Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99943
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林芯伃zh_TW
dc.contributor.advisorShin-Yu Linen
dc.contributor.author李芷恩zh_TW
dc.contributor.authorChih-En Lien
dc.date.accessioned2025-09-22T16:05:23Z-
dc.date.available2025-09-23-
dc.date.copyright2025-09-22-
dc.date.issued2025-
dc.date.submitted2025-07-21-
dc.identifier.citation1. Akhavan-Niaki, H., Youssefi Kamangari, R., Banihashemi, A., Kholghi Oskooei, V., Azizi, M., Tamaddoni, A., Sedaghat, S., Vakili, M., Mahmoudi Nesheli, H., & Shabani, S. (2012). Hematologic features of alpha thalassemia carriers. Int J Mol Cell Med, 1(3), 162-167. https://www.ncbi.nlm.nih.gov/pubmed/24551772
2. Baird, D. C., Batten, S. H., & Sparks, S. K. (2022). Alpha- and Beta-thalassemia: Rapid Evidence Review. Am Fam Physician, 105(3), 272-280. https://www.ncbi.nlm.nih.gov/pubmed/35289581
3. Baliyan, M., Kumar, M., Nangia, A., & Parakh, N. (2019). Can RBC Indices be Used as Screening Test for Beta-Thalassemia in Indian Antenatal Women? J Obstet Gynaecol India, 69(6), 495-500. https://doi.org/10.1007/s13224-019-01220-8
4. Brancaleoni, V., Di Pierro, E., Motta, I., & Cappellini, M. D. (2016). Laboratory diagnosis of thalassemia. Int J Lab Hematol, 38 Suppl 1, 32-40. https://doi.org/10.1111/ijlh.12527
5. Cao, A., & Galanello, R. (2010). Beta-thalassemia. Genet Med, 12(2), 61-76. https://doi.org/10.1097/GIM.0b013e3181cd68ed
6. Chakrabarti, P., Gupta, R., Mishra, A., Rai, M., Singh, V. P., & Dash, D. (2005). Spectrum of beta-thalassemia mutations in North Indian states: a beta-thalassemia trait with two mutations in cis. Clin Biochem, 38(6), 576-578. https://doi.org/10.1016/j.clinbiochem.2005.03.002
7. Charoenkwan, P., Sirichotiyakul, S., Chanprapaph, P., Tongprasert, F., Taweephol, R., Sae-Tung, R., & Sanguansermsri, T. (2006). Anemia and hydrops in a fetus with homozygous hemoglobin constant spring. J Pediatr Hematol Oncol, 28(12), 827-830. https://doi.org/10.1097/01.mph.0000243662.56432.37
8. Chen, H. Y., Lin, Y. L., Su, Y. N., Yuan, T. J., Lin, S. Y., Lee, C. N., & Chen, K. H. (2025). Enhancing thalassemia carrier detection: Advancing genetic screening strategies in prenatal care. J Formos Med Assoc. https://doi.org/10.1016/j.jfma.2025.06.028
9. Chern, J. P., Lin, K. H., Su, Y. N., Lu, M. Y., Jou, S. T., Lin, D. T., Wang, S. C., & Lin, K. S. (2006). Impact of a national beta-thalassemia carrier screening program on the birth rate of thalassemia major. Pediatr Blood Cancer, 46(1), 72-76. https://doi.org/10.1002/pbc.20343
10. Chui, D. H. (2005). Alpha-thalassemia: Hb H disease and Hb Barts hydrops fetalis. Ann N Y Acad Sci, 1054, 25-32. https://doi.org/10.1196/annals.1345.004
11. Clegg, J. B., & Weatherall, D. J. (1999). Thalassemia and malaria: new insights into an old problem. Proc Assoc Am Physicians, 111(4), 278-282. https://doi.org/10.1046/j.1525-1381.1999.99235.x
12. Doan, P. L., Nguyen, D. A., Le, Q. T., Hoang, D. T., Nguyen, H. D., Nguyen, C. C., Doan, K. P. T., Tran, N. T., Ha, T. M. T., Trinh, T. H. N., Nguyen, V. T., Bui, C. T., Lai, N. T., Duong, T. H., Mai, H. L., Huynh, P. V., Huynh, T. T. T., Le, Q. V., Vo, T. B., . . . Phan, M. D. (2022). Detection of maternal carriers of common alpha-thalassemia deletions from cell-free DNA. Sci Rep, 12(1), 13581. https://doi.org/10.1038/s41598-022-17718-7
13. Farashi, S., & Harteveld, C. L. (2018). Molecular basis of alpha-thalassemia. Blood Cells Mol Dis, 70, 43-53. https://doi.org/10.1016/j.bcmd.2017.09.004
14. Fucharoen, S., & Viprakasit, V. (2009). Hb H disease: clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program, 26-34. https://doi.org/10.1182/asheducation-2009.1.26
15. Galanello, R., & Cao, A. (2011). Gene test review. Alpha-thalassemia. Genet Med, 13(2), 83-88. https://doi.org/10.1097/GIM.0b013e3181fcb468
16. Giordano, P. C., & Breuning, M. H. (2000). [From gene to disease; from hemoglobin genes to thalassemia and sickle cell anemia]. Ned Tijdschr Geneeskd, 144(40), 1910-1913. https://www.ncbi.nlm.nih.gov/pubmed/11045138 (Van gen naar ziekte; van hemoglobinegenen naar thalassemie en sikkelcelanemie.)
17. Han-Ying Chen , S.-Y. L., Jin-Chung Shih , Jessica Kang , Yi-Yun Tai , Steven W Shaw , Kuang-Cheng Chen , Kevin Mai , Chien-Nan Lee (2024). Changing the standardised obstetric care by expanded carrier screening and counselling: a multicentre prospective cohort study. Journal of Medical Genetics 19;61(2):176-181. https://doi.org/10.1136/jmg-2023-109268
18. Harteveld, C. L., & Higgs, D. R. (2010). Alpha-thalassaemia. Orphanet J Rare Dis, 5, 13. https://doi.org/10.1186/1750-1172-5-13
19. Higgs, D. R. (2013). The molecular basis of alpha-thalassemia. Cold Spring Harb Perspect Med, 3(1), a011718. https://doi.org/10.1101/cshperspect.a011718
20. Higgs, D. R., & Gibbons, R. J. (2010). The molecular basis of alpha-thalassemia: a model for understanding human molecular genetics. Hematol Oncol Clin North Am, 24(6), 1033-1054. https://doi.org/10.1016/j.hoc.2010.08.005
21. Huang, G., Zheng, Y. W., Wu, J., & Liu, S. N. (2023). [Characteristics of Silent Alpha Thalassemia Gene in Child-Bearing Adults in Guangdong]. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 31(6), 1811-1814. https://doi.org/10.19746/j.cnki.issn.1009-2137.2023.06.032
22. Jaing, T. H., Chang, T. Y., Chen, S. H., Lin, C. W., Wen, Y. C., & Chiu, C. C. (2021). Molecular genetics of beta-thalassemia: A narrative review. Medicine (Baltimore), 100(45), e27522. https://doi.org/10.1097/MD.0000000000027522
23. Jiang, F., Xu, L. L., Chen, G. L., Zhou, J. Y., Li, J., Tang, X. W., Zuo, L. D., & Li, D. Z. (2020). Hematological Characteristics of Hb Constant Spring (HBA2: c.427T>C) Carriers in Mainland China. Hemoglobin, 44(2), 86-88. https://doi.org/10.1080/03630269.2020.1755979
24. Jomoui, W., Fucharoen, G., Sanchaisuriya, K., Charoenwijitkul, P., Maneesarn, J., Xu, X., & Fucharoen, S. (2017). Genetic origin of alpha(0)-thalassemia (SEA deletion) in Southeast Asian populations and application to accurate prenatal diagnosis of Hb Bart's hydrops fetalis syndrome. J Hum Genet, 62(8), 747-754. https://doi.org/10.1038/jhg.2017.41
25. Karimi, M., & Rasekhi, A. R. (2002). Efficiency of premarital screening of beta-thalassemia trait using MCH rather than MCV in the population of Fars Province, Iran. Haematologia (Budap), 32(2), 129-133. https://doi.org/10.1163/156855902320387961
26. Karnpean, R., Pansuwan, A., Fucharoen, G., & Fucharoen, S. (2011). Evaluation of the URIT-2900 automated hematology analyzer for screening of thalassemia and hemoglobinopathies in Southeast Asian populations. Clin Biochem, 44(10-11), 889-893. https://doi.org/10.1016/j.clinbiochem.2011.04.009
27. Kaur, G., Chatterjee, T., Ahuja, A., & Sen, A. (2024). Challenges in diagnosis of thalassemia syndromes. Med J Armed Forces India, 80(6), 632-637. https://doi.org/10.1016/j.mjafi.2024.01.001
28. Khan, A., & Rehman, A. U. (2025). Laboratory Evaluation of Beta Thalassemia. In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/36251822
29. Kimura, A., Matsunaga, E., Takihara, Y., Nakamura, T., Takagi, Y., Lin, S., & Lee, H. (1983). Structural analysis of a beta-thalassemia gene found in Taiwan. J Biol Chem, 258(5), 2748-2749. https://www.ncbi.nlm.nih.gov/pubmed/6826539
30. Ko, T. M., Hsu, P. M., Chen, C. J., Hsieh, F. J., Hsieh, C. Y., & Lee, T. Y. (1989). Incidence study of heterozygous beta-thalassemia in northern Taiwan. Taiwan Yi Xue Hui Za Zhi, 88(7), 678-681. https://www.ncbi.nlm.nih.gov/pubmed/2809561
31. Ko, T. M., & Xu, X. (1998). Molecular study and prenatal diagnosis of alpha- and beta-thalassemias in Chinese. J Formos Med Assoc, 97(1), 5-15. https://www.ncbi.nlm.nih.gov/pubmed/9481058
32. Komvilaisak, P., Komvilaisak, R., Jetsrisuparb, A., Wiangnon, S., Jirapradittha, J., Kiatchoosakun, P., & Fucharoen, G. (2018). Fetal Anemia Causing Hydrops Fetalis From an Alpha-Globin Variant: Homozygous Hemoglobin Constant Spring. J Pediatr Hematol Oncol, 40(5), 405-408. https://doi.org/10.1097/MPH.0000000000001051
33. Lal, A., & Vichinsky, E. (2023). The Clinical Phenotypes of Alpha Thalassemia. Hematol Oncol Clin North Am, 37(2), 327-339. https://doi.org/10.1016/j.hoc.2022.12.004
34. Langlois, S., Ford, J. C., Chitayat, D., Ccmg Prenatal Diagnosis, C., & Sogc Genetics, C. (2008). Carrier screening for thalassemia and hemoglobinopathies in Canada. J Obstet Gynaecol Can, 30(10), 950-959. https://doi.org/10.1016/S1701-2163(16)32975-9
35. Lessels, S., & Davidson, R. J. (1979). The low mean cell volume in routine haematology. Clin Lab Haematol, 1(4), 291-298. https://doi.org/10.1111/j.1365-2257.1979.tb01094.x
36. Leung, T. Y., & Lao, T. T. (2012). Thalassaemia in pregnancy. Best Pract Res Clin Obstet Gynaecol, 26(1), 37-51. https://doi.org/10.1016/j.bpobgyn.2011.10.009
37. Mettananda, S., & Higgs, D. R. (2018). Molecular Basis and Genetic Modifiers of Thalassemia. Hematol Oncol Clin North Am, 32(2), 177-191. https://doi.org/10.1016/j.hoc.2017.11.003
38. Miao, D. L. (1987). [Relationship between gastric cancer invasion and beta-glucuronidase (beta-G) and beta-N-acetyl-glucosaminidase (beta-N-AG) activities]. Zhonghua Bing Li Xue Za Zhi, 16(4), 269-271, 248. https://www.ncbi.nlm.nih.gov/pubmed/2838187
39. Modell, B., & Darlison, M. (2008). Global epidemiology of haemoglobin disorders and derived service indicators. Bull World Health Organ, 86(6), 480-487. https://doi.org/10.2471/blt.06.036673
40. Motiani, A., Zubair, M., & Sonagra, A. D. (2025). Laboratory Evaluation of Alpha Thalassemia. In StatPearls. https://www.ncbi.nlm.nih.gov/pubmed/36508547
41. Muncie, H. L., Jr., & Campbell, J. (2009). Alpha and beta thalassemia. Am Fam Physician, 80(4), 339-344. https://www.ncbi.nlm.nih.gov/pubmed/19678601
42. Nunchai, C., Sirichotiyakul, S., & Tongsong, T. (2020). Optimal cutoff of mean corpuscular volume (MCV) for screening of alpha-thalassemia 1 trait. J Obstet Gynaecol Res, 46(5), 774-778. https://doi.org/10.1111/jog.14222
43. Origa, R. (2017). beta-Thalassemia. Genet Med, 19(6), 609-619. https://doi.org/10.1038/gim.2016.173
44. Pan, Y., Chen, M., Zhang, Y., Zhang, M., Chen, L., Lin, N., Xu, L., & Huang, H. (2022). Analysis of genotype-phenotype correlation in patients with alpha-thalassemia from Fujian province, Southeastern China. J Clin Lab Anal, 36(10), e24696. https://doi.org/10.1002/jcla.24696
45. Phanthong, B., Charoenkwan, P., Kamlungkuea, T., Luewan, S., & Tongsong, T. (2025). Accuracy of Red Blood Cell Parameters in Predicting alpha(0)-Thalassemia Trait Among Non-Anemic Males. J Clin Med, 14(10). https://doi.org/10.3390/jcm14103591
46. Pranpanus, S., Sirichotiyakul, S., Srisupundit, K., & Tongsong, T. (2009). Sensitivity and specificity of mean corpuscular hemoglobin (MCH): for screening alpha-thalassemia-1 trait and beta-thalassemia trait. J Med Assoc Thai, 92(6), 739-743. https://www.ncbi.nlm.nih.gov/pubmed/19530577
47. Reena Das, M. D. D. P. S. (2021). Homozygous HbE Disease in an antenatal woman from East India. American Society of Hematology.
48. Sari, D. P., Wahidiyat, P. A., Setianingsih, I., Timan, I. S., Gatot, D., & Kekalih, A. (2022). Hematological Parameters in Individuals with Beta Thalassemia Trait in South Sumatra, Indonesia. Anemia, 2022, 3572986. https://doi.org/10.1155/2022/3572986
49. Setianingsih, I. I., Williamson, R., Marzuk, S., Harahap, A., Tamam, M., & Forrest, S. (1998). Molecular Basis of beta-Thalassemia in Indonesia: Application to Prenatal Diagnosis. Mol Diagn, 3(1), 11-19. https://doi.org/10.154/MODI00300011
50. Sirichotiyakul, S., Maneerat, J., Sa-nguansermsri, T., Dhananjayanonda, P., & Tongsong, T. (2005). Sensitivity and specificity of mean corpuscular volume testing for screening for alpha-thalassemia-1 and beta-thalassemia traits. J Obstet Gynaecol Res, 31(3), 198-201. https://doi.org/10.1111/j.1447-0756.2005.00280.x
51. Tesio, N., & Bauer, D. E. (2023). Molecular Basis and Genetic Modifiers of Thalassemia. Hematol Oncol Clin North Am, 37(2), 273-299. https://doi.org/10.1016/j.hoc.2022.12.001
52. Thiamkaew, A., Charoenkwan, P., Jatavan, P., & Tongsong, T. (2024). Accuracy of the model derived from red blood cell indices in predicting alpha(0)-thalassemia trait among non-anemic pregnant women. Heliyon, 10(20), e39103. https://doi.org/10.1016/j.heliyon.2024.e39103
53. Tuo, Y., Li, Y., Li, Y., Ma, J., Yang, X., Wu, S., Jin, J., & He, Z. (2024). Global, regional, and national burden of thalassemia, 1990-2021: a systematic analysis for the global burden of disease study 2021. EClinicalMedicine, 72, 102619. https://doi.org/10.1016/j.eclinm.2024.102619
54. Vanlerberghe, C., Petit, F., Malan, V., Vincent-Delorme, C., Bouquillon, S., Boute, O., Holder-Espinasse, M., Delobel, B., Duban, B., Vallee, L., Cuisset, J. M., Lemaitre, M. P., Vantyghem, M. C., Pigeyre, M., Lanco-Dosen, S., Plessis, G., Gerard, M., Decamp, M., Mathieu, M., . . . Andrieux, J. (2015). 15q11.2 microdeletion (BP1-BP2) and developmental delay, behaviour issues, epilepsy and congenital heart disease: a series of 52 patients. Eur J Med Genet, 58(3), 140-147. https://doi.org/10.1016/j.ejmg.2015.01.002
55. Velasco-Rodriguez, D., Blas, C., Alonso-Dominguez, J. M., Vega, G., Soto, C., Garcia-Raso, A., & Llamas-Sillero, P. (2017). Cut-Off Values of Hematologic Parameters to Predict the Number of Alpha Genes Deleted in Subjects with Deletional Alpha Thalassemia. Int J Mol Sci, 18(12). https://doi.org/10.3390/ijms18122707
56. Wang, X., Huang, H., Zhao, Y., Zhou, Y., Zhang, Q., & Wang, G. (2023). Molecular spectrum of alpha- and beta-thalassemia among individuals of reproductive age in the Zhuhai region of southern China. Int J Lab Hematol, 45(4), 571-580. https://doi.org/10.1111/ijlh.14059
57. Wang, Z., Sun, W., Chen, H., Zhang, Y., Wang, F., Chen, H., Zhou, Y., Huang, Y., Zhou, X., Li, Q., & Ma, Y. (2021). Prevalence and molecular spectrum of alpha- and beta-globin gene mutations in Hainan, China. Int J Hematol, 114(3), 307-318. https://doi.org/10.1007/s12185-021-03173-z
58. Wickramaratne, K. A. C., & Wijewickrama, D. C. (2021). Screening for beta-thalassemia trait; applicability of red cell indices and parameters - A study in Sri Lanka. Int J Health Sci (Qassim), 15(1), 29-34. https://www.ncbi.nlm.nih.gov/pubmed/33456440
59. Williams, T. N., & Weatherall, D. J. (2012). World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med, 2(9), a011692. https://doi.org/10.1101/cshperspect.a011692
60. Xian, J., Wang, Y., He, J., Li, S., He, W., Ma, X., & Li, Q. (2022). Molecular Epidemiology and Hematologic Characterization of Thalassemia in Guangdong Province, Southern China. Clin Appl Thromb Hemost, 28, 10760296221119807. https://doi.org/10.1177/10760296221119807
61. Yang, Y., Lou, J. W., Liu, Y. H., He, Y., & Li, D. Z. (2014). Screening and diagnosis of Hb Quong Sze [HBA2: c.377T > C (or HBA1)] in a prenatal control program for thalassemia. Hemoglobin, 38(3), 158-160. https://doi.org/10.3109/03630269.2014.910669
62. Zhang, M., Huang, H., Chen, M., Chen, L., Wang, Y., Lin, N., Lin, Y., & Xu, L. (2019). Frequencies and hematological manifestations of the HKalphaalpha allele in southern Chinese population. Int J Clin Exp Pathol, 12(8), 3058-3062. https://www.ncbi.nlm.nih.gov/pubmed/31934145
63. Zhang, S., Chen, Z., Chen, M., & Huang, H. (2024). Current status and trends in thalassemia burden across South, East and Southeast Asia, 1990-2021 a systematic analysis for the global burden of disease study 2021. BMC Public Health, 24(1), 3472. https://doi.org/10.1186/s12889-024-20983-y
64. Zhou, B. Y., Wang, Y. X., Xu, S. S., Gu, H., & Li, M. Z. (2021). Molecular Spectrum of alpha- and beta-Thalassemia among Young Individuals of Marriageable Age in Guangdong Province, China. Biomed Environ Sci, 34(10), 824-829. https://doi.org/10.3967/bes2021.112
65. Zhu, Y., Shen, N., Wang, X., Xiao, J., & Lu, Y. (2020). Alpha and beta-Thalassemia mutations in Hubei area of China. BMC Med Genet, 21(1), 6. https://doi.org/10.1186/s12881-019-0925-5
66. Zhuang, J., Zhang, N., Wang, Y., Zhang, H., Zheng, Y., Jiang, Y., Xie, Y., & Chen, D. (2021). Molecular Characterization Analysis of Thalassemia and Hemoglobinopathy in Quanzhou, Southeast China: A Large-Scale Retrospective Study. Front Genet, 12, 727233. https://doi.org/10.3389/fgene.2021.727233
67. 李润华. (2022). 血常规MCV及MCH联合检测用于地中海贫血
68. 筛查的价值分析.
69. 李智文, 侯. (2025). 广州市天河区育龄夫妇地中海贫血检测结果分析.
70. 柯滄銘婦產科. (2012). 海洋性貧血基因檢測.
71. 窦倩如,曹霞,黄翠敏,粘惠瑜,肖美芳,周俏苗,程冷眉,孔令婉,范霞林,吴桂花,樊利春. (2023). 海南省孕前及孕期地中海贫血筛查方案评价及优化研究.
72. 潘美秀, 韦., 林伟健, 李海凤. (2022). 血液学指标在4种常见α地中海贫血中筛查价值. 283.
73. 衛生福利部國民健康署網站. (2017). 優生保健措施減免或補助辦法.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99943-
dc.description.abstract背景與研究目的
海洋性貧血為台灣常見之體染色體隱性遺傳疾病,臨床上多以平均紅血球容積(MCV)與平均紅血球血紅素(MCH)作為初步篩檢指標。然而,部分輕度甲型(如: -α3.7、-α4.2、Hb Constant Spring)與乙型(如: CD26)帶因者,其血液學數值可能高於傳統臨界值(MCV >80 fL、MCH >27 pg),導致帶因者被誤判為陰性。若帶因夫妻雙方皆未被檢出,則可能產下中度或重度海洋性貧血胎兒,造成嚴重臨床後果。本研究旨在重新評估現行臨界值設定的敏感度與特異性,探討更合適的篩檢門檻,以提升診斷效能與遺傳風險預防能力。
材料與方法
本研究為回溯性設計,分析自2000年至2024年間產前檢查之成人全血球檢驗與基因檢測數據,並依據基因型分為甲型與乙型海洋性貧血帶因者進行分析。篩檢條件設為多組MCV(80–84 fL)、MCH <27 pg,及其複合條件,並比較其篩檢效能,包括敏感度、特異性、陽性預測值與陰性預測值。
研究結果
甲型帶因者中,以SEA型α⁰缺失最常見,右端缺失型(-α3.7)、左端缺失型(-α4.2)與CS型則顯示紅血球數值接近或高於臨界值。乙型帶因者以IVS-II-654與CD41/42為主,CD26型亦觀察到部分數值偏高。結果顯示,將MCV臨界值提高至84 fL可顯著提升敏感度(達98%以上),但特異性相對下降。MCH ≤27 pg 則呈現穩定且平衡之篩檢效能。當採用「MCV ≤82 或 MCH ≤27」的條件時,敏感度可提升至99%以上,有效降低假陰性率。
討論
傳統MCV ≤80 fL作為單一篩檢門檻,可能無法涵蓋紅血球指標位於邊緣的帶因者,尤其為輕度或非缺失型變異者。MCH指標則展現更穩定的表現,不易受檢體狀況影響。複合條件雖降低部分特異性,但可大幅提升整體篩檢效益,對於提升臨床偵測潛在高風險帶因者具重要意義。
結論
建議台灣現行海洋性貧血之篩檢標準應調整,採用「MCH ≤27 pg 或 MCV ≤82 fL」作為初篩條件,更能兼顧高敏感度與實務可行性。此一策略有助於降低中重度患兒出生風險,並提升產前遺傳諮詢與疾病預防之整體準確性與品質。
zh_TW
dc.description.abstractBackground and Objectives
Thalassemia is a common autosomal recessive disorder in Taiwan. Current screening mainly relies on mean corpuscular volume (MCV) ≤80 fL and mean corpuscular hemoglobin (MCH) ≤27 pg. However, certain α-thalassemia genotypes (e.g., -α3.7, -α4.2, Hb Constant Spring) and β-thalassemia variants (e.g., CD26) may present values above these thresholds, leading to missed diagnoses. If both carriers are undetected, they may conceive a fetus with moderate or severe thalassemia. This study aimed to re-evaluate the current cutoffs and propose more effective screening criteria.
Materials and Methods
A retrospective analysis was conducted using adult prenatal CBC and genotyping data from 2000 to 2024. We assessed multiple MCV thresholds (80–84 fL), MCH <27 pg, and combined conditions to evaluate sensitivity, specificity, and predictive values.
Results
SEA type α⁰ deletion was most prevalent. Mild variants like -α3.7, -α4.2, and Hb CS type showed borderline or elevated MCV/MCH values, as did CD26 among β-thalassemia cases. Raising the MCV cutoff improved sensitivity (up to >98%) but reduced specificity. MCH ≤27 pg showed more stable performance. The combined criterion “MCV ≤82 fL or MCH ≤27 pg” achieved >99% sensitivity with fewer false negatives.
Discussion
The current MCV cutoff may miss carriers with mild mutations. MCH is a more reliable standalone marker. Combined screening improves detection, though with slightly reduced specificity, and is especially valuable in preventing high-risk pregnancies.
Conclusion
We recommend adopting “MCV ≤82 fL or MCH ≤27 pg” as the screening threshold in Taiwan to enhance sensitivity, reduce missed cases, and improve prenatal thalassemia prevention.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-22T16:05:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-22T16:05:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
英文摘要 iv
第一章 緒論 1
第一節 疾病介紹 1
第二節 研究動機與目的 2
第二章 文獻探討 3
第一節 甲型海洋性貧血(α-thalassemia) 3
i.單一α球蛋白基因缺失(Single α-globin gene mutation) 4
ii.兩個α球蛋白基因缺失(Two α-globin gene mutations) 6
iii.三個α球蛋白基因缺失(Three α-globin gene mutations) 8
iv.四個α球蛋白基因缺失(Four α-globin gene mutations) 8
第二節 乙型海洋性貧血(β-thalassemia) 9
i. 輕度乙型海洋性貧血(Thalassemia Minor) 10
ii.中度乙型海洋性貧血(Thalassemia Intermedia) 11
iii.重度乙型海洋性貧血(Thalassemia Major) 11
第三節 海洋性貧血篩檢與診斷 13
第三章 研究方法 16

第一節 研究設計 16
第二節 研究對象 17
第四章 研究結果 17
第一節 甲型海洋性貧血帶因者之基因型分布 18
第二節 甲型海洋性貧血帶因者之檢驗數值與臨界值分析 18
第三節 乙型海洋性貧血帶因者之基因型分布 19
第四節 乙型海洋性貧血帶因者之檢驗數值與臨界值分析 19
第五節 血液檢驗項目臨界值之分析結果 20
第五章 討論 22
第一節 基因型分布之探討 22
第二節 探討偽陰性基因型的統計 22
第三節 討論篩檢工具的優與缺 24
第四節 探討中/重度海洋性貧血的遺傳模式 24
第五節 探討Hb H disease的遺傳諮詢 26
第六節 不同篩檢項目與條件之討論 27
第六章 結論 29
第七章 參考文獻 30
圖表與附錄 41
-
dc.language.isozh_TW-
dc.subject基因型zh_TW
dc.subject海洋性貧血篩檢zh_TW
dc.subjectHb H疾病zh_TW
dc.subjectMCH 臨界值zh_TW
dc.subjectMCV 臨界值zh_TW
dc.subjectMCV cutoffen
dc.subjectMCH cutoffen
dc.subjectHbH diseaseen
dc.subjectgenotypeen
dc.subjectThalassemia screeningen
dc.title重新審視海洋性貧血帶因者篩檢之標準zh_TW
dc.titleRe-evaluating the Screening Criteria for Thalassemia Carriersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee柯滄銘;李建南zh_TW
dc.contributor.oralexamcommitteeTsang-Ming Ko;Chien-Nan Leeen
dc.subject.keyword海洋性貧血篩檢,基因型,MCV 臨界值,MCH 臨界值,Hb H疾病,zh_TW
dc.subject.keywordThalassemia screening,genotype,MCV cutoff,MCH cutoff,HbH disease,en
dc.relation.page67-
dc.identifier.doi10.6342/NTU202501966-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-22-
dc.contributor.author-college醫學院-
dc.contributor.author-dept分子醫學研究所-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-01
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved