Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99935
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕zh_TW
dc.contributor.advisorKuen-Yuh Wuen
dc.contributor.author劉姿含zh_TW
dc.contributor.authorZi-Han Liuen
dc.date.accessioned2025-09-19T16:20:48Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation台大醫院檢驗醫學部. (2025). 肝功能檢驗(GPT、GOT)參考值與判讀說明. 台大醫院. https://www.ntuh.gov.tw/labmed/Fpage.action?muid=1569&fid=1450
周珊如, 王亮月, 鄭雅文, 謝玲玲, & 陳建仁. (1995). 台灣地區國中學童黃麴毒素暴露量的生物測定 [Biological Monitoring of Aflatoxin Exposures among Junior High School Students in Taiwan]. 中華公共衛生雜誌, 14(2), 139-149. https://doi.org/10.6288/cjph1995-14-02-03
連如蘋, 廖運範, 于明暉, & 陳建仁. (1997). 尿液黃麴毒素代謝產物和肝細胞癌之重疊病例對照研究 [Urinary Aflatoxin Metabolites and Hepatocellular Carcinoma-A Nested Case-Control Study]. 中華公共衛生雜誌, 16(5), 417-427. https://doi.org/10.6288/cjph1997-16-05-04
Arai, M., & Hibino, T. (1983). Tumorigenicity of citrinin in male F344 rats. Cancer Letters, 17(3), 281-287. https://doi.org/https://doi.org/10.1016/0304-3835(83)90165-9
Ayeni, K. I., Jamnik, T., Fareed, Y., Flasch, M., Braun, D., Uhl, M., Hartmann, C., & Warth, B. (2023). The Austrian children's biomonitoring survey 2020 Part B: Mycotoxins, phytotoxins, phytoestrogens and food processing contaminants. Food and Chemical Toxicology, 182, 114173. https://doi.org/https://doi.org/10.1016/j.fct.2023.114173
Battilani, P., Toscano, P., Van der Fels-Klerx, H. J., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T., & Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6(1), 24328. https://doi.org/10.1038/srep24328
Beccaccioli, M., Salustri, M., Scala, V., Ludovici, M., Cacciotti, A., D'Angeli, S., Brown, D. W., & Reverberi, M. (2021). The Effect of Fusarium verticillioides Fumonisins on Fatty Acids, Sphingolipids, and Oxylipins in Maize Germlings. Int J Mol Sci, 22(5). https://doi.org/10.3390/ijms22052435
Belgacem, H., Ben Salah-Abbès, J., Ezzdini, K., A. Abdel-Wahhab, M., Zinedine, A., & Abbès, S. (2019). Lactobacillus plantarum MON03 counteracts zearalenone génotoxicty in mice: Chromosome aberrations, micronuclei, DNA fragmentation and apoptotique gene expression. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 840, 11-19. https://doi.org/https://doi.org/10.1016/j.mrgentox.2018.12.008
Biehl, M. L., Prelusky, D. B., Koritz, G. D., Hartin, K. E., Buck, W. B., & Trenholm, H. L. (1993). Biliary Excretion and Enterohepatic Cycling of Zearalenone in Immature Pigs. Toxicology and Applied Pharmacology, 121(1), 152-159. https://doi.org/https://doi.org/10.1006/taap.1993.1140
Bullerman, L. B. (1979). Significance of Mycotoxins to Food Safety and Human Health1,2. Journal of Food Protection, 42(1), 65-86. https://doi.org/https://doi.org/10.4315/0362-028X-42.1.65
Burtis, C. A., & Bruns, D. E.,. (2022). Tietz textbook of clinical chemistry and molecular diagnostics (6 ed.). Elsevier.
Butler, W. H. (1964). Acute Toxicity of Aflatoxin B1 in Rats. British Journal of Cancer, 18(4), 756-762. https://doi.org/10.1038/bjc.1964.87
Cai, G., Pan, S., Feng, N., Zou, H., Gu, J., Yuan, Y., Liu, X., Liu, Z., & Bian, J. (2019). Zearalenone inhibits T cell chemotaxis by inhibiting cell adhesion and migration related proteins. Ecotoxicology and Environmental Safety, 175, 263-271. https://doi.org/https://doi.org/10.1016/j.ecoenv.2019.03.045
Cao, W., Yu, P., Yang, K., & Cao, D. (2022). Aflatoxin B1: metabolism, toxicology, and its involvement in oxidative stress and cancer development. Toxicology Mechanisms and Methods, 32(6), 395-419. https://doi.org/10.1080/15376516.2021.2021339
Charusalaipong, P., Gordon, M.-J., Cantlay, L., De Souza, N., Horgan, G. W., Bates, R., & Gratz, S. W. (2024). Frequent Dietary Multi-Mycotoxin Exposure in UK Children and Its Association with Dietary Intake. Toxins, 16(6), 251. https://www.mdpi.com/2072-6651/16/6/251
Chen, J., Wen, J., Tang, Y., Shi, J., Mu, G., Yan, R., Cai, J., & Long, M. (2021). Research Progress on Fumonisin B1 Contamination and Toxicity: A Review. Molecules, 26(17). https://doi.org/10.3390/molecules26175238
Collins, S. L., Walsh, J. P., Renaud, J. B., McMillan, A., Rulisa, S., Miller, J. D., Reid, G., & Sumarah, M. W. (2021). Improved methods for biomarker analysis of the big five mycotoxins enables reliable exposure characterization in a population of childbearing age women in Rwanda. Food and Chemical Toxicology, 147, 111854. https://doi.org/https://doi.org/10.1016/j.fct.2020.111854
de Oliveira Filho, J. W. G., Islam, M. T., Ali, E. S., Uddin, S. J., Santos, J. V. O., de Alencar, M., Júnior, A. L. G., Paz, M., de Brito, M., JMC, E. S., Shaw, S., de Medeiros, M., Dantas, S., Rolim, H. M. L., Ferreira, P. M. P., Kamal, M. A., Pieczynska, M. D., Das, N., Gupta, V. K., . . . Melo-Cavalcante, A. A. C. (2017). A comprehensive review on biological properties of citrinin. Food Chem Toxicol, 110, 130-141. https://doi.org/10.1016/j.fct.2017.10.002
De Ruyck, K., Huybrechts, I., Yang, S., Arcella, D., Claeys, L., Abbeddou, S., De Keyzer, W., De Vries, J., Ocke, M., Ruprich, J., De Boevre, M., & De Saeger, S. (2020). Mycotoxin exposure assessments in a multi-center European validation study by 24-hour dietary recall and biological fluid sampling. Environment International, 137, 105539. https://doi.org/https://doi.org/10.1016/j.envint.2020.105539
Deng, C., Li, C., Zhou, S., Wang, X., Xu, H., Wang, D., Gong, Y. Y., Routledge, M. N., Zhao, Y., & Wu, Y. (2018). Risk assessment of deoxynivalenol in high-risk area of China by human biomonitoring using an improved high throughput UPLC-MS/MS method. Scientific Reports, 8(1), 3901. https://doi.org/10.1038/s41598-018-22206-y
Dewa, Y., Kemmochi, S., Kawai, M., Saegusa, Y., Harada, T., Shimamoto, K., Mitsumori, K., Kumagai, S., Sugita-Konishi, Y., & Shibutani, M. (2011). Rapid deposition of glomerular IgA in BALB/c mice by nivalenol and its modifying effect on high IgA strain (HIGA) mice. Experimental and Toxicologic Pathology, 63(1), 17-24. https://doi.org/https://doi.org/10.1016/j.etp.2009.09.002
Dey, D. K., Kang, J. I., Bajpai, V. K., Kim, K., Lee, H., Sonwal, S., Simal-Gandara, J., Xiao, J., Ali, S., Huh, Y. S., Han, Y.-K., & Shukla, S. (2023). Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Critical Reviews in Food Science and Nutrition, 63(27), 8489-8510. https://doi.org/10.1080/10408398.2022.2059650
Drochner, W., Schollenberger, M., Piepho, H. P., Götz, S., Lauber, U., Tafaj, M., Klobasa, F., Weiler, U., Claus, R., & Steffl, M. (2004). Serum IgA-promoting effects induced by feed loads containing isolated deoxynivalenol (DON) in growing piglets. J Toxicol Environ Health A, 67(13), 1051-1067. https://doi.org/10.1080/15287390490447313
Duringer, J., Mazumder, R., Palmer, V., Craig, A. M., & Spencer, P. (2021). Case-Control Study of Nodding Syndrome in Acholiland: Urinary Multi-Mycotoxin Screening. Toxins, 13(5), 313. https://www.mdpi.com/2072-6651/13/5/313
EFSA. (2011). Scientific Opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. EFSA Journal, 9(10), 2407. https://doi.org/https://doi.org/10.2903/j.efsa.2011.2407
EFSA. (2012). Scientific Opinion on the risks for public and animal health related to the presence of citrinin in food and feed. EFSA Journal, 10(3), 2605.
EFSA. (2013a). Scientific Opinion on risks for animal and public health related to the presence of nivalenol in food and feed. EFSA Journal, 11(6), 3262. https://doi.org/https://doi.org/10.2903/j.efsa.2013.3262
EFSA. (2013b). Scientific Opinion on the risk for public and animal health related to the presence of sterigmatocystin in food and feed. EFSA Journal, 11(6), 3254. https://doi.org/https://doi.org/10.2903/j.efsa.2013.3254
EFSA. (2017). Risks to human and animal health related to the presence of deoxynivalenol and its acetylated and modified forms in food and feed. Efsa j, 15(9), e04718. https://doi.org/10.2903/j.efsa.2017.4718
EFSA. (2018). Appropriateness to set a group health-based guidance value for fumonisins and their modified forms. EFSA Journal, 16(2), e05172. https://doi.org/https://doi.org/10.2903/j.efsa.2018.5172
EFSA. (2020). Risk assessment of ochratoxin A in food. EFSA Journal, 18(5), e06113. https://doi.org/https://doi.org/10.2903/j.efsa.2020.6113
Fan, K., Guo, W., Huang, Q., Meng, J., Yao, Q., Nie, D., Han, Z., & Zhao, Z. (2021). Assessment of Human Exposure to Five Alternaria Mycotoxins in China by Biomonitoring Approach. Toxins, 13(11), 762. https://www.mdpi.com/2072-6651/13/11/762
FAO. (2020). Climate change: Unpacking the burden on food safety.Food safety and quality series No. 8. Rome, Italy: FAO—Food and Agriculture Organization of the United Nations
FAO/WHO. (2011). Safety evaluation of certain contaminants in food (deoxynivalenol).Prepared by the Seventy-second meeting of the Joint FAO/WHO Expert Committee in Food Additives (JECFA). WHO Food Additives Series, 63.
Fehr, M., Pahlke, G., Fritz, J., Christensen, M. O., Boege, F., Altemöller, M., Podlech, J., & Marko, D. (2009). Alternariol acts as a topoisomerase poison, preferentially affecting the IIα isoform. Molecular Nutrition & Food Research, 53(4), 441-451. https://doi.org/https://doi.org/10.1002/mnfr.200700379
Fink-Gremmels, J., & Malekinejad, H. (2007). Clinical effects and biochemical mechanisms associated with exposure to the mycoestrogen zearalenone. Animal Feed Science and Technology, 137(3), 326-341. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2007.06.008
Frisvad, J. C., Hubka, V., Ezekiel, C. N., Hong, S. B., Nováková, A., Chen, A. J., Arzanlou, M., Larsen, T. O., Sklenář, F., Mahakarnchanakul, W., Samson, R. A., & Houbraken, J. (2019). Taxonomy of Aspergillus section Flavi and their production of aflatoxins, ochratoxins and other mycotoxins. Stud Mycol, 93, 1-63. https://doi.org/10.1016/j.simyco.2018.06.001
Gebreegziabher, T., Dean, M., Elias, E., Tsegaye, W., & Stoecker, B. J. (2022). Urinary Aflatoxin M1 Concentration and Its Determinants in School-Age Children in Southern Ethiopia. Nutrients, 14(13). https://doi.org/10.3390/nu14132580
Gelderblom, W. C., Abel, S., Smuts, C. M., Marnewick, J., Marasas, W. F., Lemmer, E. R., & Ramljak, D. (2001). Fumonisin-induced hepatocarcinogenesis: mechanisms related to cancer initiation and promotion. Environ Health Perspect, 109 Suppl 2(Suppl 2), 291-300. https://doi.org/10.1289/ehp.01109s2291
Gelderblom, W. C. A., Kriek, N. P. J., Marasas, W. F. O., & Thiel, P. G. (1991). Toxicity and carcinogenicity of the Fusanum monilzforine metabolite, fumonisin B1, in rats. Carcinogenesis, 12(7), 1247-1251. https://doi.org/10.1093/carcin/12.7.1247
Gerding, J., Ali, N., Schwartzbord, J., Cramer, B., Brown, D. L., Degen, G. H., & Humpf, H.-U. (2015). A comparative study of the human urinary mycotoxin excretion patterns in Bangladesh, Germany, and Haiti using a rapid and sensitive LC-MS/MS approach. Mycotoxin Research, 31(3), 127-136. https://doi.org/10.1007/s12550-015-0223-9
Githang'a, D., Wangia, R. N., Mureithi, M. W., Wandiga, S. O., Mutegi, C., Ogutu, B., Agweyu, A., Wang, J. S., & Anzala, O. (2019). The effects of aflatoxin exposure on Hepatitis B-vaccine induced immunity in Kenyan children. Curr Probl Pediatr Adolesc Health Care, 49(5), 117-130. https://doi.org/10.1016/j.cppeds.2019.04.005
Gratz, S. W., Currie, V., Duncan, G., & Jackson, D. (2020). Multimycotoxin Exposure Assessment in UK Children Using Urinary Biomarkers-A Pilot Survey. J Agric Food Chem, 68(1), 351-357. https://doi.org/10.1021/acs.jafc.9b03964
Gruber-Dorninger, C., Novak, B., Nagl, V., & Berthiller, F. (2017). Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. Journal of Agricultural and Food Chemistry, 65(33), 7052-7070. https://doi.org/10.1021/acs.jafc.6b03413
Hanika, C., Carlton, W. W., & Tuite, J. (1983). Citrinin mycotoxicosis in the rabbit. Food and Chemical Toxicology, 21(4), 487-493. https://doi.org/https://doi.org/10.1016/0278-6915(83)90107-2
Huang, Q., Jiang, K., Tang, Z., Fan, K., Meng, J., Nie, D., Zhao, Z., Wu, Y., & Han, Z. (2021). Exposure Assessment of Multiple Mycotoxins and Cumulative Health Risk Assessment: A Biomonitoring-Based Study in the Yangtze River Delta, China. Toxins, 13(2), 103. https://www.mdpi.com/2072-6651/13/2/103
Huţanaşu, C., Sfarti, C., Trifan, A., Cojocariu, C., Sîngeap, A. M., Spac, A., & Stanciu, C. (2011). [High levels of sterigmatocystin in patients with chronic liver diseases]. Rev Med Chir Soc Med Nat Iasi, 115(1), 33-37. (Detectarea sterigmatocistinei la pacienţii cu boală ii hepatică cronică.)
Huybrechts, B., Martins, J. C., Debongnie, P., Uhlig, S., & Callebaut, A. (2015). Fast and sensitive LC–MS/MS method measuring human mycotoxin exposure using biomarkers in urine. Archives of Toxicology, 89(11), 1993-2005. https://doi.org/10.1007/s00204-014-1358-8
IARC. (2002). Monographs on the Evaluation of Carcinogenic Risk to Humans. 82, 301~344.
IARC. (2012). Chemical agents and related occupations. IARC Monogr Eval Carcinog Risks Hum, 100(Pt F), 9-562.
IPCC. (2022). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.
J.L. Lou, H. J. T., Z.H. Meng, Z.Q. Gou. (1995). Detection of sterigmatocystin in food/feed samples from areas with various liver/stomach cancer incidences by enzyme-linked immunosorbent assay. Wei Sheng Yan Jiu/Journal of Hygiene Research, 2, 28-31.
Jestoi, M. (2008). Emerging fusarium-mycotoxins fusaproliferin, beauvericin, enniatins, and moniliformin - A review [Review]. Critical Reviews in Food Science and Nutrition, 48(1), 21-49. https://doi.org/10.1080/10408390601062021
Jordan, W. H., Carlton, W. W., & Sansing, G. A. (1977). Citrinin mycotoxicosis in the mouse. Food and Cosmetics Toxicology, 15(1), 29-34. https://doi.org/https://doi.org/10.1016/S0015-6264(77)80259-9
KDIGO. (2024). KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. 105(45).
Kebede, H., Abbas, H. K., Fisher, D. K., & Bellaloui, N. (2012). Relationship between aflatoxin contamination and physiological responses of corn plants under drought and heat stress. Toxins (Basel), 4(11), 1385-1403. https://doi.org/10.3390/toxins4111385
Kew, M. C. (2014). Hepatocellular carcinoma: epidemiology and risk factors. Journal of Hepatocellular Carcinoma, 1(null), 115-125. https://doi.org/10.2147/JHC.S44381
Khera, K. S., Arnold, D. L., Whalen, C., Angers, G., & Scott, P. M. (1984). Vomitoxin (4-deoxynivalenol): effects on reproduction of mice and rats. Toxicol Appl Pharmacol, 74(3), 345-356. https://doi.org/10.1016/0041-008x(84)90288-6
Kos, J., Mastilović, J., Hajnal, E. J., & Šarić, B. (2013). Natural occurrence of aflatoxins in maize harvested in Serbia during 2009–2012. Food Control, 34(1), 31-34. https://doi.org/https://doi.org/10.1016/j.foodcont.2013.04.004
Kyei, N. N. A., Cramer, B., Humpf, H.-U., Degen, G. H., Ali, N., & Gabrysch, S. (2022). Assessment of multiple mycotoxin exposure and its association with food consumption: a human biomonitoring study in a pregnant cohort in rural Bangladesh. Archives of Toxicology, 96(7), 2123-2138. https://doi.org/10.1007/s00204-022-03288-0
Lehmann, L., Wagner, J., & Metzler, M. (2006). Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. Food and Chemical Toxicology, 44(3), 398-408. https://doi.org/https://doi.org/10.1016/j.fct.2005.08.013
Lević, J., Gošić-Dondo, S., Ivanović, D., Stanković, S., Krnjaja, V., Bočarov-Stančić, A., & Stepanic, A. . (2013). An outbreak of Aspergillus species in response to environmental conditions in Serbia. . Pesticidi I Fitomedicina, Vol. 28 No. 3. https://doi.org/https://doi.org/10.2298/pif.v28i3.4040
Li, Y., Yi, J., Zeng, Q., Liu, Y., Yang, B., Liu, B., Li, Y., Mehmood, K., Hussain, R., Tang, Z., Zhang, H., & Li, Y. (2021). Zearalenone exposure mediated hepatotoxicity via mitochondrial apoptotic and autophagy pathways: Associated with gut microbiome and metabolites. Toxicology, 462, 152957. https://doi.org/https://doi.org/10.1016/j.tox.2021.152957
Liu, Y., & Wu, F. (2010). Global Burden of Aflatoxin-Induced Hepatocellular Carcinoma: A Risk Assessment. Environmental Health Perspectives, 118(6), 818-824. https://doi.org/doi:10.1289/ehp.0901388
Liu, Z., Zhao, X., Wu, L., Zhou, S., Gong, Z., Zhao, Y., & Wu, Y. (2020). Development of a Sensitive and Reliable UHPLC-MS/MS Method for the Determination of Multiple Urinary Biomarkers of Mycotoxin Exposure. Toxins, 12(3), 193. https://www.mdpi.com/2072-6651/12/3/193
Mallouki, A., & Luo, Y.-S. (2025). Cancer- and non-cancer risk prioritization of regulated mycotoxins in Taiwan: Insights from the 2018–2022 official Mycotoxin monitoring survey. Food and Chemical Toxicology, 199, 115343. https://doi.org/https://doi.org/10.1016/j.fct.2025.115343
Mantle, P., & Kulinskaya, E. (2010). Lifetime, low-dose ochratoxin A dietary study on renal carcinogenesis in male Fischer rats. Food Additives & Contaminants: Part A, 27(11), 1566-1573. https://doi.org/10.1080/19440049.2010.502302
McPherson, R. A., & Pincus, M. R. . (2021). Henry’s clinical diagnosis and management by laboratory methods (24 ed.). Elsevier.
Mubarik, Y., Boyetey, S. T., Aikins, A. R., & Mutocheluh, M. (2025). Effect of Ochratoxin A (OTA) on the Immune System: A Systematic Review. Toxins (Basel), 17(5). https://doi.org/10.3390/toxins17050256
NGFA. (2019). FDA Mycotoxin Regulatory Guidance: A Guide for Grain Elevators, Feed Manufacturers, Grain Processors and Exporters.
NTP. (1982). Zearalenone (CASRN 17924-92-4) in F344/N Rats and B6C3F1 Mice (Feed Study). NATIONAL TOXICOLOGY PROGRAM Technical Report Series
NTP. (1989). Toxicology and Carcinogenesis Studies of Ochratoxin A (CAS No. 303-47-9) in F344/N Rats (Gavage Studies). National Toxicology Programme, Technical Reports Series
NTP. (2001). Toxicology and Carcinogenesis Studies of Fumonisin B1 (CAS No
116355-83-0) in F344/N Rats and B6C3F, Mice (Feed Studies). NATIONAL TOXICOLOGY PROGRAM Technical Report Series
Ostry, V., Malir, F., Toman, J., & Grosse, Y. (2017). Mycotoxins as human carcinogens—the IARC Monographs classification. Mycotoxin Research, 33(1), 65-73. https://doi.org/10.1007/s12550-016-0265-7
Penczynski, K. J., Cramer, B., Dietrich, S., Humpf, H.-U., Abraham, K., & Weikert, C. (2022). Mycotoxins in Serum and 24-h Urine of Vegans and Omnivores from the Risks and Benefits of a Vegan Diet (RBVD) Study. Molecular Nutrition & Food Research, 66(6), 2100874. https://doi.org/https://doi.org/10.1002/mnfr.202100874
Pestka, J. J. (2003). Deoxynivalenol-induced IgA production and IgA nephropathy-aberrant mucosal immune response with systemic repercussions. Toxicology Letters, 140-141, 287-295. https://doi.org/https://doi.org/10.1016/S0378-4274(03)00024-9
Platzer, A., Cherkaoui, Y., Novak, B., & Schatzmayr, G. (2025). Investigating the Correlations Between Weather Factors and Mycotoxin Contamination in Corn: Evidence from Long-Term Data. Toxins, 17(2), 77. https://www.mdpi.com/2072-6651/17/2/77
Pleadin, J., Kos, J., Radić, B., Vulić, A., Kudumija, N., Radović, R., Janić Hajnal, E., Mandić, A., & Anić, M. (2023). Aflatoxins in Maize from Serbia and Croatia: Implications of Climate Change. Foods, 12(3). https://doi.org/10.3390/foods12030548
Poapolathep, A., Ohtsuka, R., Kiatipattanasakul, W., Ishigami, N., Nakayama, H., & Doi, K. (2002). Nivalenol-induced apoptosis in thymus, spleen and Peyer's patches of mice. Experimental and Toxicologic Pathology, 53(6), 441-446. https://doi.org/https://doi.org/10.1078/0940-2993-00211
Purchase, I. F. H., & Van der Watt, J. J. (1969). Acute toxicity of sterigmatocystin to rats. Food and Cosmetics Toxicology, 7, 135-139. https://doi.org/https://doi.org/10.1016/S0015-6264(69)80295-6
Qiao, X., Zhang, J., Yang, Y., Yin, J., Li, H., Xing, Y., & Shao, B. (2020). Development of a simple and rapid LC-MS/MS method for the simultaneous quantification of five Alternaria mycotoxins in human urine. Journal of Chromatography B, 1144, 122096. https://doi.org/https://doi.org/10.1016/j.jchromb.2020.122096
Rai, A., Das, M., & Tripathi, A. (2020). Occurrence and toxicity of a fusarium mycotoxin, zearalenone. Crit Rev Food Sci Nutr, 60(16), 2710-2729. https://doi.org/10.1080/10408398.2019.1655388
Rivera-Núñez, Z., Barrett, E. S., Szamreta, E. A., Shapses, S. A., Qin, B., Lin, Y., Zarbl, H., Buckley, B., & Bandera, E. V. (2019). Urinary mycoestrogens and age and height at menarche in New Jersey girls. Environmental Health, 18(1), 24. https://doi.org/10.1186/s12940-019-0464-8
Ropejko, K., & Twarużek, M. (2021). Zearalenone and Its Metabolites—General Overview, Occurrence, and Toxicity. Toxins, 13(1), 35. https://www.mdpi.com/2072-6651/13/1/35
Saha Turna, N., S., C. S., Venugopal, G., & and Wu, F. (2024). Effects of aflatoxin on the immune system: Evidence from human and mammalian animal research. Critical Reviews in Food Science and Nutrition, 64(27), 9955-9973. https://doi.org/10.1080/10408398.2023.2219336
Šarkanj, B., Ezekiel, C. N., Turner, P. C., Abia, W. A., Rychlik, M., Krska, R., Sulyok, M., & Warth, B. (2018). Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Anal Chim Acta, 1019, 84-92. https://doi.org/10.1016/j.aca.2018.02.036
Shen, Y., Ma, N., Liu, S., Xu, G., & Zhang, J. (2025). Mycotoxins and secondary metabolites from fruit postharvest pathogenic Penicillium species. Food Chemistry, 488, 144880. https://doi.org/https://doi.org/10.1016/j.foodchem.2025.144880
Shirima, C. P., Kimanya, M. E., Routledge, M. N., Srey, C., Kinabo, J. L., Humpf, H.-U., Wild, C. P., Tu, Y.-K., & Gong, Y. Y. (2015). A Prospective Study of Growth and Biomarkers of Exposure to Aflatoxin and Fumonisin during Early Childhood in Tanzania. Environmental Health Perspectives, 123(2), 173-178. https://doi.org/doi:10.1289/ehp.1408097
Solhaug, A., Eriksen, G. S., & Holme, J. A. (2016). Mechanisms of Action and Toxicity of the Mycotoxin Alternariol: A Review. Basic Clin Pharmacol Toxicol, 119(6), 533-539. https://doi.org/10.1111/bcpt.12635
Sprando, R. L., Collins, T. F., Black, T. N., Olejnik, N., Rorie, J. I., Eppley, R. M., & Ruggles, D. I. (2005). Characterization of the effect of deoxynivalenol on selected male reproductive endpoints. Food Chem Toxicol, 43(4), 623-635. https://doi.org/10.1016/j.fct.2004.12.017
Studer-Rohr, I., Schlatter, J., & Dietrich, D. R. (2000). Kinetic parameters and intraindividual fluctuations of ochratoxin A plasma levels in humans. Archives of Toxicology, 74(9), 499-510. https://doi.org/10.1007/s002040000157
Stypuła-Trębas, S., Minta, M., Radko, L., Jedziniak, P., & Posyniak, A. (2017). Nonsteroidal mycotoxin alternariol is a full androgen agonist in the yeast reporter androgen bioassay. Environmental Toxicology and Pharmacology, 55, 208-211. https://doi.org/https://doi.org/10.1016/j.etap.2017.08.036
Guidance for Industry: Action Levels for Poisonous or Deleterious Substances in Human Food and Animal Feed, (2000).
Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds, (2001).
CPG Sec 510.150 Apple Juice, Apple Juice Concentrates, and Apple Juice Products - Adulteration with Patulin, (2005).
Guidance for Industry and FDA: Advisory Levels for Deoxynivalenol (DON) in Finished Wheat Products for Human Consumption and Grains and Grain By-Products used for Animal Feed, (2010).
USFDA. (2011). Guidance for Industry: Evaluating the Safety of Flood-affected Food Crops for Human Consumption. United States Food and Drug Administration (FDA).
USFDA. (2018). US FDA Guidance for Industry: Bioanalytical Method Validation.
Vaclavikova, M., Malachova, A., Veprikova, Z., Dzuman, Z., Zachariasova, M., & Hajslova, J. (2013). ‘Emerging’ mycotoxins in cereals processing chains: Changes of enniatins during beer and bread making. Food Chemistry, 136(2), 750-757. https://doi.org/https://doi.org/10.1016/j.foodchem.2012.08.031
van den Brand, A. D., Bokkers, B. G. H., te Biesebeek, J. D., & Mengelers, M. J. B. (2022). Combined Exposure to Multiple Mycotoxins: An Example of Using a Tiered Approach in a Mixture Risk Assessment. Toxins, 14(5), 303. https://www.mdpi.com/2072-6651/14/5/303
Vesonder, R. F., Ciegler, A., & Jensen, A. H. (1973). Isolation of the emetic principle from Fusarium-infected corn. Appl Microbiol, 26(6), 1008-1010. https://doi.org/10.1128/am.26.6.1008-1010.1973
Vicente-Serrano, S. M., McVicar, T. R., Miralles, D. G., Yang, Y., & Tomas-Burguera, M. (2020). Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change. WIREs Climate Change, 11(2), e632. https://doi.org/https://doi.org/10.1002/wcc.632
Wallin, S., Gambacorta, L., Kotova, N., Warensjö Lemming, E., Nälsén, C., Solfrizzo, M., & Olsen, M. (2015). Biomonitoring of concurrent mycotoxin exposure among adults in Sweden through urinary multi-biomarker analysis. Food and Chemical Toxicology, 83, 133-139. https://doi.org/https://doi.org/10.1016/j.fct.2015.05.023
Wang, W., Wang, Y., Yang, J., Wagner, K. M., Hwang, S. H., Cheng, J., Singh, N., Edwards, P., Morisseau, C., Zhang, G., Panigrahy, D., & Hammock, B. D. (2023). Aflatoxin B(1) exposure disrupts the intestinal immune function via a soluble epoxide hydrolase-mediated manner. Ecotoxicol Environ Saf, 249, 114417. https://doi.org/10.1016/j.ecoenv.2022.114417
Wang, X., Liang, J., Cao, P., Zhou, S., Wu, A., Gao, P., Xu, H., Liu, Z., & Gong, Y. (2019). Biomonitoring Study of Deoxynivalenol Exposure in Chinese Inhabitants. International Journal of Environmental Research and Public Health, 16(12), 2169. https://www.mdpi.com/1660-4601/16/12/2169
Warensjö Lemming, E., Montano Montes, A., Schmidt, J., Cramer, B., Humpf, H.-U., Moraeus, L., & Olsen, M. (2020). Mycotoxins in blood and urine of Swedish adolescents—possible associations to food intake and other background characteristics. Mycotoxin Research, 36(2), 193-206. https://doi.org/10.1007/s12550-019-00381-9
WMO. (2025). WMO report documents spiralling weather and climate impacts.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99935-
dc.description.abstract黴菌毒素是由黴菌自然產生的次級代謝物,常見於受污染的食品中,例如穀類、咖啡豆以及發酵製品。這些毒素可能引起多種不良健康效應,包括肝毒性、腎毒性以及致癌性。雖然多國已進行黴菌毒素暴露的生物監測研究,並透過尿液及血液樣本進行分析,其中以歐洲的研究最為豐富,而目前僅有兩篇論文分析台灣人口體內黃麴毒素的暴露情形,並無檢測其他不同黴菌毒素的原型物。因此,本研究旨在開發並驗證一套分析方法,利用極致液相層析-三段四極柱串聯式質譜儀(UHPLC-MS/MS),以定量檢測人類尿液中10種黴菌毒素。該方法進一步應用於分析自彰化基督教醫院招募、年滿20歲之受試者的尿液樣本,以評估人體暴露程度。此次目標檢測的10種黴菌毒素包括NIV、DON、AFM1、AFB1、FB1、AOH、CIT、ZEN、OTA及STER。液相層析採用ZORBAX Eclipse Plus C18管柱,流動相為含0.2%醋酸的(A)水及(B)甲醇,梯度洗脫於7分鐘內完成。檢測採正負離子模式的電灑游離(ESI)進行分析。考量尿液基質之複雜性,本研究優化了固相萃取(SPE)程序,使用Sep-Pak C18 1 cc Vac萃取匣進行樣本前處理以降低基質干擾。方法驗證內容包括檢量線、日內與日間準確度及精密度,以及殘留效應之評估。根據方法驗證結果AFM1、ZEN及STER之最低定量濃度(LLOQ)均為0.5 ng/mL;而NIV、DON、AFB1、FB1、AOH、CIT及OTA之最低定量濃度則為5 ng/mL。在所分析的94筆尿液樣本中,共有42筆檢出黴菌毒素,檢出物包括DON、OTA、CIT、ZEN、AFM1及AFB1,檢出率介於1.06%至25.53%之間。其中以DON的檢出率最高,濃度範圍為1.15至15.37 ng/mg c。為探討黴菌毒素暴露與腎臟健康之間的關聯,本研究進行了卡方檢定及費雪精確檢定等統計分析。結果顯示,黴菌毒素暴露與腎絲球過濾率(GFR)分期或尿白蛋白排泄分類之間,均未呈現統計上顯著相關,部分結果中OR有輕微正相關。本研究為首次針對台灣一般成人族群進行多種黴菌毒素原型物的暴露調查,以填補此領域之研究缺口。研究結果提供了重要的基礎數據,可作為未來食品安全監測、風險評估及政策制定之參考。zh_TW
dc.description.abstractMycotoxins are secondary metabolites naturally produced by fungi and are commonly found in contaminated foods such as cereals, coffee beans, and fermented products. These toxins may cause various adverse health effects, including hepatotoxicity, nephrotoxicity, and carcinogenicity. Although many countries have conducted biomonitoring studies on mycotoxin exposure through the analysis of urine and blood samples, the majority of such research has been conducted in Europe. Currently, only two published studies have analyzed aflatoxin exposure in the Taiwanese population, and none have investigated the presence of other types of mycotoxins. Therefore, this study aimed to develop and validate an analytical method for quantifying 10 mycotoxins in human urine using ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). This method was subsequently applied to analyze urine samples from participants aged 20 years and older, recruited from Changhua Christian Hospital, to assess human exposure levels. The 10 targeted mycotoxins were NIV, DON, AFM1, AFB1, FB1, AOH, CIT, ZEN, OTA, and STER. Chromatographic separation was achieved using a ZORBAX Eclipse Plus C18 column, with a mobile phase consisting of (A) water and (B) methanol, both containing 0.2% acetic acid. Gradient elution was completed within 7 minutes. Electrospray ionization (ESI) was used in both positive and negative ionization modes for analyte detection. Due to the complexity of the urine matrix, a solid-phase extraction (SPE) procedure using Sep-Pak C18 1 cc Vac Cartridges was optimized to reduce matrix interferences prior to analysis. Method validation included the assessment of calibration curves, intra-day and inter-day accuracy and precision, and carryover effects. The lower limits of quantification (LLOQ) were 0.5 ng/mL for AFM1, ZEN, and STER, and 5 ng/mL for NIV, DON, AFB1, FB1, AOH, CIT, and OTA. Of the 94 urine samples analyzed, mycotoxins were detected in 42, including DON, OTA, CIT, ZEN, AFM1, and AFB1, with detection frequencies ranging from 1.06% to 25.53%. DON showed the highest detection frequency, with concentrations ranging from 1.15 to 15.37 ng/mg creatinine. To assess the association between mycotoxin exposure and renal health, statistical analyses including Chi-square and Fisher’s exact tests were performed. No statistically significant associations were found between mycotoxin exposure and either glomerular filtration rate (GFR) stages or urinary albumin excretion categories, although some odds ratios (OR) indicated a slight positive association.
This study represents the first investigation into the exposure of multiple parent-form mycotoxins among the general adult population in Taiwan, thereby filling a research gap in this field. The findings provide valuable baseline data that can support future food safety monitoring, risk assessment, and policy-making.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:20:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:20:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目 次 vii
圖 次 ix
表 次 x
第一章 緒論 1
1.1黴菌毒素介紹 1
1.2黴菌毒素與氣候變遷 1
1.3常見黴菌毒素 3
1.4新興黴菌毒素 6
1.5台灣食品中黴菌毒素 7
1.6法規 9
1.6.1歐盟 9
1.6.2美國 10
1.6.3台灣法規現況 10
1.7生物偵測資料 11
1.8研究目的 12
第二章 材料與方法 13
2.1研究架構 13
2.2化學品與試劑 13
2.3 UPLC-MS/MS方法開發 13
2.3.1質譜儀條件最佳化 13
2.3.2極致效能液相層析儀條件及移動相最佳化 14
2.4尿液樣本前處理 15
2.4.1液液萃取流程 17
2.4.2固相萃取流程 18
2.5方法確效 20
2.5.1檢量線 20
2.5.2準確度和精確度 21
2.5.3殘留效應 22
2.6實際樣本分析 22
2.6.1尿液樣本來源 22
2.6.2尿液樣本分析 23
第三章 結果與討論 25
3.1 UPLC-MS/MS方法開發 25
3.1.1串連質譜儀條件最佳化結果 25
3.1.2極致效能液相層析儀移動相最佳化 25
3.2尿液樣本前處理 26
3.2.1液液萃取最佳化 26
3.2.2固相萃取方法最佳化 27
3.3方法確效 28
3.3.1檢量線 28
3.3.2準確度和精確度 28
3.3.3殘留效應 28
3.4尿液樣本分析 29
3.5問卷資料 30
3.5.1受試者人口基本資料 30
3.5.2受試者慢性腎臟病分級 30
3.5.3受試者慢性肝指數分級 31
3.6黴菌毒素與腎毒性 32
3.7黴菌毒素與肝毒性 33
3.8討論 34
3.9研究限制 37
第四章 結論 38
參考資料 39
附 錄 55
附 件 92
中英對照表 108
-
dc.language.isozh_TW-
dc.subject黴菌毒素zh_TW
dc.subject極致液相層析串聯式質譜儀(UHPLC-MS/MS)zh_TW
dc.subject生物監測zh_TW
dc.subjectUPLC-MS/MSen
dc.subjectMycotoxinsen
dc.subjectUrine analysisen
dc.title利用極致液相層析-三段四極柱串聯式質譜儀同時分析人體尿液中的 10 種黴菌毒素之方法開發zh_TW
dc.titleDevelopment of a method for simultaneous analysis of 10 mycotoxins in human urine using UPLC-MS/MSen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor羅宇軒zh_TW
dc.contributor.coadvisorYu-Syuan Luoen
dc.contributor.oralexamcommittee楊孝友;陳珮珊zh_TW
dc.contributor.oralexamcommitteeHsiao-Yu Yang;Pai-Shan Chenen
dc.subject.keyword黴菌毒素,生物監測,極致液相層析串聯式質譜儀(UHPLC-MS/MS),zh_TW
dc.subject.keywordMycotoxins,Urine analysis,UPLC-MS/MS,en
dc.relation.page110-
dc.identifier.doi10.6342/NTU202504243-
dc.rights.note未授權-
dc.date.accepted2025-08-08-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved