請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99936完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃盛修 | zh_TW |
| dc.contributor.advisor | Sheng-Hsiu Huang | en |
| dc.contributor.author | 蔡珮瑤 | zh_TW |
| dc.contributor.author | Pei-Yao Tsai | en |
| dc.date.accessioned | 2025-09-19T16:20:59Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | 第一部分
Agus Setiawan, P., & Yuwono, T. (2018). The Effect of Inner Fan Blade Angle to The Ventilation Rate of The Turbine Ventilator. Jurnal Rekayasa Mesin, 9, 227-233. https://doi.org/10.21776/ub.jrm.2018.009.03.10 Allen, R. W., & Barn, P. (2020). Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep, 7(4), 424-440. https://doi.org/10.1007/s40572-020-00296-z Bao, L., Seki, K., Niinuma, H., Otani, Y., Balgis, R., Ogi, T., Gradon, L., & Okuyama, K. (2016). Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Purification Technology, 159, 100-107. https://doi.org/https://doi.org/10.1016/j.seppur.2015.12.045 Barnewall, R. E., & Bischoff, W. E. (2021). Removal of SARS-CoV-2 bioaerosols using ultraviolet air filtration. Infection Control & Hospital Epidemiology, 42(8), 1014-1015. Bhui, K., Newbury, J. B., Latham, R. M., Ucci, M., Nasir, Z. A., Turner, B., O'Leary, C., Fisher, H. L., Marczylo, E., Douglas, P., Stansfeld, S., Jackson, S. K., Tyrrel, S., Rzhetsky, A., Kinnersley, R., Kumar, P., Duchaine, C., & Coulon, F. (2023). Air quality and mental health: evidence, challenges and future directions. BJPsych Open, 9(4), e120, Article e120. https://doi.org/10.1192/bjo.2023.507 Boskovic, L., Agranovski, I. E., & Braddock, R. D. (2007). Filtration of nanosized particles with different shape on oil coated fibres. Journal of aerosol science, 38(12), 1220-1229. https://doi.org/https://doi.org/10.1016/j.jaerosci.2007.09.003 Carazo Fernández, L., Fernández Alvarez, R., González-Barcala, F. J., & Rodríguez Portal, J. A. (2013). Indoor air contaminants and their impact on respiratory pathologies. Arch Bronconeumol, 49(1), 22-27. https://doi.org/10.1016/j.arbres.2012.04.005 Chen, C. C., & Huang, S. H. (1998). The effects of particle charge on the performance of a filtering facepiece. Am Ind Hyg Assoc J, 59(4), 227-233. https://doi.org/10.1080/15428119891010488 Choi, H.-J., Park, E.-S., Kim, J.-U., Kim, S. H., & Lee, M.-H. (2015). Experimental study on charge decay of electret filter due to organic solvent exposure. Aerosol Science and Technology, 49(10), 977-983. Ciuzas, D., Prasauskas, T., Krugly, E., Jurelionis, A., Seduikyte, L., & Martuzevicius, D. (2016). Indoor Air Quality Management by Combined Ventilation and Air Cleaning: An Experimental Study. Aerosol and Air Quality Research, 16(10), 2550-2559. https://doi.org/10.4209/aaqr.2015.10.0577 Clark, M. R., Tennal, K., Rimmer, T., & Mazumder, M. K. (1991). Evaluation of Particulate Air Filters for Indoor Air Cleaning. Journal of the Arkansas Academy of Science, 45(1), 119-121. Danish, M., Yahya, S. M., Taqvi, S. A. A., Rubaiee, S., Ahmed, A., Irfan, S. A., & Alsaady, M. (2023). Modelling and optimization study to improve the filtration performance of fibrous filter. Chemosphere, 314, 137667. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137667 Davies, C. N. (1953). The Separation of Airborne Dust and Particles. 167:185-213. https://doi.org/10.1177/002034835316701b13 Eisenmenger, C., Frank, S., Dogan, H., & Ochmann, M. (2019). Aerodynamic and aeroacoustic optimization of a small centrifugal fan with backward-curved blades by means of inverse design. 23th International Congress on Acoustics Conference, Elsaid, A. M., & Ahmed, M. S. (2021). Indoor Air Quality Strategies for Air-Conditioning and Ventilation Systems with the Spread of the Global Coronavirus (COVID-19) Epidemic: Improvements and Recommendations. Environ Res, 199, 111314. https://doi.org/10.1016/j.envres.2021.111314 Grand View Research. (2024). China Air Purifier Market Size, Share & Trends Analysis Report By Technology (HEPA, Activated Carbon), By Application (Commercial, Residential), And Segment Forecasts, 2024 - 2030. Grand View Research. Retrieved July 6 from https://www.grandviewresearch.com/industry-analysis/china-air-purifier-market-report Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons. Holgate, S. T. (2017). 'Every breath we take: the lifelong impact of air pollution' - a call for action. Clin Med (Lond), 17(1), 8-12. https://doi.org/10.7861/clinmedicine.17-1-8 Huang, S.-H., Chen, C.-W., Chang, C.-P., Lai, C.-Y., & Chen, C.-C. (2007). Penetration of 4.5nm to 10μm aerosol particles through fibrous filters. Journal of aerosol science, 38(7), 719-727. https://doi.org/https://doi.org/10.1016/j.jaerosci.2007.05.007 Huang, S.-H., Yu-Mei, K., Kuang-Nan, C., Yu-Kang, C., Wen-Yinn, L., Wane-Yun, L., & and Chen, C.-C. (2010). Experimental Study on the Effect of Fiber Orientation on Filter Quality. Aerosol Science and Technology, 44(11), 964-971. https://doi.org/10.1080/02786826.2010.504244 Interga Controls. (2024). Fan Curves Explained: A Complete Guide. Interga Controls,. Retrieved July 6 from https://integracontrols.com/fan-curves-explained/ Jackson, G. W., & James, D. F. (1986). The permeability of fibrous porous media. The Canadian Journal of Chemical Engineering, 64(3), 364-374. https://doi.org/https://doi.org/10.1002/cjce.5450640302 Jin, X., Yang, L., Du, X., & Yang, Y. (2016). Particle transport characteristics in indoor environment with an air cleaner. Indoor and Built Environment, 25(6), 987-996. https://doi.org/10.1177/1420326x15592253 Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Energy Efficiency in Fans. In D. Kaya, F. Çanka Kılıç, & H. H. Öztürk (Eds.), Energy Management and Energy Efficiency in Industry: Practical Examples (pp. 419-425). Springer International Publishing. https://doi.org/10.1007/978-3-030-25995-2_14 Kim, J.-S., Jeong, U.-C., Kim, D.-W., Han, S.-Y., & Oh, J.-E. (2015). Optimization of sirocco fan blade to reduce noise of air purifier using a metamodel and evolutionary algorithm. Applied Acoustics, 89, 254-266. https://doi.org/https://doi.org/10.1016/j.apacoust.2014.10.005 Kim, J. S., & Lee, M. H. (2021). Effect of filter collection efficiency on the clean air delivery rate in an air cleaner. Indoor Air, 31(3), 745-754. https://doi.org/10.1111/ina.12757 Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. (2010). Pressure and Flow Rate Performance of Piezoelectric Fans. Components and Packaging Technologies, IEEE Transactions on, 32, 766-775. https://doi.org/10.1109/TCAPT.2008.2012169 Kirsch, A. A., Stechkina, I. B., & Fuchs, N. A. (1973). Effect of gas slip on the pressure drop in fibrous filters. Journal of Aerosol Science, 4(4), 287-293. https://doi.org/https://doi.org/10.1016/0021-8502(73)90089-X Korea Air Cleaning Association, K. (2018). SPS-KACA002-132. In: Room Air Cleaner, Korea Air Cleaning Association (KACA). Kuwabara, S. (1959). The forces experienced by randomly distributed parallel circular cylinders or spheres in a viscous flow at small Reynolds numbers. Journal of the physical society of Japan, 14(4), 527-532. Kwon, M. S., Kim, Y. L., Kim, M. S., Hong, J. H., Lee, M. H., & Lee, W. K. (2020). Effect of Pleating Ratio on Quality Factor of Pleated Filter in Air Purifier. Journal of Korean Society for Atmospheric Environment, 36(1), 119-127. https://doi.org/10.5572/kosae.2020.36.1.119 Lathrache, R., & Fissan, H. (1987). Enhancement of particle deposition in filters due to electrostatic effects. Filtration & Separation, 24, 418-422. Lee, K., & Liu, B. (1980). On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association, 30(4), 377-381. Lee, K., & Liu, B. (1982). Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology, 1(2), 147-161. Leung, W. W.-F., Hung, C.-H., & Yuen, P.-T. (2010). Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separation and Purification Technology, 71(1), 30-37. https://doi.org/https://doi.org/10.1016/j.seppur.2009.10.017 Li, C., Lin, Q., Ding, X., & Ye, X. (2016). Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle. Energy, 103, 322-339. https://doi.org/10.1016/j.energy.2016.02.147 Li, K., & Jo, Y. M. (2010). Dust collection by a fiber bundle electret filter in an MVAC system. Aerosol Science and Technology, 44(7), 578-587. Li, L., Zhou, Y., Wang, Z., Gu, H., Sun, Z., Li, Y., & Ma, S. (2022). Research on the filtration performance of pleated filters with rectangular and triangular structures through developed CFD code. Progress in Nuclear Energy, 153, 104413. https://doi.org/https://doi.org/10.1016/j.pnucene.2022.104413 Li, Z., Wen, Q., & Zhang, R. (2017). Sources, health effects and control strategies of indoor fine particulate matter (PM2.5): A review. Science of The Total Environment, 586, 610-622. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.02.029 Lin, C., Kuo, Y.-M., Lin, M., Lin, J., Tsai, P.-Y., Lin, C.-W., Huang, S.-H., & Chen, C.-C. (2024). Experimental Study on Optimal Clean Air Delivery Rate Filter Thickness of Indoor Air Purifiers. Aerosol and Air Quality Research, 24(12), 240149. https://doi.org/10.4209/aaqr.240149 Liu, S. H., Huang, R. F., & Lin, C. A. (2010). Computational and experimental investigations of performance curve of an axial flow fan using downstream flow resistance method. Experimental Thermal and Fluid Science, 34(7), 827-837. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2010.01.011 Marr, L. C., & Samet, J. M. (2024). Reducing Transmission of Airborne Respiratory Pathogens: A New Beginning as the COVID-19 Emergency Ends. Environ Health Perspect, 132(5), 55001. https://doi.org/10.1289/ehp13878 Martin, S. B., Jr., & Moyer, E. S. (2000). Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects. Appl Occup Environ Hyg, 15(8), 609-617. https://doi.org/10.1080/10473220050075617 Morris, A. C., Sharrocks, K., Bousfield, R., Kermack, L., Maes, M., Higginson, E., Forrest, S., Pereira-Dias, J., Cormie, C., & Old, T. (2021). The removal of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other microbial bioaerosols by air filtration on coronavirus disease 2019 (COVID-19) surge units. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 75(1), e97. Nassif, N. (2012). The impact of air filter pressure drop on the performance of typical air-conditioning systems. Building Simulation, 5(4), 345-350. https://doi.org/10.1007/s12273-012-0091-6 Nazaroff, W. W. (2000). Effectiveness of air cleaning technologies. Proceedings of Healthy Buildings, Nguyen, X., & Beeckmans, J. M. (1975). Single fibre capture efficiencies of aerosol particles in real and model filters in the inertial-interceptive domain. Journal of aerosol science, 6(3), 205-212. https://doi.org/https://doi.org/10.1016/0021-8502(75)90089-0 Noh, K.-C., & Hwang, J. (2010). The effect of ventilation rate and filter performance on indoor particle concentration and fan power consumption in a residential housing unit. Indoor and Built Environment, 19(4), 444-452. Noh, K.-C., & Oh, M.-D. (2015). Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices. Building and Environment, 84, 44-49. https://doi.org/https://doi.org/10.1016/j.buildenv.2014.10.031 Park, J. S., Jee, N. Y., & Jeong, J. W. (2014). Effects of types of ventilation system on indoor particle concentrations in residential buildings. Indoor Air, 24(6), 629-638. https://doi.org/10.1111/ina.12117 Pistochini, T., Jaeger, G., Cappa, C. D., & Corsi, R. L. (2025). Longevity of size-dependent particle removal performance of do-it-yourself box fan air filters. Environmental Science: Processes & Impacts. Ren, J., & Liu, J. (2019). Fine particulate matter control performance of a new kind of suspended fan filter unit for use in office buildings. Building and Environment, 149, 468-476. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.12.047 Ren, J., Liu, J., Cao, X., & Hou, Y. (2017). Influencing factors and energy-saving control strategies for indoor fine particles in commercial office buildings in six Chinese cities. Energy and Buildings, 149, 171-179. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.05.061 Rudnick, S. (2004). Optimizing the Design of Room Air Filters for the Removal of Submicrometer Particles. Aerosol Science and Technology, 38, 861-869. https://doi.org/10.1080/027868290503109 Russo, F., Castro-Muñoz, R., Santoro, S., Galiano, F., & Figoli, A. (2022). A review on electrospun membranes for potential air filtration application. Journal of Environmental Chemical Engineering, 10(5), 108452. Shang, W., Liu, J., Wang, C., Li, J., & Dai, X. (2023). Developing smart air purifier control strategies for better IAQ and energy efficiency using reinforcement learning. Building and Environment, 242, 110556. Shiue, A., Hu, S.-C., Tseng, C.-H., Kuo, E.-H., Liu, C.-Y., Hou, C.-T., & Yu, T. (2019). Verification of air cleaner on-site modeling for PM2.5 and TVOC purification in a full-scale indoor air quality laboratory. Atmospheric Pollution Research, 10(1), 209-218. https://doi.org/https://doi.org/10.1016/j.apr.2018.07.008 Singer, B. C., Delp, W. W., Black, D. R., & Walker, I. S. (2017). Measured performance of filtration and ventilation systems for fine and ultrafine particles and ozone in an unoccupied modern California house. Indoor Air, 27(4), 780-790. https://doi.org/10.1111/ina.12359 Stephens, B., Siegel, J. A., & Novoselac, A. (2010). Energy Implications of Filtration in Residential and Light-Commercial Buildings. ASHRAE Transactions, 116(1). Tebbutt, C. B. (1995). CFD model of flow through air filter pleats. Thakur, R., Das, D., & Das, A. (2013). Electret air filters. Separation & Purification Reviews, 42(2), 87-129. Wang, C., Jiang, J., Wang, P., Kong, L., & Liu, J. (2025). Exploring the potential of a novel electrostatic precipitator as an alternative to air filters in air purifiers. Building and Environment, 270, 112535. https://doi.org/https://doi.org/10.1016/j.buildenv.2025.112535 Wang, C., Liu, J., Yu, C. W., & Xie, D. (2022). Numerical analysis for the optimization of multi-parameters stratum ventilation and the effect on radon dispersion. Journal of Building Engineering, 62, 105375. Wang, J., Kim, S. C., & Pui, D. Y. (2008). Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of aerosol science, 39(4), 323-334. Wei, L., Zhang, H., & Qin, X. (2019). Fabricated narrow diameter distribution nanofiber for an air filtration membrane using a double rings slit spinneret. Textile Research Journal, 89(6), 936-947. Wu, J., Akampumuza, O., Liu, P., Quan, Z., Zhang, H., Qin, X., Wang, R., & Yu, J. (2020). 3D structure design and simulation for efficient particles capture: The influence of nanofiber diameter and distribution. Materials Today Communications, 23, 100897. Xiao, J., Liang, J., Zhang, C., Tao, Y., Ling, G.-W., & Yang, Q.-H. (2018). Advanced Materials for Capturing Particulate Matter: Progress and Perspectives. Small Methods, 2(7), 1800012. https://doi.org/https://doi.org/10.1002/smtd.201800012 Xie, Y., Dai, H., Dong, H., Hanaoka, T., & Masui, T. (2016). Economic Impacts from PM2.5 Pollution-Related Health Effects in China: A Provincial-Level Analysis. Environmental Science & Technology, 50(9), 4836-4843. https://doi.org/10.1021/acs.est.5b05576 Yan, S., Liu, C., Hou, L.-a., Wang, B., & Zhang, Y. (2023). A new filterless indoor air purifier for particulate matter and bioaerosol based on heterogeneous condensation. Environmental Research, 218, 115034. https://doi.org/https://doi.org/10.1016/j.envres.2022.115034 Yeh, H.-C., & Liu, B. Y. (1974). Aerosol filtration by fibrous filters—II. Experimental. Journal of Aerosol Science, 5(2), 205-217. Yu, W., Wang, L., Wang, Q., Wang, X., Li, G., Wang, J., & Awbi, H. (2020). Design selection and evaluation method of PM2.5 filters for fresh air systems. Journal of Building Engineering, 27, 100977. https://doi.org/https://doi.org/10.1016/j.jobe.2019.100977 Zaatari, M., Novoselac, A., & Siegel, J. (2014). The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units. Building and Environment, 73, 151-161. Zhang, J., Liu, J., Wen, S., & Liu, S. (2024). Assessing the portable air cleaner's effectiveness and energy efficiency in targeted removal aerosols from a negative pressure isolation ward. Building and Environment, 262, 111851. Zhang, L., Liang, S., & Hu, C. (2014). Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions. Mathematical Problems in Engineering, 2014(1), 403541. https://doi.org/https://doi.org/10.1155/2014/403541 Zhang, T., Su, Z., Wang, J., & Wang, S. (2018). Ventilation, indoor particle filtration, and energy consumption of an apartment in northern China. Building and Environment, 143, 280-292. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.07.020 Zhang, X., Ru, Z., Sun, Y., Zhang, M., Wang, J., Ge, M., Liu, H., Wu, S., Cao, C., Ren, X., Mi, J., & Feng, Y. (2022). Recent advances in applications for air pollutants purification and perspectives of electrospun nanofibers. Journal of Cleaner Production, 378, 134567. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134567 Zhang, Y., Mo, J., Li, Y., Sundell, J., Wargocki, P., Zhang, J., Little, J. C., Corsi, R., Deng, Q., Leung, M. H. K., Fang, L., Chen, W., Li, J., & Sun, Y. (2011). Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review. Atmos Environ (1994), 45(26), 4329-4343. https://doi.org/10.1016/j.atmosenv.2011.05.041 Zong, J., Lin, C., & Ai, Z. (2024). Performance of low-volume air cleaner and local exhaust in mitigating airborne transmission in hospital outpatient rooms. Physics of Fluids, 36. https://doi.org/10.1063/5.0185630 張峻銘. (2022). 空氣清淨機效能測試方法與濾材佳化設計研究 (Publication Number 2022年) 國立臺灣大學]. AiritiLibrary. 第二部分 Allen, R. W., & Barn, P. (2020). Individual- and Household-Level Interventions to Reduce Air Pollution Exposures and Health Risks: a Review of the Recent Literature. Curr Environ Health Rep, 7(4), 424-440. https://doi.org/10.1007/s40572-020-00296-z Agus Setiawan, P., & Yuwono, T. (2018). The Effect of Inner Fan Blade Angle to The Ventilation Rate of The Turbine Ventilator. Jurnal Rekayasa Mesin, 9, 227-233. https://doi.org/10.21776/ub.jrm.2018.009.03.10 ASHRAE. (2023). Noise and Vibration Control In A49: American Society of Heating, Refrigerating and Air-Conditioning Engineers. Bao, L., Seki, K., Niinuma, H., Otani, Y., Balgis, R., Ogi, T., Gradon, L., & Okuyama, K. (2016). Verification of slip flow in nanofiber filter media through pressure drop measurement at low-pressure conditions. Separation and Purification Technology, 159, 100-107. https://doi.org/https://doi.org/10.1016/j.seppur.2015.12.045 Barnewall, R. E., & Bischoff, W. E. (2021). Removal of SARS-CoV-2 bioaerosols using ultraviolet air filtration. Infection Control & Hospital Epidemiology, 42(8), 1014-1015. Choi, H.-J., Park, E.-S., Kim, J.-U., Kim, S. H., & Lee, M.-H. (2015). Experimental study on charge decay of electret filter due to organic solvent exposure. Aerosol Science and Technology, 49(10), 977-983. Clark, M. R., Tennal, K., Rimmer, T., & Mazumder, M. K. (1991). Evaluation of Particulate Air Filters for Indoor Air Cleaning. Journal of the Arkansas Academy of Science, 45(1), 119-121. Chen, C. C., & Huang, S. H. (1998). The effects of particle charge on the performance of a filtering facepiece. Am Ind Hyg Assoc J, 59(4), 227-233. https://doi.org/10.1080/15428119891010488 Davies, C. N. (1953). The Separation of Airborne Dust and Particles. 167:185-213. https://doi.org/10.1177/002034835316701b13 Danish, M., Yahya, S. M., Taqvi, S. A. A., Rubaiee, S., Ahmed, A., Irfan, S. A., & Alsaady, M. (2023). Modelling and optimization study to improve the filtration performance of fibrous filter. Chemosphere, 314, 137667. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137667 Hinds, W. C. (1999). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons. Huang, S.-H., Chen, C.-W., Chang, C.-P., Lai, C.-Y., & Chen, C.-C. (2007). Penetration of 4.5nm to 10μm aerosol particles through fibrous filters. Journal of aerosol science, 38(7), 719-727. https://doi.org/https://doi.org/10.1016/j.jaerosci.2007.05.007 Huang, S.-H., Yu-Mei, K., Kuang-Nan, C., Yu-Kang, C., Wen-Yinn, L., Wane-Yun, L., & and Chen, C.-C. (2010). Experimental Study on the Effect of Fiber Orientation on Filter Quality. Aerosol Science and Technology, 44(11), 964-971. https://doi.org/10.1080/02786826.2010.504244 Interga Controls. (2024). Fan Curves Explained: A Complete Guide. Interga Controls,. Retrieved July 6 from https://integracontrols.com/fan-curves-explained/ Jackson, G. W., & James, D. F. (1986). The permeability of fibrous porous media. The Canadian Journal of Chemical Engineering, 64(3), 364-374. https://doi.org/https://doi.org/10.1002/cjce.5450640302 Kim, J. S., & Lee, M. H. (2021). Effect of filter collection efficiency on the clean air delivery rate in an air cleaner. Indoor Air, 31(3), 745-754. https://doi.org/10.1111/ina.12757 Kwon, M. S., Kim, Y. L., Kim, M. S., Hong, J. H., Lee, M. H., & Lee, W. K. (2020). Effect of Pleating Ratio on Quality Factor of Pleated Filter in Air Purifier. Journal of Korean Society for Atmospheric Environment, 36(1), 119-127. https://doi.org/10.5572/kosae.2020.36.1.119 Kaya, D., Çanka Kılıç, F., & Öztürk, H. H. (2021). Energy Efficiency in Fans. In D. Kaya, F. Çanka Kılıç, & H. H. Öztürk (Eds.), Energy Management and Energy Efficiency in Industry: Practical Examples (pp. 419-425). Springer International Publishing. https://doi.org/10.1007/978-3-030-25995-2_14 Kimber, M., Suzuki, K., Kitsunai, N., Seki, K., & Garimella, S. (2010). Pressure and Flow Rate Performance of Piezoelectric Fans. Components and Packaging Technologies, IEEE Transactions on, 32, 766-775. https://doi.org/10.1109/TCAPT.2008.2012169 Kirsch, A. A., Stechkina, I. B., & Fuchs, N. A. (1973). Effect of gas slip on the pressure drop in fibrous filters. Journal of Aerosol Science, 4(4), 287-293. https://doi.org/https://doi.org/10.1016/0021-8502(73)90089-X Korea Air Cleaning Association, K. (2018). SPS-KACA002-132. In: Room Air Cleaner, Korea Air Cleaning Association (KACA). Kim, J.-S., Jeong, U.-C., Kim, D.-W., Han, S.-Y., & Oh, J.-E. (2015). Optimization of sirocco fan blade to reduce noise of air purifier using a metamodel and evolutionary algorithm. Applied Acoustics, 89, 254-266. https://doi.org/https://doi.org/10.1016/j.apacoust.2014.10.005 Lee, K., & Liu, B. (1980). On the minimum efficiency and the most penetrating particle size for fibrous filters. Journal of the Air Pollution Control Association, 30(4), 377-381. Li, L., Zhou, Y., Wang, Z., Gu, H., Sun, Z., Li, Y., & Ma, S. (2022). Research on the filtration performance of pleated filters with rectangular and triangular structures through developed CFD code. Progress in Nuclear Energy, 153, 104413. https://doi.org/https://doi.org/10.1016/j.pnucene.2022.104413 Lee, K., & Liu, B. (1982). Theoretical study of aerosol filtration by fibrous filters. Aerosol Science and Technology, 1(2), 147-161. Lin, C., Kuo, Y.-M., Lin, M., Lin, J., Tsai, P.-Y., Lin, C.-W., Huang, S.-H., & Chen, C.-C. (2024). Experimental Study on Optimal Clean Air Delivery Rate Filter Thickness of Indoor Air Purifiers. Aerosol and Air Quality Research, 24(12), 240149. https://doi.org/10.4209/aaqr.240149 Leung, W. W.-F., Hung, C.-H., & Yuen, P.-T. (2010). Effect of face velocity, nanofiber packing density and thickness on filtration performance of filters with nanofibers coated on a substrate. Separation and Purification Technology, 71(1), 30-37. https://doi.org/https://doi.org/10.1016/j.seppur.2009.10.017 Li, C., Lin, Q., Ding, X., & Ye, X. (2016). Performance, aeroacoustics and feature extraction of an axial flow fan with abnormal blade angle. Energy, 103, 322-339. https://doi.org/10.1016/j.energy.2016.02.147 Li, K., & Jo, Y. M. (2010). Dust collection by a fiber bundle electret filter in an MVAC system. Aerosol Science and Technology, 44(7), 578-587. Liu, S. H., Huang, R. F., & Lin, C. A. (2010). Computational and experimental investigations of performance curve of an axial flow fan using downstream flow resistance method. Experimental Thermal and Fluid Science, 34(7), 827-837. https://doi.org/https://doi.org/10.1016/j.expthermflusci.2010.01.011 Lathrache, R., & Fissan, H. (1987). Enhancement of particle deposition in filters due to electrostatic effects. Filtration & Separation, 24, 418-422. Morris, A. C., Sharrocks, K., Bousfield, R., Kermack, L., Maes, M., Higginson, E., Forrest, S., Pereira-Dias, J., Cormie, C., & Old, T. (2021). The removal of airborne severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other microbial bioaerosols by air filtration on coronavirus disease 2019 (COVID-19) surge units. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 75(1), e97. Noh, K.-C., & Hwang, J. (2010). The effect of ventilation rate and filter performance on indoor particle concentration and fan power consumption in a residential housing unit. Indoor and Built Environment, 19(4), 444-452. Noh, K.-C., & Oh, M.-D. (2015). Variation of clean air delivery rate and effective air cleaning ratio of room air cleaning devices. Building and Environment, 84, 44-49. https://doi.org/https://doi.org/10.1016/j.buildenv.2014.10.031 Nguyen, X., & Beeckmans, J. M. (1975). Single fibre capture efficiencies of aerosol particles in real and model filters in the inertial-interceptive domain. Journal of aerosol science, 6(3), 205-212. https://doi.org/https://doi.org/10.1016/0021-8502(75)90089-0 Pistochini, T., Jaeger, G., Cappa, C. D., & Corsi, R. L. (2025). Longevity of size-dependent particle removal performance of do-it-yourself box fan air filters. Environmental Science: Processes & Impacts. Rudnick, S. (2004). Optimizing the Design of Room Air Filters for the Removal of Submicrometer Particles. Aerosol Science and Technology, 38, 861-869. https://doi.org/10.1080/027868290503109 Russo, F., Castro-Muñoz, R., Santoro, S., Galiano, F., & Figoli, A. (2022). A review on electrospun membranes for potential air filtration application. Journal of Environmental Chemical Engineering, 10(5), 108452. Ren, J., & Liu, J. (2019). Fine particulate matter control performance of a new kind of suspended fan filter unit for use in office buildings. Building and Environment, 149, 468-476. https://doi.org/https://doi.org/10.1016/j.buildenv.2018.12.047 Ren, J., Liu, J., Cao, X., & Hou, Y. (2017). Influencing factors and energy-saving control strategies for indoor fine particles in commercial office buildings in six Chinese cities. Energy and Buildings, 149, 171-179. https://doi.org/https://doi.org/10.1016/j.enbuild.2017.05.061 Tebbutt, C. B. (1995). CFD model of flow through air filter pleats. Wu, J., Akampumuza, O., Liu, P., Quan, Z., Zhang, H., Qin, X., Wang, R., & Yu, J. (2020). 3D structure design and simulation for efficient particles capture: The influence of nanofiber diameter and distribution. Materials Today Communications, 23, 100897. Wang, J., Kim, S. C., & Pui, D. Y. (2008). Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of aerosol science, 39(4), 323-334. Wei, L., Zhang, H., & Qin, X. (2019). Fabricated narrow diameter distribution nanofiber for an air filtration membrane using a double rings slit spinneret. Textile Research Journal, 89(6), 936-947. Zhang, X., Ru, Z., Sun, Y., Zhang, M., Wang, J., Ge, M., Liu, H., Wu, S., Cao, C., Ren, X., Mi, J., & Feng, Y. (2022). Recent advances in applications for air pollutants purification and perspectives of electrospun nanofibers. Journal of Cleaner Production, 378, 134567. https://doi.org/https://doi.org/10.1016/j.jclepro.2022.134567 Zaatari, M., Novoselac, A., & Siegel, J. (2014). The relationship between filter pressure drop, indoor air quality, and energy consumption in rooftop HVAC units. ff Zhang, L., Liang, S., & Hu, C. (2014). Flow and Noise Characteristics of Centrifugal Fan under Different Stall Conditions. Mathematical Problems in Engineering, 2014(1), 403541. https://doi.org/https://doi.org/10.1155/2014/403541 張峻銘. (2022). 空氣清淨機效能測試方法與濾材佳化設計研究 (Publication Number 2022年) 國立臺灣大學]. AiritiLibrary. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99936 | - |
| dc.description.abstract | 為避免濾材過度設計導致不必要之壓降損失與過濾性能下降,本研究建立一套整合濾材與風機特性之數值模擬方法,結合單一纖維理論、濾材阻抗模型與風機性能曲線(P-Q curve),用以預測不同操作條件下的最佳濾材厚度(Topt)與潔淨空氣輸出率(Clean Air Delivery Rate, CADR)。本方法不僅可重現Rudnick(2004)所提出在擴散主導條件下「效率為82%時厚度為最適值」的特例,更可針對實務應用中常見之操作條件進行延伸應用,彌補既有研究未涵蓋風機特性與粒徑分布等限制。
本研究主要可分成數值方法的確立以及影響濾材設計厚度參數的探討等兩階段。前者是以Rudnick所使用的參數以及結果為基準,透過比對的方式,藉以驗證本研究所建立之數值分析方法的準確性與可行性。後者則應用該方法,擴大探討不同參數包括濾材纖維直徑、填充密度、風機特性曲線、過濾面積、與粒徑大小等對Topt與CADR的影響,同時驗證Topt下的收集效率並非為82%的主張。 第一階段驗證所建立之數值方法準確性,並探討濾材結構均勻性(以均勻係數ε表示)對厚度設計的影響。當ε增大時,單位厚度濾材之效率與阻抗同步下降,須透過厚度線性補償方可維持最大CADR;一旦達到Topt條件後,整體CADR並不會受到ε的變動所影響,顯示濾材結構不均可透過厚度調整予以修正。另分析指出,P-Q curve斜率亦影響Topt設計。對通過相同起始操作點,但斜率不同的P-Q curve而言,較平緩的P-Q curve允許以微幅減少厚度換取更大流量;而斜率較大者,則需設計較厚濾材。 第二階段則探討Topt與CADR如何受到風機類型與轉速、濾材參數(纖維直徑與填充密度)、過濾面積及目標粒徑等交互因素之影響。模擬結果顯示,設定P-Q curve最大流量為70,000 L/min,最大靜壓為4.5 mmH2O下,Concave down型P-Q curve可在相同阻抗下輸出更大流量,因此,可以適當地增加濾材的厚度,用部分風量的減少以換取較高的過濾效率,藉此提升整體的CADR。另一方面,若僅透過提高風機轉速來增加過濾風量,卻未同步調整濾材厚度,雖然整體CADR仍可提升,但與最佳設計條件相比,其效能差異最高可能達41%。因此,在實務應用上,若濾材厚度無法隨風機轉速同步調整,建議採用固定轉速運轉,以確保系統維持在最佳能源效率的狀態。 除了風機特性外,濾材面積增加可降低表面風速、並提升擴散機制的收集效率,但每單位濾材過濾面積下提供的CADR值隨過濾面積增加而遞減,設計時應考慮空氣清淨機所能容納的濾材體積;此外,纖維越細或填充密度越高,越能於較小厚度下達成設計效率;Topt主要取決於針對特定目標粒徑所需達成之效率。模擬結果亦指出,相同濾材條件及風速下,目標粒徑與最易穿透粒徑(Most Penetrating Particle Size, MPPS)之相對位置將決定厚度增減的變動趨勢。 綜合而言,Topt並無固定數值可供套用,須依據風機性能、濾材結構與目標粒徑條件逐項計算調整。本研究所提出之數值方法不僅較解析法更易操作,並將單一條件下之建議值延伸為多參數設計曲線,可作為高性能空氣清淨設備設計之參數化工具。未來若進一步結合駐極技術,則有機會在不增加濾材阻抗的情況下進一步提升CADR表現。 | zh_TW |
| dc.description.abstract | To mitigate unnecessary pressure drop losses and performance degradation caused by overdesigned filters, this study develops a numerical simulation framework that integrates filter and fan characteristics. By combining single fiber theory, filter pressure drop models, and fan performance curves (P-Q curves), the proposed method predicts the optimal filter thickness (Topt) and Clean Air Delivery Rate (CADR) under various operating conditions. This approach not only reproduces the specific case proposed by Rudnick (2004), in which a filter efficiency of 82% is optimal under diffusion-dominated conditions, but also extends its applicability to practical scenarios, addressing limitations in prior studies that overlooked fan characteristics and particle size distributions.
The research is organized into two phases: the development of the numerical method and the examination of parameters that influence filter thickness design. The first phase validates the accuracy and feasibility of the proposed numerical method by benchmarking it against Rudnick’s parameters and results. The second phase utilizes this method to investigate the effects of various parameters—including fiber diameter, packing density, fan performance curves, filter area, and particle size—on Topt and CADR, while questioning the assumption that Topt consistently corresponds to an 82% efficiency. In the initial phase, the accuracy of the numerical method is validated, and the influence of filter structure uniformity—represented by the homogeneity factor (ε) on thickness design is analyzed. As ε increases, both the efficiency and impedance per unit thickness decrease, necessitating linear thickness compensation to sustain maximum CADR. Once Topt is achieved, CADR remains unaffected by variations in ε, indicating that structural non-uniformity can be corrected through thickness adjustments. Additionally, the slope of the P-Q curve significantly influences the design of Topt. For P-Q curves that pass through the same initial operating condition but exhibit different slopes, a flatter curve permits a slight reduction in thickness to achieve higher airflow, while a steeper curve necessitates a thicker filter. The second phase examines how Topt and CADR are influenced by the interplay of fan type, rotational speed, filter parameters (such as fiber diameter and packing density), filter area, and target particle size. Simulation results indicate that, with a P-Q curve set at a maximum flow rate of 70,000 L/min and a maximum static pressure of 4.5 mmH2O, a concave-down P-Q curve delivers higher airflow at equivalent impedance. This configuration allows for a slightly thicker filter to achieve a greater CADR. Additionally, it provides a higher CADR per unit filter area compared to other types of P-Q curves. As fan speed increases, airflow scales proportionally; however, failing to adjust filter thickness to Topt can result in a CADR loss of up to 41%. Therefore, air purifiers should be designed with a single fan-filter combination operating at a fixed speed, rather than incorporating multiple flow settings, to maintain optimal operating conditions. Beyond fan characteristics, increasing the filter area reduces face velocity, thereby enhancing the collection efficiency of diffusion-dominated mechanisms. However, the CADR contribution per unit filter area diminishes as the area increases, necessitating consideration of the volumetric constraints of the air purifier during the design process. Utilizing finer fibers or higher packing densities enables design efficiency to be achieved with thinner filters, while Topt primarily depends on the efficiency required for a specific target particle size. Simulations further indicate that, under identical filter conditions and face velocity, the relative position of the target particle size in relation to the Most Penetrating Particle Size (MPPS) influences the trend of thickness adjustments. In summary, Topt is not a constant value; instead, it must be calculated and adjusted based on fan performance, filter structure, and target particle size. The proposed numerical method offers greater operational simplicity compared to analytical approaches and extends single-condition recommendations into multi-parameter design curves, serving as a parameterized tool for designing high-performance air purifiers. Future research that incorporates electret technology could further enhance CADR without increasing filter impedance, thereby unlocking additional performance improvements. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:20:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:20:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 總摘要 iii Abstract v 目 次 viii 圖 次 xi 表 次 xiii 第一部分 1 第一部分節錄 2 一、前言 4 1.1 研究背景 4 1.2 研究目的 6 二、文獻回顧 7 2.1 室內空氣品質 7 2.2 CADR測試方法與評估指標 9 2.3 纖維性濾材過濾機制 11 2.4 針對次微米微粒去除的濾材厚度設計最佳化 18 2.5以實驗探討Topt 20 2.6以實驗及模擬探討Topt 21 2.7 阻抗方程式與過濾品質 22 2.8 風機與濾材搭配模式 23 三、研究方法與材料 25 四、結果與討論 26 4.1 P-Q curve模擬與系統操作點 26 4.2 濾材厚度對流量、效率與CADR的影響 26 4.3 線性P-Q curve斜率對Topt的影響 26 4.4 比對與文獻一致性的分析 27 4.5 實驗與理論值對於過濾風速及過濾效率之比較 28 4.6 濾材均勻係數(ε)對濾材性能參數之影響評估 28 4.7 小結 29 五、結論與建議 30 六、參考文獻 32 第二部分 52 第二部分節錄 53 一、前言 56 1.1 研究背景 56 1.2 研究目的 57 二、文獻回顧 58 2.1 空氣清淨機性能評估指標 58 2.2單一纖維效率與濾材阻抗方程式 58 2.3 最佳厚度設計理論 61 2.4 氣流與濾材效率對CADR之影響分析 62 2.5風機與濾材搭配模式對最佳CADR厚度的研究 63 2.6 影響Topt參數 64 2.7風機性能、類型與轉速對空氣清淨機效能之影響 66 三、研究方法與材料 70 3.1 濾材參數 70 3.2 Topt模擬 70 四、結果與討論 72 4.1 微粒粒徑對Topt設計的影響 72 4.2 P-Q curve對Topt設計的影響 73 4.3 濾材過濾面積對Topt設計的影響 74 4.4 風機轉速對Topt設計的影響 75 4.5 纖維直徑與填充密度對Topt設計的影響 77 4.6 研究限制 78 五、結論與建議 80 六、參考文獻 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 潔淨空氣輸出率(CADR) | zh_TW |
| dc.subject | 濾材均勻係數(ε) | zh_TW |
| dc.subject | 最佳濾材厚度(Topt) | zh_TW |
| dc.subject | 風機性能曲線(P-Q curve) | zh_TW |
| dc.subject | 單一纖維理論 | zh_TW |
| dc.subject | 空氣清淨機 | zh_TW |
| dc.subject | Homogeneity factor(ε) | en |
| dc.subject | Clean Air Delivery Rate (CADR) | en |
| dc.subject | Air purifier | en |
| dc.subject | Single fiber theory | en |
| dc.subject | P-Q curve | en |
| dc.subject | Optimal filter thickness (Topt) | en |
| dc.title | 結合過濾原理與風機性能曲線之空氣清淨機效能優化研究 | zh_TW |
| dc.title | Performance Optimization of Air Purifiers through Integration of Filtration Principles and Fan Performance Curves | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳志傑;林志威;林文印 | zh_TW |
| dc.contributor.oralexamcommittee | CHIH-CHIEH CHEN;CHIH-WEI LIN;Wen-Yinn Lin | en |
| dc.subject.keyword | 潔淨空氣輸出率(CADR),濾材均勻係數(ε),最佳濾材厚度(Topt),風機性能曲線(P-Q curve),單一纖維理論,空氣清淨機, | zh_TW |
| dc.subject.keyword | Clean Air Delivery Rate (CADR),Homogeneity factor(ε),Optimal filter thickness (Topt),P-Q curve,Single fiber theory,Air purifier, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202502864 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2027-08-12 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-08-12 | 3.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
