyces cerevisiae SNF1 Protein Kinase and Evidence for Functional Interaction with the SNF4 Protein. Molecular and Cellular Biology. 9:5034-5044. Cha, H., B.L. Smith, K. Gallo, C.E. Machamer, and P. Shapiro. 2004. Phosphorylation of golgin-160 by mixed lineage kinase 3. J Cell Sci. 117:751-760. Chen, B., M. Retzlaff, T. Roos, and J. Frydman. 2011. Cellular strategies of protein quality control. Cold Spring Harbor perspectives in biology. 3:a004374-a004374. Chen, K.-Y., P.-C. Tsai, Y.-W. Liu, and F.-J.S. Lee. 2012. Competition between the golgin Imh1p and the GAP Gcs1p stabilizes activated Arl1p at the late-Golgi. Journal of Cell Science. 125:4586-4596. Chen, K.Y., P.C. Tsai, J.W. Hsu, H.C. Hsu, C.Y. Fang, L.C. Chang, Y.T. Tsai, C.J. Yu, and F.J. Lee. 2010. Syt1p promotes activation of Arl1p at the late Golgi to recruit Imh1p. J Cell Sci. 123:3478-3489. Chen, Y.-C., P.-H. Jiang, H.-M. Chen, C.-H. Chen, Y.-T. Wang, Y.-J. Chen, C.-J. Yu, and S.-C. Teng. 2018. Glucose intake hampers PKA-regulated HSP90 chaperone activity. eLife. 7:e39925. Chen, Y.T., I.H. Wang, Y.H. Wang, W.Y. Chiu, J.H. Hu, W.H. Chen, and F.S. Lee. 2019. Action of Arl1 GTPase and golgin Imh1 in Ypt6-independent retrograde transport from endosomes to the trans-Golgi network. Mol Biol Cell. 30:1008-1019. Cui, L., H. Li, Y. Xi, Q. Hu, H. Liu, J. Fan, Y. Xiang, X. Zhang, W. Shui, and Y. Lai. 2022. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. Mol Biomed. 3:29. Dechant, R., S. Saad, Alfredo J. Ibáñez, and M. Peter. 2014. Cytosolic pH Regulates Cell Growth through Distinct GTPases, Arf1 and Gtr1, to Promote Ras/PKA and TORC1 Activity. Molecular Cell. 55:409-421. Donaldson, J.G., and C.L. Jackson. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nature Reviews Molecular Cell Biology. 12:362-375. Fröhlich, F., R. Christiano, and T.C. Walther. 2013. Native SILAC: metabolic labeling of proteins in prototroph microorganisms based on lysine synthesis regulation. Mol Cell Proteomics. 12:1995-2005. Freemantle, J.B., M.C. Towler, E.R. Hudson, T. Macartney, M. Zwirek, D.J.K. Liu, D.A. Pan, S. Ponnambalam, and D.G. Hardie. 2024. AMPK associates with and causes fragmentation of the Golgi by phosphorylating the guanine nucleotide exchange factor GBF1. J Cell Sci. 137. Gietz, R.D., and A. Sugino. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene. 74:527-534. Gillingham, A.K., and S. Munro. 2016. Finding the Golgi: Golgin Coiled-Coil Proteins Show the Way. Trends in cell biology. 26:399-408. Glick, B.S., and A. Luini. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb Perspect Biol. 3:a005215. Golemis, E.A., and V. Khazak. 1997. Alternative yeast two-hybrid systems. The interaction trap and interaction mating. Methods Mol Biol. 63:197-218. Hedbacker, K., and M. Carlson. 2006. Regulation of the nucleocytoplasmic distribution of Snf1-Gal83 protein kinase. Eukaryot Cell. 5:1950-1956. Hicks, S.W., and C.E. Machamer. 2002. The NH2-terminal domain of Golgin-160 contains both Golgi and nuclear targeting information. J Biol Chem. 277:35833-35839. Hong, S.P., F.C. Leiper, A. Woods, D. Carling, and M. Carlson. 2003. Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci U S A. 100:8839-8843. Hornbeck, P.V., J.M. Kornhauser, S. Tkachev, B. Zhang, E. Skrzypek, B. Murray, V. Latham, and M. Sullivan. 2012. PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Research. 40:D261-D270. Hsu, J.-W., Z.-J. Chen, Y.-W. Liu, and F.-J.S. Lee. 2014. Mechanism of action of the flippase Drs2p in modulating GTP hydrolysis of Arl1p. Journal of cell science. 127:2615. Hsu, J.-W., P.-H. Tang, I.H. Wang, C.-L. Liu, W.-H. Chen, P.-C. Tsai, K.-Y. Chen, K.-J. Chen, C.-J. Yu, and F.-J.S. Lee. 2016a. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proceedings of the National Academy of Sciences. 113:E1683-E1690. Hsu, J.W., P.H. Tang, I.H. Wang, C.L. Liu, W.H. Chen, P.C. Tsai, K.Y. Chen, K.J. Chen, C.J. Yu, and F.J. Lee. 2016b. Unfolded protein response regulates yeast small GTPase Arl1p activation at late Golgi via phosphorylation of Arf GEF Syt1p. Proceedings of the National Academy of Sciences of the United States of America. 113:E1683-1690. Huang, C., and A. Chang. 2011. pH-dependent cargo sorting from the Golgi. J Biol Chem. 286:10058-10065. Huber, I., E. Cukierman, M. Rotman, T. Aoe, V.W. Hsu, and D. Cassel. 1998. Requirement for both the amino-terminal catalytic domain and a noncatalytic domain for in vivo activity of ADP-ribosylation factor GTPase-activating protein. J Biol Chem. 273:24786-24791. Ishida, R., A. Yamamoto, K. Nakayama, M. Sohda, Y. Misumi, T. Yasunaga, and N. Nakamura. 2015. GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. Febs j. 282:2232-2244. Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J Bacteriol. 153:163-168. Jain, B.K., P.S. Thapa, A. Varma, and D. Bhattacharyya. 2018. Identification and characterization of GRIP domain Golgin PpImh1 from Pichia pastoris. Yeast (Chichester, England). 35:499-506. Jesch, S.A., T.S. Lewis, N.G. Ahn, and A.D. Linstedt. 2001. Mitotic phosphorylation of Golgi reassembly stacking protein 55 by mitogen-activated protein kinase ERK2. Mol Biol Cell. 12:1811-1817. Kahn, R.A., E. Bruford, H. Inoue, J.M. Logsdon, Jr., Z. Nie, R.T. Premont, P.A. Randazzo, M. Satake, A.B. Theibert, M.L. Zapp, and D. Cassel. 2008. Consensus nomenclature for the human ArfGAP domain-containing proteins. J Cell Biol. 182:1039-1044. Kimata, Y., Y.I. Kimata, Y. Shimizu, H. Abe, I.C. Farcasanu, M. Takeuchi, M.D. Rose, and K. Kohno. 2003. Genetic evidence for a role of BiP/Kar2 that regulates Ire1 in response to accumulation of unfolded proteins. Molecular biology of the cell. 14:2559-2569. King, G.A., R. Wettstein, J.M. Varberg, K. Chetlapalli, M.E. Walsh, L.C.J. Gillet, C. Hernández-Armenta, P. Beltrao, R. Aebersold, S.L. Jaspersen, J. Matos, and E. Ünal. 2022. Meiotic nuclear pore complex remodeling provides key insights into nuclear basket organization. Journal of Cell Biology. 222:e202204039. Lanz, M.C., K. Yugandhar, S. Gupta, E.J. Sanford, V.M. Faça, S. Vega, A.M.N. Joiner, J.C. Fromme, H. Yu, and M.B. Smolka. 2021. In‐depth and 3‐dimensional exploration of the budding yeast phosphoproteome. EMBO reports. 22:e51121. Lee, S.Y., J.-S. Yang, W. Hong, R.T. Premont, and V.W. Hsu. 2005. ARFGAP1 plays a central role in coupling COPI cargo sorting with vesicle formation. Journal of Cell Biology. 168:281-290. Lee, Y.J., G.R. Jeschke, F.M. Roelants, J. Thorner, and B.E. Turk. 2012. Reciprocal phosphorylation of yeast glycerol-3-phosphate dehydrogenases in adaptation to distinct types of stress. Mol Cell Biol. 32:4705-4717. Levi, S.K., D. Bhattacharyya, R.L. Strack, J.R. Austin, 2nd, and B.S. Glick. 2010. The yeast GRASP Grh1 colocalizes with COPII and is dispensable for organizing the secretory pathway. Traffic. 11:1168-1179. Lin, M.C., C.J. Yu, and F.S. Lee. 2022. Phosphorylation of Arl4A/D promotes their binding by the HYPK chaperone for their stable recruitment to the plasma membrane. Proc Natl Acad Sci U S A. 119:e2207414119. Liu, Y.-W., C.-F. Huang, K.-B. Huang, and F.-J.S. Lee. 2005. Role for Gcs1p in Regulation of Arl1p at Trans-Golgi Compartments. Molecular Biology of the Cell. 16:4024-4033. Liu, Y.W., S.W. Lee, and F.J. Lee. 2006. Arl1p is involved in transport of the GPI-anchored protein Gas1p from the late Golgi to the plasma membrane. J Cell Sci. 119:3845-3855. Lo, W.S., L. Duggan, N.C. Emre, R. Belotserkovskya, W.S. Lane, R. Shiekhattar, and S.L. Berger. 2001. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science. 293:1142-1146. Longtine, M.S., A. McKenzie, 3rd, D.J. Demarini, N.G. Shah, A. Wach, A. Brachat, P. Philippsen, and J.R. Pringle. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast. 14:953-961. Lowe, M. 2019. The Physiological Functions of the Golgin Vesicle Tethering Proteins. Front Cell Dev Biol. 7:94. Lowe, M., C. Rabouille, N. Nakamura, R. Watson, M. Jackman, E. Jämsä, D. Rahman, D.J. Pappin, and G. Warren. 1998. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell. 94:783-793. Lu, L., and W. Hong. 2003. Interaction of Arl1-GTP with GRIP domains recruits autoantigens Golgin-97 and Golgin-245/p230 onto the Golgi. Mol Biol Cell. 14:3767-3781. Lu, L., G. Tai, M. Wu, H. Song, and W. Hong. 2006. Multilayer interactions determine the Golgi localization of GRIP golgins. Traffic. 7:1399-1407. Luini, A. 2011. A brief history of the cisternal progression-maturation model. Cell Logist. 1:6-11. Mao, L., N. Li, Y. Guo, X. Xu, L. Gao, Y. Xu, L. Zhou, and W. Liu. 2013. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J Cell Sci. 126:1498-1505. McCartney, R.R., L. Garnar-Wortzel, D.G. Chandrashekarappa, and M.C. Schmidt. 2016. Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochim Biophys Acta. 1864:1518-1528. Miyamoto, T., E. Rho, V. Sample, H. Akano, M. Magari, T. Ueno, K. Gorshkov, M. Chen, H. Tokumitsu, J. Zhang, and T. Inoue. 2015. Compartmentalized AMPK Signaling Illuminated by Genetically Encoded Molecular Sensors and Actuators. Cell Reports. 11:657-670. Mizuno-Yamasaki, E., F. Rivera-Molina, and P. Novick. 2012. GTPase networks in membrane traffic. Annu Rev Biochem. 81:637-659. Moran, M.F., P. Polakis, F. McCormick, T. Pawson, and C. Ellis. 1991. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol Cell Biol. 11:1804-1812. Munro, S. 2011. The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol. 3. Muschalik, N., and S. Munro. 2018. Golgins. Curr Biol. 28:R374-r376. Nakamura, N., M. Lowe, T.P. Levine, C. Rabouille, and G. Warren. 1997. The vesicle docking protein p115 binds GM130, a cis-Golgi matrix protein, in a mitotically regulated manner. Cell. 89:445-455. Nath, N., R.R. McCartney, and M.C. Schmidt. 2003. Yeast Pak1 kinase associates with and activates Snf1. Mol Cell Biol. 23:3909-3917. Panic, B., O. Perisic, D.B. Veprintsev, R.L. Williams, and S. Munro. 2003. Structural Basis for Arl1-Dependent Targeting of Homodimeric GRIP Domains to the Golgi Apparatus. Molecular Cell. 12:863-874. Piña, F.J., T. Fleming, K. Pogliano, and M. Niwa. 2016. Reticulons Regulate the ER Inheritance Block during ER Stress. Dev Cell. 37:279-288. Rak, A., O. Pylypenko, T. Durek, A. Watzke, S. Kushnir, L. Brunsveld, H. Waldmann, R.S. Goody, and K. Alexandrov. 2003. Structure of Rab GDP-dissociation inhibitor in complex with prenylated YPT1 GTPase. Science. 302:646-650. Randazzo, P.A., and D.S. Hirsch. 2004. Arf GAPs: multifunctional proteins that regulate membrane traffic and actin remodelling. Cell Signal. 16:401-413. Rao, X.S., X.X. Cong, X.K. Gao, Y.P. Shi, L.J. Shi, J.F. Wang, C.Y. Ni, M.J. He, Y. Xu, C. Yi, Z.X. Meng, J. Liu, P. Lin, L.L. Zheng, and Y.T. Zhou. 2021. AMPK-mediated phosphorylation enhances the auto-inhibition of TBC1D17 to promote Rab5-dependent glucose uptake. Cell Death Differ. 28:3214-3234. Rein, U., U. Andag, R. Duden, H.D. Schmitt, and A. Spang. 2002. ARF-GAP–mediated interaction between the ER-Golgi v-SNAREs and the COPI coat. Journal of Cell Biology. 157:395-404. Ribaric, S., D. Peterec, and J. Sketelj. 1996. Computer aided data acquisition and analysis of acetlycholinesterase velocity sedimentation profiles. Computer Methods and Programs in Biomedicine. 49:149-156. Robinson, M., P.P. Poon, C. Schindler, L.E. Murray, R. Kama, G. Gabriely, R.A. Singer, A. Spang, G.C. Johnston, and J.E. Gerst. 2006. The Gcs1 Arf-GAP mediates Snc1,2 v-SNARE retrieval to the Golgi in yeast. Mol Biol Cell. 17:1845-1858. Schindler, C., and A. Spang. 2007. Interaction of SNAREs with ArfGAPs Precedes Recruitment of Sec18p/NSF. Molecular Biology of the Cell. 18:2852-2863. Schmidt, A., and A. Hall. 2002. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587-1609. Schmidt, M.C., and R.R. McCartney. 2000. beta-subunits of Snf1 kinase are required for kinase function and substrate definition. Embo j. 19:4936-4943. Schmitt, K., N. Smolinski, P. Neumann, S. Schmaul, V. Hofer-Pretz, G.H. Braus, and O. Valerius. 2017. Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol. 37. Schuck, P. 2000. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J. 78:1606-1619. Setty, S.R., M.E. Shin, A. Yoshino, M.S. Marks, and C.G. Burd. 2003. Golgi recruitment of GRIP domain proteins by Arf-like GTPase 1 is regulated by Arf-like GTPase 3. Curr Biol. 13:401-404. Sherman, F. 2002. Getting started with yeast. In Methods in Enzymology. Vol. 350. C. Guthrie and G.R. Fink, editors. Academic Press. 3-41. Shirra, M.K., J. Patton-Vogt, A. Ulrich, O. Liuta-Tehlivets, S.D. Kohlwein, S.A. Henry, and K.M. Arndt. 2001. Inhibition of acetyl coenzyme A carboxylase activity restores expression of the INO1 gene in a snf1 mutant strain of Saccharomyces cerevisiae. Mol Cell Biol. 21:5710-5722. Singer-Kruger, B., M. Lasic, A.M. Burger, A. Hausser, R. Pipkorn, and Y. Wang. 2008. Yeast and human Ysl2p/hMon2 interact with Gga adaptors and mediate their subcellular distribution. EMBO J. 27:1423-1435. Song, S., W. Cong, S. Zhou, Y. Shi, W. Dai, H. Zhang, X. Wang, B. He, and Q. Zhang. 2019. Small GTPases: Structure, biological function and its interaction with nanoparticles. Asian J Pharm Sci. 14:30-39. Spang, A., Y. Shiba, and P.A. Randazzo. 2010. Arf GAPs: gatekeepers of vesicle generation. FEBS Lett. 584:2646-2651. Springer, S., A. Spang, and R. Schekman. 1999. A primer on vesicle budding. Cell. 97:145-148. Swaney, D.L., P. Beltrao, L. Starita, A. Guo, J. Rush, S. Fields, N.J. Krogan, and J. Villén. 2013. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nature Methods. 10:676-682. Tran, D.T., J. Adhikari, and M.C. Fitzgerald. 2014. StableIsotope Labeling with Amino Acids in Cell Culture (SILAC)-based strategy for proteome-wide thermodynamic analysis of protein-ligand binding interactions. Mol Cell Proteomics. 13:1800-1813. Treitel, M.A., S. Kuchin, and M. Carlson. 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol Cell Biol. 18:6273-6280. Tsai, P.C., J.W. Hsu, Y.W. Liu, K.Y. Chen, and F.J. Lee. 2013. Arl1p regulates spatial membrane organization at the trans-Golgi network through interaction with Arf-GEF Gea2p and flippase Drs2p. Proceedings of the National Academy of Sciences of the United States of America. 110:E668-677. Vernet, T., D. Dignard, and D.Y. Thomas. 1987. A family of yeast expression vectors containing the phage f1 intergenic region. Gene. 52:225-233. Vincent, O., R. Townley, S. Kuchin, and M. Carlson. 2001. Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism. Genes Dev. 15:1104-1114. Walkup, W.G.t., L. Washburn, M.J. Sweredoski, H.J. Carlisle, R.L. Graham, S. Hess, and M.B. Kennedy. 2015. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases. J Biol Chem. 290:4908-4927. Wang, Y.H., W.Y. Chiu, Y.T. Chen, P.J. Cai, Y.C. Wu, J.L. Wu, B.H. Chen, Y.W. Liu, C.J. Yu, and F.S. Lee. 2022. Golgin Imh1 and GARP complex cooperate to restore the impaired SNARE recycling transport induced by ER stress. Cell Rep. 38:110488. Wei, J.-H., and J. Seemann. 2009. Mitotic division of the mammalian Golgi apparatus. Seminars in Cell & Developmental Biology. 20:810-816. Witkos, T.M., and M. Lowe. 2015. The Golgin Family of Coiled-Coil Tethering Proteins. Front Cell Dev Biol. 3:86. Wong, M., and S. Munro. 2014. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science (New York, N.Y.). 346:1256898. Xu, C., B. Bailly-Maitre, and J.C. Reed. 2005. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest. 115:2656-2664. Xu, P., R.D. Baldridge, R.J. Chi, C.G. Burd, and T.R. Graham. 2013. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport. J Cell Biol. 202:875-886. Yadav, S., M.A. Puthenveedu, and A.D. Linstedt. 2012. Golgin160 recruits the dynein motor to position the Golgi apparatus. Dev Cell. 23:153-165. Yang, J.S., S.Y. Lee, M. Gao, S. Bourgoin, P.A. Randazzo, R.T. Premont, and V.W. Hsu. 2002. ARFGAP1 promotes the formation of COPI vesicles, suggesting function as a component of the coat. J Cell Biol. 159:69-78. Yin, G., J. Huang, J. Petela, H. Jiang, Y. Zhang, S. Gong, J. Wu, B. Liu, J. Shi, and Y. Gao. 2023a. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduction and Targeted Therapy. 8:212. Yin, G., J. Huang, J. Petela, H. Jiang, Y. Zhang, S. Gong, J. Wu, B. Liu, J. Shi, and Y. Gao. 2023b. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther. 8:212. Yu, C.-J., and F.-J.S. Lee. 2017. Multiple activities of Arl1 GTPase in the trans-Golgi network. Journal of Cell Science. 130:1691. Zaman, S., S.I. Lippman, L. Schneper, N. Slonim, and J.R. Broach. 2009. Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol. 5:245. Zendeh-boodi, Z., T. Yamamoto, H. Sakane, and K. Tanaka. 2013. Identification of a second amphipathic lipid-packing sensor-like motif that contributes to Gcs1p function in the early endosome-to-TGN pathway. J Biochem. 153:573-587. Zhang, C.J., J.B. Bowzard, A. Anido, and R.A. Kahn. 2003. Four ARF GAPs in Saccharomyces cerevisiae have both overlapping and distinct functions. Yeast. 20:315-330. Zhang, C.J., M.M. Cavenagh, and R.A. Kahn. 1998. A family of Arf effectors defined as suppressors of the loss of Arf function in the yeast Saccharomyces cerevisiae. J Biol Chem. 273:19792-19796. Zhou, X., W. Li, Y. Liu, and A. Amon. 2021. Cross-compartment signal propagation in | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99946 | - |
| dc.description.abstract | 小GTPase坐落在高基氏體上,是作為調控細胞內蛋白質運輸的重要蛋白。小GTPase的活性受到鳥嘌呤核苷酸交換因子(Guanine nucleotide exchange factors, GEFs)以及GTPase活化蛋白(GTPase activating protein, GAP)的調控。在發酵酵母(Saccharomyces Cerevisiae)中,腺嘌呤核苷二磷酸核醣化因子相似蛋白1 (Arl1)是個在細胞壓力下,對於囊泡的逆向運輸扮演重要角色的小GTPase。目前已知Arl1的活性受到GEF蛋白Syt1以及GAP蛋白Gcs1的調控。活化的Arl1會招募高基氏體蛋白(Golgin) Imh1到高基氏體、調控糖基磷脂酰肌醇锚定蛋白(GPI-anchor protein) Gas1的運輸以及幫助衔接蛋白(adaptor protein) Gga2的運輸。在過去的研究中,我們發現在內質網壓力中,Arl1會被高度活化並招募更多的Imh1到高基氏體,同時,Imh1會被磷酸化並共同調控SNARE蛋白Snc1的逆向運輸。而在本篇研究中,我們更進一步發現,在缺乏糖分的情況下,Imh1會被磷酸化並促使其離開高基氏體,而這樣的磷酸化調控參與在細胞維持高基氏體恆定的機制中。而回到內質網壓力中,我們過去已知是磷酸化誘導的Syt1 (Arl1的GEF蛋白)活化來促使高度活化的Arl1。然而,對於Gcs1在內質網壓力中的角色目前並不清楚。在本篇研究中,我們發現透過磷酸化,Gcs1也參與在SNARE蛋白Scn1的運輸中。然而磷酸化的Gcs1並不影響其自身的酵素活性,代表其非透過改變Arl1的活性來影響Snc1運輸。我們發現磷酸化會影響Gcs1與Snc1之間的蛋白交互作用。綜合以上,我們透過這些研究了解到高基氏體蛋白Imh1以及GTPase活化蛋白Gcs1在細胞壓力下的調控以及所扮演的角色。 | zh_TW |
| dc.description.abstract | Small GTPases are responsible for protein transport in the cells. They localize on the Golgi, which serves as a protein sorting hub. The activity of small GTPases is regulated by Guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). Here, we focus on the small GTPase, Arl1, which localizes at the late-Golgi and is responsible for the protein retrograde transport under cellular stresses. Arl1 is activated by the known GEF, Syt1, and Gcs1 acts as a GAP for Arl1 to facilitate its inactivation. The downstream effectors of Arl1 include Golgin Imh1, GPI-anchor protein Gas1, and adaptor protein Gga2. In our previous finding, the activated Arl1 recruits Imh1 to the Golgi, and the Golgi-localized Imh1 then tethers the SNARE proteins to maintain retrograde transport under ER stress conditions. In addition to the ER stress, we further found that Imh1 also plays an important role under glucose deprivation. In this study, we revealed that the localization of Imh1 is regulated by the phosphorylation status under glucose deprivation, and the localization change is related to the maintenance of Golgi compartment under glucose deprivation. These results emphasize the role of Arl1 and Imh1 under stress conditions. Besides, we further investigate the role of Gcs1, the GAP of Arl1, under ER stress conditions. We previously reported that the phosphorylated GEF Syt1 is required for enhancing the vesicle transport function of Arl1 and Imh1, but the role of Gcs1 under ER stress is still unclear. In this study, we found that Gcs1 is phosphorylated under ER stress, and the phosphorylated Gcs1 defects its function in SNARE protein transport. Although Gcs1 is the GAP of Arl1, we surprisingly found that the phosphorylated Gcs1-regulated SNARE transport is independent of Arl1 activity but dependent on the direct interaction with Snc1. In summary, we reveal the function and regulation of Golgin Imh1 and Arf-GAP Gcs1 under different cellular stress. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:06:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-22T16:06:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
口試委員審定書 1 致謝 2 中文摘要 3 Abstract 4 Part I. Functional and structural characterization of phosphorylated Golgin Imh1 under glucose deprivation 10 中文摘要 10 Abstract 11 Introduction 12 Vesicle trafficking in cells 12 Small GTPase 13 Golgin tethering protein 15 Vesicle transport under Glucose deprivation 18 Snf1/AMP-activated kinase 18 Materials and Methods 20 Strains, plasmid, antibodies, and reagents 20 Microscopy and image analysis 20 Series spotting assay for high-temperature sensitivity 21 Yeast two-hybrid analysis 21 Purification of recombinant protein from E. coli 22 Protein purification from yeast 23 In vitro binding assay 24 In vitro kinase assay 24 Protein interaction analysis 25 Yeast total lysate collection and western blot analysis 26 Stable isotope labeling by amino acids in cell culture 27 Mass spectrometry analysis 28 Limited proteolysis assay 28 Gel filtration analysis 29 Intrinsic tryptophan fluorescence measurement 29 Size exclusion chromatography with multi-angle static light scattering (SEC-MALS) 30 Sedimentation velocity analysis by analytical ultracentrifugation 30 Chemical cross-linking 31 In-solution digestion 31 Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis 32 Quantitative and statistical analysis 33 Tables 34 Table 1. Yeast strain used in this study 34 Table 2. Plasmid used in this study 35 Table 3. Antibody used in this study 38 Results 39 Imh1 mislocalized under glucose deprivation 39 Imh1 is phosphorylated at Ser606, Ser802, and Ser804 in response to glucose deprivation 40 Phosphorylation of Imh1 at Ser606, Ser802, and Ser804 is responsible for its localization change under glucose deprivation. 40 The phospho-deficient Imh1 is still under the regulation of Syt1 and Arl1. 42 The phosphorylation of Imh1 Ser606, Ser802, and Ser804 does not change its its interaction with Arl1. 43 The phosphorylation of Imh1 Ser606, Ser802, and Ser804 has no effect on its self-interaction maintainance. 43 The phosphorylation of Imh1 Ser606, Ser802, and Ser804 alters its conformation leading to mislocalization 44 Snf1 regulates the localization and phosphorylation of Imh1 under glucose deprivation 45 Phosphorylated Imh1 at S802 and S804 impairs its suppression function on retrograde transport and growth defects in ypt6Δ 47 Phosphorylation of Imh1 compromises Golgi compartmentalization under glucose deprivation 48 Discussion 50 Figures 53 Figure 1. Imh1 is dissociated from the Golgi under long-term culture. 53 Figure 2. The protein level of Imh1 remains unchanged under long-term culture. 54 Figure 3. Glucose deprivation impairs Imh1 localization at the late-Golgi. 55 Figure 4. Effect of Golgi-resident proteins under glucose deprivation. 56 Figure 5. The glucose-deprivation-induced Imh1 mislocalization is reversed by re-complement of glucose. 58 Figure 6. Increased phosphorylation of Imh1 at Ser606, Ser802, and Ser804 under glucose deprivation. 59 Figure 7. The localization of Imh1 under glucose deprivation is regulated by the phosphorylation at its Ser606, Ser802, and Ser804. 60 Figure 8. The phosphorylation at Ser606, Ser802, and Ser804 are all required for the regulation of Imh1 Golgi-localization. 62 Figure 9. The phosphorylation on Ser802 and Ser804 of Imh1 regulates Golgi-localization of Imh1-C177. 64 Figure 10. Golgi recruitment of Imh1S606A,S802A,S804A is regulated by the Syt1-Arl1 pathway. 65 Figure 11. The localization of Arl1 is restored by the phosphor-deficient Imh1 under glucose deprivation. 66 Figure 12. The interaction between Imh1 and Arl1 is maintained despite Imh1 phosphorylation. 68 Figure 13. The structural prediction of Imh1. 70 Figure 14. DsRed-Imh1 retains Golgi punctate localization under glucose deprivation. 72 Figure 15. Phosphorylation of Imh1 does not affect its self-interaction. 74 Figure 16. The phosphorylation of Imh1 alters the elution performance of recombinant Imh1-C213 in gel filtration analysis. 76 Figure 17. Imh1WT-C213 and Imh1S802D,S804D-C213 both form dimer in vitro. 77 Figure 18. The phosphorylation of Imh1 does not change its intrinsic tryptophan fluorescence in vitro. 78 Figure 19. Phosphorylation of Imh1 alters its trypsin digestion profile. 80 Figure 20. Localization of Imh1 under glucose deprivation is regulated by Snf1. 81 Figure 21. Snf1 regulates the localization of Imh1 via the Imh1 phosphorylation under glucose deprivation. 83 Figure 22. Snf1 and Imh1 are associated with each other under glucose deprivation. 85 Figure 23. Snf1 phosphorylates Imh1 in vitro. 86 Figure 24. Snf4 was essential for the dissociation of Imh1 from Golgi during glucose deprivation. 88 Figure 25. The phosphorylation at Ser802 and Ser804 of Imh1 regulates its function in suppression of high-temperature growth defect of ypt6Δ. 89 Figure 26. The phosphorylation at Ser802 and Ser804 of Imh1 is iv volved in proper localization of Snc1 and Vps53 in ypt6Δ. 90 Figure 27. The phosphorylation at Ser802 and Ser804 of Imh1 is related to its suppression function in the localization of Arl1 and Imh1 in ypt6Δ. 91 Figure 28. Imh1 phosphorylation mediated by glucose deprivation attenuates the Golgi compartmentalization. 92 Figure 29. Model of Snf1-mediated Imh1 phosphorylation in the regulation of Golgi compartmentalization under glucose deprivation. 94 Reference 95 Part II. The study of Arf-GAP Gcs1 phosphorylation modulates SNARE Snc1 recycling transport in response to ER 102 中文摘要 102 Abstract 103 Introduction 104 Vesicle trafficking and small GTPases 104 GTPase activating protein (GAP) 106 ER stress 107 Materials and Methods 109 Strains, plasmid, antibodies, and reagents 109 Microscopy and image analysis 109 Series spotting assay for drug sensitivity test 109 Yeast two-hybrid analysis 110 Purification of recombinant protein from E. coli 111 Yeast total lysate collection and western blot analysis 112 Fractionation 113 Stable isotope labeling by amino acids in cell culture 114 Mass spectrometry analysis 114 Quantitative and statistical analysis 115 Tables 116 Table 1. Yeast strain used in this study 116 Table 2. Plasmid used in this study 117 Table 3. Antibody used in this study 119 Results 120 Gcs1 is required for the proper Snc1 localization under tunicamycin-induced ER stress 120 Gcs1-regulated Snc1 localization under tunicamycin-induced ER stress is independent of Arl1-Imh1 function 121 The endosomal localization of Gcs1 is responsible its function in regulating Snc1 transport 122 The phosphorylation of Gcs1 is not involved in its localization change 123 The phosphorylation of Gcs1 increases its interaction with Snc1 124 Slt2/ERK2 phosphorylates Gcs1 under tunicamycin-induced ER stress 124 Discussion 126 Figures 129 Figure 1. Phosphorylation of Gcs1 at Ser157, Thr161, Ser321, and Ser322 increases under tunicamycin-induced ER stress. 129 Figure 2. Tunicamycin-induced phosphorylation of Gcs1 impairs its function in Snc1 recycling to the plasma membrane. 130 Figure 3. The phosphorylation of Gcs1 at Ser157, Thr161, Ser321, and Ser322 is required for attenuating Snc1 recycling under tunicamycin-induced ER stress. 132 Figure 4. The phosphorylation of Gcs1 does not impact the multiple function of Arl1 at the Golgi. 134 Figure 5. The phosphorylation of Gcs1 does not affect its GAP activity in regulating the GTP-hydrolysis of Arl1. 135 Figure 6. Overexpression of phosphorylated Imh1 can not restore the Snc1 mislocalization in gcs1 mutant expressing Gcs1T161E under tunicamycin-induced ER stress. 136 Figure 7. The endosomal localization of Gcs1 is increased following tunicamycin treatment. 138 Figure 8. Gcs1ALPS::FYVE and Gcs1ALPS::AH localize at the late-Golgi and endosome, respectively. 140 Figure 9. The differential localization of Gcs1 at the Golgi and endosome modifies its cellular functions. 141 Figure 10. The subcellular distribution of Gcs1 is altered under tunicamycin treatment. 143 Figure 11. The localization of phosphorylated Gcs1 at the Golgi or endosome is not altered. 144 Figure 12. The phosphorylation of Gcs1 slightly increases its interaction with Snc1 and Snc2. 146 Figure 13. The Ire1-hac1 signal is not responsible for the phosphorylation of Gcs1 under tunicamycin-induced ER stress. 147 Figure 14. Slt2/ERK2 is responsible for the phosphorylation of Gcs1 under tunicamycin-induced ER stress. 148 Figure 15. The proposed model outlines the regulation of ArfGAP Gcs1 in attenuating SNARE Snc1 recycling transport under tunicamycin-induced ER stress. 149 Reference 150 | - |
| dc.language.iso | en | - |
| dc.subject | GTPase活化蛋白 | zh_TW |
| dc.subject | 高基氏體蛋白 | zh_TW |
| dc.subject | 囊泡運輸 | zh_TW |
| dc.subject | 細胞壓力 | zh_TW |
| dc.subject | Arf-GAP | en |
| dc.subject | vesicle trafficking | en |
| dc.subject | cellular stresses | en |
| dc.subject | Golgin | en |
| dc.title | 探討在壓力情況下磷酸化高基體體蛋白Imh1及腺嘌呤核苷二磷酸核醣化因子GTPase活化蛋白Gcs1對高基體運輸的調控 | zh_TW |
| dc.title | Phosphorylation of Golgin Imh1 and Arf-GAP Gcs1 regulates Golgi vesicle traffic under cellular stress | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 鄧述諄;王昭雯;陳瑞華;林敬哲;游佳融;劉雅雯 | zh_TW |
| dc.contributor.oralexamcommittee | Shu-Chun Teng;Chao-Wen Wang;Ruey-Hwa Chen;Jing-Jer Lin;Chia-Jung Yu;Ya-Wen Liu | en |
| dc.subject.keyword | 高基氏體蛋白,GTPase活化蛋白,細胞壓力,囊泡運輸, | zh_TW |
| dc.subject.keyword | Golgin,cellular stresses,Arf-GAP,vesicle trafficking, | en |
| dc.relation.page | 157 | - |
| dc.identifier.doi | 10.6342/NTU202502041 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-22 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 分子醫學研究所 | - |
| dc.date.embargo-lift | 2030-07-18 | - |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
