Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99937
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃盛修zh_TW
dc.contributor.advisorSheng-Hsiu Huangen
dc.contributor.author鄭曉祺zh_TW
dc.contributor.authorHsiao-Chi Chengen
dc.date.accessioned2025-09-19T16:21:09Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationArefin, A. M. E., Masud, M. H., Joardder, M. U., & Akhter, M. S. (2017). A monodisperse-aerosol generation system: Design, fabrication and performance. Particuology, 34, 118-125.
Chen, D.-R., Pui, D. Y., & Kaufman, S. L. (1995). Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 μm diameter range. Journal of Aerosol Science, 26(6), 963-977.
Didenko, Y. T., & Suslick, K. S. (2005). Chemical aerosol flow synthesis of semiconductor nanoparticles. Journal of the American Chemical Society, 127(35), 12196-12197.
Evans, D. E., Harrison, R. M., & Ayres, J. G. (2003a). The generation and characterisation of elemental carbon aerosols for human challenge studies. Journal of Aerosol Science, 34(8), 1023-1041.
Evans, D. E., Harrison, R. M., & Ayres, J. G. (2003b). The generation and characterization of metallic and mixed element aerosols for human challenge studies. Aerosol Science & Technology, 37(12), 975-987.
Gasperi, J., Wright, S. L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F. J., & Tassin, B. (2018). Microplastics in air: are we breathing it in? Current Opinion in Environmental Science & Health, 1, 1-5.
Hak, C. C., Fatanah, D. N. E., Abdullah, Y., & Sulaiman, M. Y. M. (2018). The effect of surfactants on the stability of TiO2 aqueous suspension. Int. J. Curr. Res. Sci. Eng. Technol, 1(172), 2018.2172-2178.
Hinds, W. C. (1982). Aerosol technology: Properties, behavior, and measurement of airborne particles(Book). New York, Wiley-Interscience, 1982. 442 p.
Holubčík, M., Jandačka, J., Ďurčanský, P., & Čaja, A. (2020). Particulate matter measurement by using the particle sizers APS and SMPS. EAI Endorsed Trans. Energy Web, 8, 166000.
Ibald-Mulli, A., Wichmann, H.-E., Kreyling, W., & Peters, A. (2002). Epidemiological evidence on health effects of ultrafine particles. Journal of Aerosol Medicine, 15(2), 189-201.
Jahedi, F., & Fard, N. J. H. (2025). Micro-and nanoplastic toxicity in humans: Exposure pathways, cellular effects, and mitigation strategies. Toxicology Reports, 102043.
Khanna, R., Chandra, A., Sen, S., Konyukhov, Y., Fuentes, E., Burmistrov, I., & Kravchenko, M. (2024). Microplastics and Nanoplastics as Environmental Contaminants of Emerging Concern: Potential Hazards for Human Health. Sustainability, 16(19), 8704.
Kim, J.-T., & Chang, J.-S. (2005). Generation of metal oxide aerosol particles by a pulsed spark discharge technique. Journal of Electrostatics, 63(6-10), 911-916.
Kim, K., & Marshall Jr, W. (1971). Drop‐size distributions from pneumatic atomizers. AIChE Journal, 17(3), 575-584.
Kousaka, Y., Horiuchi, T., Endo, Y., & Aotani, S. (1994). Generation of aerosol particles by boiling of suspensions. Aerosol Science and Technology, 21(3), 236-240.
Kreyling, W., Semmler, M., & Möller, W. (2004). Health effects of ultrafine particles. Journal of Aerosol Science, 35, S1155-S1156.
Kuo, Y.-M., Chan, W.-H., Lin, C.-W., Huang, S.-H., & Chen, C.-C. (2019). Characterization of vibrating mesh aerosol generators. Aerosol and Air Quality Research, 19(8), 1678-1687.
Kuula, J., Mäkelä, T., Aurela, M., Teinilä, K., Varjonen, S., González, Ó., & Timonen, H. (2020). Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmospheric Measurement Techniques, 13(5), 2413-2423.
Lee, Y.-C., Jeng, F.-T., & Chen, C.-C. (2008). Technique for aerosol generation with controllable micrometer size distribution. Chemosphere, 73(5), 760-767.
Li, Y., Pedersen, C., Dykema, J., Vernier, J.-P., Vattioni, S., Pandit, A. K., Stenke, A., Asher, E., Thornberry, T., & Todt, M. A. (2023). In situ measurements of perturbations to stratospheric aerosol and modeled ozone and radiative impacts following the 2021 La Soufrière eruption. Atmospheric Chemistry and Physics, 23(24), 15351-15364.
Lin, H. B., Eversole, J., & Campillo, A. (1990). Vibrating orifice droplet generator for precision optical studies. Review of scientific instruments, 61(3), 1018-1023.
Lisunova, M. O., Lebovka, N. I., Melezhyk, O. V., & Boiko, Y. P. (2006). Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. Journal of colloid and interface science, 299(2), 740-746.
Liu, C., Huang, C.-J., Huang, K., Huang, S.-H., Huo, J., Duan, Y., & Lin, Y. (2023). Development, verification and application of a versatile aerosol calibration system for online aerosol instruments. Particuology, 74, 48-55.
Lombardi, G., Di Russo, M., Zjalic, D., Lanza, T., Simmons, M., Moscato, U., Ricciardi, W., & Chiara, C. (2022). Microplastics inhalation and their effects on human health: A systematic review. European Journal of Public Health, 32(Supplement_3), ckac131. 152.
Mercer, T. T. (1973). Production and characterization of aerosols. Archives of internal medicine, 131(1), 39-50.
Mertens, J., Lepaumier, H., Rogiers, P., Desagher, D., Goossens, L., Duterque, A., Le Cadre, E., Zarea, M., Blondeau, J., & Webber, M. (2020). Fine and ultrafine particle number and size measurements from industrial combustion processes: Primary emissions field data. Atmospheric Pollution Research, 11(4), 803-814.
Nguyen, D. N., Clasen, C., & Van den Mooter, G. (2016). Pharmaceutical applications of electrospraying. Journal of pharmaceutical sciences, 105(9), 2601-2620.
Oberdörster, G., Celein, R. M., Ferin, J., & Weiss, B. (1995). Association of particulate air pollution and acute mortality: involvement of ultrafine particles? Inhalation toxicology, 7(1), 111-124.
Pujalté, I., Serventi, A., Noël, A., Dieme, D., Haddad, S., & Bouchard, M. (2017). Characterization of aerosols of titanium dioxide nanoparticles following three generation methods using an optimized aerosolization system designed for experimental inhalation studies. Toxics, 5(3), 14.
Schmoll, L. H., Elzey, S., Grassian, V. H., & O'Shaughnessy, P. T. (2009). Nanoparticle aerosol generation methods from bulk powders for inhalation exposure studies. Nanotoxicology, 3(4), 265-275.
Stabile, L., Trassierra, C. V., Dell’Agli, G., & Buonanno, G. (2013). Ultrafine particle generation through atomization technique: the influence of the solution. Aerosol and Air Quality Research, 13(6), 1667-1677.
Tiwari, A. J., Fields, C. G., & Marr, L. C. (2013). A cost-effective method of aerosolizing dry powdered nanoparticles. Aerosol Science and Technology, 47(11), 1267-1275.
Veranth, J. M., Gelein, R., & Oberdörster, G. (2003). Vaporization--Condensation Generation of Ultrafine Hydrocarbon Particulate Matter for Inhalation Toxicology Studies. Aerosol Science & Technology, 37(7), 603-609.
Wang, J., Wang, J., Zhang, Y., Liu, T., Chi, X., Huang, X., Ge, D., Lai, S., Zhu, C., & Wang, L. (2024). Impacts of elevated anthropogenic emissions on physicochemical characteristics of black-carbon-containing particles over the Tibetan Plateau. Atmospheric Chemistry and Physics, 24(19), 11063-11080.
Yang, Z., DeLoid, G. M., Zarbl, H., Baw, J., & Demokritou, P. (2023). Micro-and nanoplastics (MNPs) and their potential toxicological outcomes: State of science, knowledge gaps and research needs. NanoImpact, 32, 100481.
Zhu, R., Wang, H., Wang, X., & Liu, H. (2017). Standard source of atmospheric black carbon aerosol generated from ultrasonic spray of BC suspension. Atmospheric Measurement Techniques Discussions, 2017, 1-12.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99937-
dc.description.abstract近年來,微塑膠在空氣中的廣泛檢出及其對人體健康潛在風險,逐漸在各界引起高度的關注。為了從最基礎的層面深入探討微塑膠吸入暴露對健康的影響,並推動相關採樣分析方法的開發與性能評估,亟需建立一套具備粒徑控制精準、濃度穩定且再現性高的微塑膠產生系統,作為後續研究的關鍵基礎。然而,目前文獻報導的微塑膠產生系統,無論在顆粒粒徑還原度或產出穩定性方面,仍存在改進空間,尤其在長時間穩定產生較大粒徑微塑膠氣膠環境時,更顯不足。

本研究以超音波霧化技術為核心,結合懸浮液輸送與控制系統,建構一套可調控微粒粒徑與濃度的微塑膠氣膠產生器,最大可產生直徑達10 µm的微粒,並系統性評估各項操作參數,包括:攪拌方式、針筒擺放角度、懸浮液濃度與粒徑、界面活性劑添加比例等,對微塑膠粒在氣膠化後的濃度與粒徑分布的影響。為確保懸浮液在產生過程中維持均勻分散,本研究針對攪拌子體積與磁石攪拌器轉速等條件進行探討,並以攪拌子體積與轉速的乘積為指標,針對不同針筒容量,提出可以維持長時間穩定輸出懸浮液的操作條件。

研究結果顯示,針筒垂直擺放並搭配持續磁力攪拌可有效減少沉降,確保長時間產出穩定濃度的微塑膠氣膠。當懸浮液的體積濃度越高時,雖然產生微塑膠氣膠的濃度也會越高,但由多個單顆粒所形成之氣膠微粒的比例也會跟著增加,以致於造成整體粒徑分布的偏移。因此,如果以產生單分散微塑膠為目的,懸浮液的體積濃度會有可操作的濃度上限,而且該上限值大小會隨著微塑膠顆粒的直徑減小而降低。以PMMA顆粒為例,當粒徑為0.8 µm時,懸浮液的體積濃度必須低於0.005%,才能避免由微粒氣動直徑分析儀(APS)觀測出明顯的粒徑分布偏移。相較之下,3 µm顆粒的可操作濃度上限,則可增加約0.1%。而5 µm PMMA的操作濃度上限則以不超過1%為原則。當懸浮液推進流率為0.1 ml/min時,5 µm PMMA的氣膠質量濃度最高約14.75 mg/m³,其中約有75%的氣膠數目是以單顆粒的狀態存在,而整個產生過程所造成的PMMA的質量損失約為5%。雖然,所產生的質量濃度可以進一步藉著增加懸浮液的推進流率來提升,但由於液滴無法完全乾燥的限制,現階段的推進流率上限設定為0.2 ml/min。除此之外,實驗結果顯示,界面活性劑對PMMA氣膠生成效率與長時間穩定性並未產生明顯的助益。於是在操作簡便性及成分單一性等因素的考量之下,不建議在本系統中使用。

整體而言,本研究成功建立一套可長時間穩定供應與微塑膠粉末粒徑分布相符合的氣膠產生系統,未來可應用於微塑膠暴露模擬、吸入毒理試驗以及相關氣膠研究。
zh_TW
dc.description.abstractIn recent years, the widespread detection of microplastics in the atmosphere and their potential health risks to the human respiratory system have drawn increasing attention. To investigate the health impacts of inhaled microplastics from a fundamental perspective and to support the development and performance evaluation of sampling and analytical methods, it is essential to establish a microplastic aerosol generation system with precise particle size control, stable output concentration, and high reproducibility. However, current literature reveals that existing systems still face limitations in terms of size distribution fidelity and long-term output stability, particularly in generating stable aerosols containing larger-sized microplastic particles over extended durations.

This study developed a controllable microplastic aerosol generator based on ultrasonic nebulization technology, integrated with a suspension delivery and control system. The system is capable of producing dry and stable particles with aerodynamic diameters up to 10 µm. A comprehensive evaluation was conducted to examine the influence of various operational parameters—including stirring method, syringe orientation, suspension concentration and particle size, and surfactant addition—on the resulting aerosol particle size distribution and concentration. To ensure homogeneous dispersion of the suspension throughout the generation process, factors such as stir bar volume and magnetic stirrer speed were investigated. A dimensionless parameter (the product of stir bar volume and rotation speed) was used to determine suitable operating conditions for different syringe capacities to achieve stable and consistent suspension delivery.

Results demonstrated that vertical syringe placement combined with continuous magnetic stirring effectively minimized particle sedimentation, allowing stable aerosol output over a 13-hour test period. Higher suspension concentrations led to increased aerosol mass concentrations, but also raised the fraction of agglomerated particles, thereby shifting the overall size distribution. Consequently, when generating monodisperse aerosols, the suspension concentration must remain below a threshold, which decreases with smaller particle diameters. For example, PMMA particles with a diameter of 0.8 µm required a volume concentration below 0.005% to avoid significant distribution shifts observed by an Aerodynamic Particle Sizer (APS). In contrast, the operational limit increased to approximately 0.1% for 3 µm particles and up to 1% for 5 µm particles. Under a suspension feed rate of 0.1 mL/min, 5 µm PMMA particles yielded a maximum aerosol mass concentration of 14.75 mg/m³, with about 75% of particles remaining as singlets. The overall particle loss during generation was within 5%. Although higher aerosol concentrations could be achieved by increasing the feed rate, incomplete droplet drying imposed an upper limit of 0.2 mL/min under current conditions. Additionally, the use of surfactants did not significantly enhance aerosolization efficiency or long-term stability for PMMA particles; therefore, their use is not recommended to maintain operational simplicity and chemical consistency.

In summary, this study successfully established a microplastic aerosol generation system capable of long-term stable output and particle size distribution fidelity. The system provides a robust platform for future applications in microplastic exposure simulation, inhalation toxicology, and related aerosol research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:21:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:21:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iv
目 次 vii
圖 次 ix
表 次 x
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 環境中塑膠微粒之來源 4
2.2 微粒產生方法回顧 5
2.2.1 直接分散 5
2.2.2 火花放電法 7
2.2.3 冷凝法 7
2.2.4 液體霧化 8
2.3 含有懸浮顆粒的液體霧化 11
2.4 界面活性劑 12
第三章 研究材料與方法 14
3.1 懸浮液的製備 14
3.2 懸浮液均質維持與輸送系統參數優化 14
3.2.1 輸送路徑與注射幫浦方向 14
3.2.2 攪拌條件與針筒內徑 15
3.3 微粒產生系統 16
3.4 產生液滴分析 16
3.5 微粒採樣 18
第四章 結果與討論 20
4.1 針筒放置位置及攪拌器設置 20
4.2 界面活性劑添加 21
4.3 攪拌參數 22
4.4 穩定產生時間 23
4.5 懸浮液濃度 23
4.6 粒徑組成分析 25
4.7 微粒產生驗證 26
第五章 結論與建議 28
參考文獻 30
-
dc.language.isozh_TW-
dc.subject微塑膠顆粒zh_TW
dc.subject懸浮液zh_TW
dc.subject超音波霧化器zh_TW
dc.subject氣膠產生系統zh_TW
dc.subjectsuspensionen
dc.subjectmicroplastic particlesen
dc.subjectaerosol generation systemen
dc.subjectultrasonic atomizeren
dc.title與來源粒徑分布一致的非聚集狀微塑膠粒之氣膠化技術zh_TW
dc.titlePrecision Aerosolization of Non-Aggregated Microplastic Particles with Source-Matched Size Distributionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳志傑;林文印;林志威zh_TW
dc.contributor.oralexamcommitteeChih-Chieh Chen;Wen-Yinn Lin;Chih-Wei Linen
dc.subject.keyword微塑膠顆粒,懸浮液,超音波霧化器,氣膠產生系統,zh_TW
dc.subject.keywordmicroplastic particles,suspension,ultrasonic atomizer,aerosol generation system,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202502857-
dc.rights.note未授權-
dc.date.accepted2025-08-01-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
5.14 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved