Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99934
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳家揚zh_TW
dc.contributor.advisorChia-Yang Chenen
dc.contributor.author陳盈暄zh_TW
dc.contributor.authorYing-Hsuan Chenen
dc.date.accessioned2025-09-19T16:20:37Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citation(1) Rekik, H.; Arab, H.; Pichon, L.; El Khakani, M. A.; Drogui, P. Per-and polyfluoroalkyl (PFAS) eternal pollutants: Sources, environmental impacts and treatment processes. Chemosphere 2024, 358, 142044. DOI: https://doi.org/10.1016/j.chemosphere.2024.142044
(2) Dias, D.; Bons, J.; Kumar, A.; Kabir, M. H.; Liang, H. Forever Chemicals, Per-and Polyfluoroalkyl Substances (PFAS), in Lubrication. Lubricants, 2024, 12, 114. DOI:
https://doi.org/10.3390/lubricants12040114
(3) Klingelhöfer, D.; Braun, M.; Groneberg, D. A.; Brüggmann, D. The “forever” per- and polyfluoroalkyl substances (PFAS): A critical accounting of global research on a major threat under changing regulations. Chemosphere 2024, 354, 141694. DOI: https://doi.org/10.1016/j.chemosphere.2024.141694
(4) Meegoda, J. N.; Kewalramani, J. A.; Li, B.; Marsh, R. W. A review of the applications, environmental release, and remediation technologies of per- and polyfluoroalkyl substances. International Journal of Environmental Research and Public Health, 2020; Vol. 17. DOI: https://doi.org/10.3390/ijerph17218117
(5) Dhore, R.; Murthy, G. S. Per/polyfluoroalkyl substances production, applications and environmental impacts. Bioresource Technology 2021, 341, 125808. DOI: https://doi.org/10.1016/j.biortech.2021.125808
(6) Fenton, S. E.; Ducatman, A.; Boobis, A.; DeWitt, J. C.; Lau, C.; Ng, C.; Smith, J. S.; Roberts, S. M. Per- and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry 2021, 40 (3), 606-630. DOI: https://doi.org/10.1002/etc.4890
(7) Brennan, N. M.; Evans, A. T.; Fritz, M. K.; Peak, S. A.; von Holst, H. E. Trends in the regulation of per- and polyfluoroalkyl substances (PFAS): a scoping review. International Journal of Environmental Research and Public Health 2021, 18 (20), 10900. DOI: https://doi.org/10.3390/ijerph182010900
(8) Brase, R. A.; Mullin, E. J.; Spink, D. C. Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. International Journal of Molecular Sciences 2021; Vol. 22. DOI: https://doi.org/10.3390/ijms22030995
(9) Newland, A.; Khyum, M.; Halamek, J.; Ramkumar, S. Perfluoroalkyl and polyfluoroalkyl substances (PFAS)—Fibrous substrates. Technical Association of the Pulp and Paper Industry Journal 2023, 22 (9), 559-572. DOI: https://doi.org/10.32964/TJ22.9.559
(10) van der Veen, I.; Hanning, A.-C.; Stare, A.; Leonards, P. E. G.; de Boer, J.; Weiss, J. M. The effect of weathering on per- and polyfluoroalkyl substances (PFASs) from durable water repellent (DWR) clothing. Chemosphere 2020, 249, 126100. DOI: https://doi.org/10.1016/j.chemosphere.2020.126100
(11) Gaines, L. G. T.; Sinclair, G.; Williams, A. J. A proposed approach to defining per‐ and polyfluoroalkyl substances (PFAS) based on molecular structure and formula. Integrated Environmental Assessment and Management 2023, 19 (5), 1333-1347. DOI: https://doi.org/10.1002/ieam.4735
(12) Li, H.; Junker, A. L.; Wen, J.; Ahrens, L.; Sillanpää, M.; Tian, J.; Cui, F.; Vergeynst, L.; Wei, Z. A recent overview of per- and polyfluoroalkyl substances (PFAS) removal by functional framework materials. Chemical Engineering Journal 2023, 452, 139202. DOI: https://doi.org/10.1016/j.cej.2022.139202
(13) Kwiatkowski, C. F.; Andrews, D. Q.; Birnbaum, L. S.; Bruton, T. A.; DeWitt, J. C.; Knappe, D. R. U.; Maffini, M. V.; Miller, M. F.; Pelch, K. E.; Reade, A.; et al. Scientific basis for managing PFAS as a chemical class. Environmental Science & Technology Letters 2020, 7 (8), 532-543. DOI: https://doi.org/10.1021/acs.estlett.0c00255
(14) Coperchini, F.; Croce, L.; Ricci, G.; Magri, F.; Rotondi, M.; Imbriani, M.; Chiovato, L. Thyroid disrupting effects of old and new generation PFAS. Front Endocrinol (Lausanne) 2020, 11, 612320. DOI: https://doi.org/10.3389/fendo.2020.612320
(15) Mao, X.; Liu, Y.; Wei, Y.; Li, X.; Liu, Y.; Su, G.; Wang, X.; Jia, J.; Yan, B. Threats of per- and poly-fluoroalkyl pollutants to susceptible populations. Science of The Total Environment 2024, 921, 171188. DOI: https://doi.org/10.1016/j.scitotenv.2024.171188
(16) Jian, J.-M.; Chen, D.; Han, F.-J.; Guo, Y.; Zeng, L.; Lu, X.; Wang, F. A short review on human exposure to and tissue distribution of per- and polyfluoroalkyl substances (PFASs). Science of The Total Environment 2018, 636, 1058-1069. DOI: https://doi.org/10.1016/j.scitotenv.2018.04.380
(17) Stockholm Convention. Per- and Polyfluoroalkyl Substances (PFAS) under the Stockholm Convention. 2024/10/16. https://chm.pops.int/Implementation/IndustrialPOPs/PFAS/Overview/tabid/5221/Default.aspx (accessed 2025 3/12).
(18) United States Environmental Protection Agency. Past PFOA and PFOS health effects science documents. United States Environmental Protection Agency, 2025. https://www.epa.gov/sdwa/past-pfoa-and-pfos-health-effects-science-documents (accessed 2025 July 15).
(19) United States Environmental Protection Agency. Fact sheet: 2010/2015 PFOA Stewardship Program. United States Environmental Protection Agency, 2016. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program (accessed 2025 July 15).
(20) European Parliament and Council. Directive 2006/122/EC of the European Parliament and of the Council of 12 December 2006 on the restriction of the marketing and use of perfluorooctane sulfonates (amending Council Directive 76/769/EEC). Official Journal of the European Union: Brussels, 2006.
(21) Argoul, C. M. L.; Dauwe, Y.; Lakhal, L.; Toutain, P.-L.; Picard-Hagen, N.; Gayrard, V.; Lacroix, M. Z. Development of an LC-MS/MS method for the simultaneous quantification of 11 perfluoroalkyl compounds in mouse plasma for toxicokinetic applications. Journal of Pharmaceutical and Biomedical Analysis 2025, 255, 116596. DOI: https://doi.org/10.1016/j.jpba.2024.116596
(22) Liang, L.; Pan, Y.; Bin, L.; Liu, Y.; Huang, W.; Li, R.; Lai, K. P. Immunotoxicity mechanisms of perfluorinated compounds PFOA and PFOS. Chemosphere 2022, 291, 132892. DOI: https://doi.org/10.1016/j.chemosphere.2021.132892
(23) Antonopoulou, M.; Spyrou, A.; Tzamaria, A.; Efthimiou, I.; Triantafyllidis, V. Current state of knowledge of environmental occurrence, toxic effects, and advanced treatment of PFOS and PFOA. Science of The Total Environment 2024, 913, 169332. DOI: https://doi.org/10.1016/j.scitotenv.2023.169332
(24) Land, M.; de Wit, C. A.; Bignert, A.; Cousins, I. T.; Herzke, D.; Johansson, J. H.; Martin, J. W. What is the effect of phasing out long-chain per- and polyfluoroalkyl substances on the concentrations of perfluoroalkyl acids and their precursors in the environment? A systematic review. Environmental Evidence 2018, 7 (1), 4. DOI: https://doi.org/10.1186/s13750-017-0114-y
(25) Langenbach, B.; Wilson, M. Per- and polyfluoroalkyl substances (PFAS): significance and considerations within the regulatory framework of the USA. International Journal of Environmental Research and Public Health, 2021; Vol. 18. DOI: https://doi.org/10.3390/ijerph182111142
(26) Peshoria, S.; Nandini, D.; Tanwar, R. K.; Narang, R. Short-chain and long-chain fluorosurfactants in firefighting foam: a review. Environmental Chemistry Letters 2020, 18 (4), 1277-1300. DOI: https://doi.org/10.1007/s10311-020-01015-8
(27) Brunn, H.; Arnold, G.; Körner, W.; Rippen, G.; Steinhäuser, K. G.; Valentin, I. PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe 2023, 35 (1), 20. DOI: https://doi.org/10.1186/s12302-023-00721-8
(28) Li, J.; He, J.; Niu, Z.; Zhang, Y. Legacy per- and polyfluoroalkyl substances (PFASs) and alternatives (short-chain analogues, F-53B, GenX and FC-98) in residential soils of China: present implications of replacing legacy PFASs. Environment International 2020, 135, 105419. DOI: https://doi.org/10.1016/j.envint.2019.105419.
(29) Shabanian, S.; Lahiri, S. K.; Soltani, M.; Golovin, K. Durable water- and oil-repellent textiles without long- or short-chain perfluoroalkylated substances. Materials Today Chemistry 2023, 34, 101786. DOI: https://doi.org/10.1016/j.mtchem.2023.101786
(30) Pan, Y.; Wang, J.; Yeung, L. W.; Wei, S.; Dai, J. Analysis of emerging per-and polyfluoroalkyl substances: progress and current issues. Trends in Analytical Chemistry 2020, 124, 115481. DOI: https://doi.org/10.1016/j.trac.2019.04.013
(31) Chambers, W. S.; Hopkins, J. G.; Richards, S. M. A review of per- and olyfluorinated alkyl substance impairment of reproduction. Front Toxicol 2021, 3, 732436. DOI: https://doi.org/10.3389/ftox.2021.732436
(32) Zheng, G.; Eick, S. M.; Salamova, A. Elevated levels of ultrashort- and short-chain perfluoroalkyl acids in US homes and people. Environmental Science & Technology 2023, 57 (42), 15782-15793. DOI: https://doi.org/10.1021/acs.est.2c06715
(33) Guo, W.; Hao, W.; Xiao, W. Emerging perfluorinated chemical GenX: environmental and biological fates and risks. Environment & Health 2024. DOI: https://doi.org/10.1021/envhealth.4c00164
(34) Prevedouros, K.; Cousins, I. T.; Buck, R. C.; Korzeniowski, S. H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology 2006, 40 (1), 32-44. DOI: https://doi.org/10.1021/es0512475
(35) Ellis, D. A.; Martin, J. W.; De Silva, A. O.; Mabury, S. A.; Hurley, M. D.; Sulbaek Andersen, M. P.; Wallington, T. J. Degradation of fluorotelomer alcohols:  a likely atmospheric source of perfluorinated carboxylic acids. Environmental Science & Technology 2004, 38 (12), 3316-3321. DOI: https://doi.org/10.1021/es049860w
(36) Zhang, Y.; Zhou, Y.; Dong, R.; Song, N.; Hong, M.; Li, J.; Yu, J.; Kong, D. Emerging and legacy per- and polyfluoroalkyl substances (PFAS) in fluorochemical wastewater along full-scale treatment processes: Source, fate, and ecological risk. Journal of Hazardous Materials 2024, 465, 133270. DOI: https://doi.org/10.1016/j.jhazmat.2023.133270
(37) Zarębska, M.; Bajkacz, S.; Hordyjewicz-Baran, Z. Assessment of legacy and emerging PFAS in the Oder River: occurrence, distribution, and sources. Environmental Research 2024, 251, 118608. DOI: https://doi.org/10.1016/j.envres.2024.118608
(38) Zhang, B.; He, Y.; Huang, Y.; Hong, D.; Yao, Y.; Wang, L.; Sun, W.; Yang, B.; Huang, X.; Song, S.; et al. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: the emergence of PFAS alternatives in China. Environmental Pollution 2020, 263, 114461. DOI: https://doi.org/10.1016/j.envpol.2020.114461
(39) Richter, L.; Cordner, A.; Brown, P. Producing Ignorance Through Regulatory Structure: The case of per- and polyfluoroalkyl substances (PFAS). Sociological Perspectives 2021, 64 (4), 631-656. DOI: https://doi.org/10.1177/0731121420964827
(40) Ameduri, B. What do we know about per- or polyfluoroalkyl aubstances (PFASs)? Issues, challenges, regulations, and possible alternatives. Macromolecules 2025, 58 (6), 2781-2791. DOI: https://doi.org/10.1021/acs.macromol.4c02993
(41) (ECHA), E. C. A. ECHA and five European countries issue progress update on PFAS restriction. 2024. (acccessed 2025 June 13).
(42) 接軌國際趨勢 環境部預告修正「列管毒性化學物質及其運作管理事項」部分條文草案. 綜合規劃組,化學物質管理署,環境部, 2024. https://topic.moenv.gov.tw/pops/cp-68-11224-d7870-2.html (accessed 2025 June 13).
(43) European Environment Agency. An assessment on PFAS in textiles in Europe's circular economy
European Environment Agency, 2024. https://www.eea.europa.eu/en/analysis/publications/pfas-in-textiles-in-europes-circular-economy (accessed 2025 June 13). 
(44) Lassen, C., Kjølholt, J., Mikkelsen, S. H., Warming, M., Jensen, A. A., Bossi, R., & Nielsen, I. B. Polyfluoroalkyl substances (PFASs) in textiles for children; Danish Environmental Protection Agency, Copenhagen, 2015. https://www2.mst.dk/Udgiv/publications/2015/04/978-87-93352-12-4.pdf (accessed 2025 June 13).
(45) Lendewig, M.; Marquez, R.; Franco, J.; Vera, R. E.; Vivas, K. A.; Forfora, N.; Venditti, R. A.; Gonzalez, R. PFAS regulations and economic impact: A review of U.S. pulp & paper and textiles industries. Chemosphere 2025, 377, 144301. DOI: https://doi.org/10.1016/j.chemosphere.2025.144301
(46) Holmquist, H.; Schellenberger, S.; van der Veen, I.; Peters, G. M.; Leonards, P. E. G.; Cousins, I. T. Properties, performance and associated hazards of state-of-the-art durable water repellent (DWR) chemistry for textile finishing. Environment International 2016, 91, 251-264. DOI: https://doi.org/10.1016/j.envint.2016.02.035
(47) Gilchrist, M. Perfluorochemicals in Minnesota: Fate and Transport of PFCs; gp3-06; Minnesota Pollution Control Agency, 2006. https://www.pca.state.mn.us/sites/default/files/gp3-06.pdf (accessed 2025).
(48) Chen, J.; Tang, L.; Chen, W.-Q.; Peaslee, G. F.; Jiang, D. Flows, stock, and emissions of poly- and perfluoroalkyl substances in California carpet in 2000–2030 under different scenarios. Environmental Science & Technology 2020, 54 (11), 6908-6918. DOI: https://doi.org/10.1021/acs.est.9b06956
(49) Yang, Y.; Wang, J.; Tang, S.; Qiu, J.; Luo, Y.; Yang, C.; Lai, X.; Wang, Q.; Cao, H. Per- and polyfluoroalkyl substances (PFAS) in consumer products: an overview of the occurrence, migration, and exposure assessment. Molecules, 2025; Vol. 30. DOI: https://doi.org/10.3390/molecules30050994
(50) Schellenberger, S.; Gillgard, P.; Stare, A.; Hanning, A.; Levenstam, O.; Roos, S.; Cousins, I. T. Facing the rain after the phase out: performance evaluation of alternative fluorinated and non-fluorinated durable water repellents for outdoor fabrics. Chemosphere 2018, 193, 675-684. DOI: https://doi.org/10.1016/j.chemosphere.2017.11.027. 
(51) Schellenberger, S.; Jönsson, C.; Mellin, P.; Levenstam, O. A.; Liagkouridis, I.; Ribbenstedt, A.; Hanning, A.-C.; Schultes, L.; Plassmann, M. M.; Persson, C.; et al. Release of Side-Chain Fluorinated Polymer-Containing Microplastic Fibers from Functional Textiles During Washing and First Estimates of Perfluoroalkyl Acid Emissions. Environmental Science & Technology 2019, 53 (24), 14329-14338. DOI: https://doi.org/10.1021/acs.est.9b04165
(52) Zhao, X.; Zhang, S.; Hu, Z.; Ren, Z.; Wang, T.; Zhu, B.; An, L.; Wang, H.; Liu, J. Research on the PFAS release and migration behavior of multi-layer outdoor jacket fabrics. Journal of Hazardous Materials 2025, 487, 137218. DOI: https://doi.org/10.1016/j.jhazmat.2025.137218.
(53) Zweigle, J.; Capitain, C.; Simon, F.; Roesch, P.; Bugsel, B.; Zwiener, C. Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. Environmental Science: Processes & Impacts 2023, 25. DOI: https://doi.org/10.1039/D3EM00131H
(54) van der Veen, I.; Schellenberger, S.; Hanning, A. C.; Stare, A.; de Boer, J.; Weiss, J. M.; Leonards, P. E. G. Fate of per- and polyfluoroalkyl substances from durable water-repellent clothing during use. Environmental Science & Technology 2022, 56 (9), 5886-5897. DOI: https://doi.org/10.1021/acs.est.1c07876
(55) Matsukami, H.; Saito, J.; Wang, Q.; Miyake, Y. Impact of tightening environmental regulations against long-chain perfluoroalkyl acids on composition of durable water repellents containing side-chain fluorinated polymers. Science of The Total Environment 2024, 940, 173708. DOI: https://doi.org/10.1016/j.scitotenv.2024.173708
(56) Lohmann, R.; Letcher, R. J. The universe of fluorinated polymers and polymeric substances and potential environmental impacts and concerns. Current Opinion in Green and Sustainable Chemistry 2023, 41, 100795. DOI: https://doi.org/10.1016/j.cogsc.2023.100795
(57) Lohmann, R.; Cousins, I. T.; DeWitt, J. C.; Glüge, J.; Goldenman, G.; Herzke, D.; Lindstrom, A. B.; Miller, M. F.; Ng, C. A.; Patton, S.; et al. Are fluoropolymers really of low concern for human and environmental health and separate from other PFAS? Environmental Science & Technology 2020, 54 (20), 12820-12828. DOI: https://doi.org/10.1021/acs.est.0c03244 
(58) Evich, M. G.; Davis, M. J. B.; McCord, J. P.; Acrey, B.; Awkerman, J. A.; Knappe, D. R. U.; Lindstrom, A. B.; Speth, T. F.; Tebes-Stevens, C.; Strynar, M. J.; et al. Per- and polyfluoroalkyl substances in the environment. Science 2022, 375 (6580), eabg9065. DOI: https://doi.org/10.1126/science.abg9065
(59) Heydebreck, F.; Tang, J.; Xie, Z.; Ebinghaus, R. Emissions of per- and polyfluoroalkyl substances in a textile manufacturing plant in china and their relevance for workers’ exposure. Environmental Science & Technology 2016, 50 (19), 10386-10396. DOI: https://doi.org/10.1021/acs.est.6b03213
(60) Morales-McDevitt, M. E.; Becanova, J.; Blum, A.; Bruton, T. A.; Vojta, S.; Woodward, M.; Lohmann, R. The air that we breathe: neutral and volatile PFAS in indoor air. Environmental Science & Technology Letters 2021, 8 (10), 897-902. DOI: https://doi.org/10.1021/acs.estlett.1c00481
(61) Li, Z.; Ishaq, Z.; He, C.; Banks, A. P. W.; Bräunig, J.; Thai, P. K.; Jayarathne, A.; Mueller, J. F.; Wang, X. Per- and polyfluoroalkyl substances (PFAS) in floor dust from different indoor environments in Australia: levels, variation, and human exposure risks. Chemosphere 2024, 366, 143372. DOI: https://doi.org/10.1016/j.chemosphere.2024.143372
(62) Wu, Y.; Romanak, K.; Bruton, T.; Blum, A.; Venier, M. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere 2020, 251, 126771. DOI: https://doi.org/10.1016/j.chemosphere.2020.126771
(63) Zheng, G.; Boor, B. E.; Schreder, E.; Salamova, A. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment. Environmental Pollution 2020, 258, 113714. DOI: https://doi.org/10.1016/j.envpol.2019.113714
(64) Karásková, P.; Venier, M.; Melymuk, L.; Bečanová, J.; Vojta, Š.; Prokeš, R.; Diamond, M. L.; Klánová, J. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environment International 2016, 94, 315-324. DOI: https://doi.org/10.1016/j.envint.2016.05.031
(65) Minucci, J. M.; DeLuca, N. M.; Durant, J. T.; Goodwin, B.; Kowalski, P.; Scruton, K.; Thomas, K.; Cohen Hubal, E. A. Linking exposure to per- and polyfluoroalkyl substances (PFAS) in house dust and biomonitoring data in eight impacted communities. Environment International 2024, 188, 108756. DOI: https://doi.org/10.1016/j.envint.2024.108756
(66) Zhu, H.; Kannan, K. Total oxidizable precursor assay in the determination of perfluoroalkyl acids in textiles collected from the United States. Environmental Pollution 2020, 265, 114940. DOI: https://doi.org/10.1016/j.envpol.2020.114940.
(67) Dewapriya, P.; Chadwick, L.; Gorji, S. G.; Schulze, B.; Valsecchi, S.; Samanipour, S.; Thomas, K. V.; Kaserzon, S. L. Per- and polyfluoroalkyl substances (PFAS) in consumer products: current knowledge and research gaps. Journal of Hazardous Materials Letters 2023, 4, 100086. DOI: https://doi.org/10.1016/j.hazl.2023.100086.
(68) 賴怡潔,氣相層析與極致液相層析/串聯式質譜儀分析全氟碳化物之比較。國立臺灣大學環境衛生研究所2013,碩士論文。
Lai, Y.C., Comparison of gas chromatography and ultra-performance liquid chromatography I coupled with tandem mass spectrometry for determining
perfluorinated chemicals. 2013.
(69) 曾聖哲,以大氣壓氣相層析/串聯式質譜儀分析血清與尿液中氟調聚合醇與全氟磺胺類化合物。國立臺灣大學環境與職業健康科學研究 2021,碩士論文。
Tseng, S.C., Determination of Fluorotelomer Alcohols and Perfluorinated Sulfonamides in Serum and Urine Using Atmospheric Pressure Gas Chromatography/Tandem Mass Spectrometry. 2021.
(70) Kotthoff, M.; Müller, J.; Jürling, H.; Schlummer, M.; Fiedler, D. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environmental Science and Pollution Research International 2015, 22 (19), 14546-14559. DOI: https://doi.org/10.1007/s11356-015-4202-7
(71) Lee, M.; Kim, J.; Park, Y.-K. Survey of perfluorinated compounds in consumer products by liquid chromatography–tandem mass spectrometry. Energy & Environment 2020, 31 (4), 713-729. DOI: https://doi.org/10.1177/0958305x19882376
(72) Union, E. P. a. C. o. t. E. Regulation (EU) 2019/1021 of the European Parliament and of the Council of 20 June 2019 on persistent organic pollutants (recast). Official Journal of the European Union: Luxembourg, 2019.
(73) Liwara, D. J.; Araújo, A. R. L.; Pavlov, A.; Johansen, J. E.; Liu, H.; Koekkoek, J.; Heinzelmann, M.; de Boer, J.; Leonards, P. E. G.; Brandsma, S. Analysis of legacy PFAS and potential precursors in curtain, sofa, and carpet fabric samples. Science of The Total Environment 2025, 993, 180006. DOI: https://doi.org/10.1016/j.scitotenv.2025.180006
(74) Xia, C.; Diamond, M. L.; Peaslee, G. F.; Peng, H.; Blum, A.; Wang, Z.; Shalin, A.; Whitehead, H. D.; Green, M.; Schwartz-Narbonne, H.; et al. Per- and polyfluoroalkyl substances in North American school uniforms. Environmental Science & Technology 2022, 56 (19), 13845-13857. DOI: https://doi.org/10.1021/acs.est.2c02111
(75) Drage, D. S.; Sharkey, M.; Berresheim, H.; Coggins, M.; Harrad, S. Rapid Determination of selected PFAS in textiles entering the waste stream. Toxics 2023, 11 (1). DOI: https://doi.org/10.3390/toxics11010055
(76) Zweigle, J.; Capitain, C.; Simon, F.; Roesch, P.; Bugsel, B.; Zwiener, C. Non-extractable PFAS in functional textiles − Characterization by complementary methods: oxidation, hydrolysis, and fluorine sum parameters. Environmental Science: Processes & Impacts 2023, 25. DOI: https://doi.org/10.1039/D3EM00131H
(77) McDonough, C. A.; Guelfo, J. L.; Higgins, C. P. Measuring total PFASs in water: The tradeoff between selectivity and inclusivity. Current Opinion in Environmental Science & Health 2019, 7, 13-18. DOI: https://doi.org/10.1016/j.coesh.2018.08.005.
(78) Megson, D.; Bruce-Vanderpuije, P.; Idowu, I. G.; Ekpe, O. D.; Sandau, C. D. A systematic review for non-targeted analysis of per- and polyfluoroalkyl substances (PFAS). Sci Total Environ 2025, 960, 178240. DOI: https://doi.org/10.1016/j.scitotenv.2024.178240
(79) Schöpel, M.; Jacobs, G.; Jordens, J.; van Ermen, G.; Voorspoels, S.; Krause, M. Nordic Council of Ministers. Analytical methods for PFAS in products and the environment.TemaNord 2022:510, Nordic Council of Ministers, 2022. DOI: https://doi.org/10.6027/temanord2022-510
(80) Camdzic, D.; Dickman, R. A.; Aga, D. S. Total and class-specific analysis of per- and polyfluoroalkyl substances in environmental samples using nuclear magnetic resonance spectroscopy. Journal of Hazardous Materials Letters 2021, 2, 100023. DOI: https://doi.org/10.1016/j.hazl.2021.100023
(81) Idowu, I. G.; Ekpe, O. D.; Megson, D.; Bruce-Vanderpuije, P.; Sandau, C. D. A systematic review of methods for the analysis of total per- and polyfluoroalkyl substances (PFAS). Science of The Total Environment 2025, 967, 178644. DOI: https://doi.org/10.1016/j.scitotenv.2025.178644 
(82) Santos, P. N. A. A., Yasmine B.; Granja, Honnara S.; Freitas, Lisiane S.; Polidoro, Allan S.; Caramão, Elina B. Energized dispersive guided extraction (EDGE): a promising tool for analytical chemistry applications. Analytical Methods 2025, 17, 871–881. DOI: https://doi.org/10.1039/D4AY01623H
(83) 蕭鵬,以超音波萃取搭配極致液相層析/串聯式質譜儀分析臺灣食品包裝中全氟烷基化合物。國立臺灣大學食品安全與健康研究所,2019,碩士論文。
Siao, P., Determination of Perfluoroalkyl Substances in Various Food Packagings in Taiwan Using Ultrasonic Extraction and UPLC-MS/MS. 2019.
(84) 胡宜倢,以自動加壓流體萃取搭配極致液相層析和大氣壓氣相層析/ 串聯質譜術分析食品包材中的全氟及多氟烷基化合物。國立臺灣大學環境與職業健康科學研究所,2024,碩士論文。
Hu, I.C., Determination of Per- and Polyfluoroalkyl Substances in Food Packaging Using Energized Dispersive Guided Extraction and Ultra-Performance Liquid Chromatography and Atmosphere Pressure Gas Chromatography/Tandem Mass Spectrometry. 2024.
(85) Taiwan Food and Drug Administration (TFDA). 食品化學檢驗方法之確確效規範. Taiwan Food and Drug Administration, 2021. https://www.fda.gov.tw/tc/siteList.aspx?sid=4115 (accessed 2025 June,15).
(86) Simon, F.; Gehrenkemper, L.; von der Au, M.; Wittwer, P.; Roesch, P.; Pfeifer, J.; Cossmer, A.; Meermann, B. A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples. Chemosphere 2022, 295, 133922. DOI: https://doi.org/10.1016/j.chemosphere.2022.133922
(87) Mertens, H.; Noll, B.; Schwerdtle, T.; Abraham, K.; Monien, B. H. Less is more: a methodological assessment of extraction techniques for per-and polyfluoroalkyl substances (PFAS) analysis in mammalian tissues. Analytical and bioanalytical chemistry 2023, 415 (24), 5925-5938.
(88) Dueñas-Mas, M. J.; Ballesteros-Gómez, A.; de Boer, J. Determination of several PFAS groups in food packaging material from fast-food restaurants in France. Chemosphere 2023, 339, 139734. DOI: https://doi.org/10.1016/j.chemosphere.2023.139734 
(89) Silva, P.; Vorst, K.; Curtzwiler, G.; Scientific, S. J. Anchem sp. z o.o. The effect of particle size reduction techniques on extraction and recovery of 16 PFAS in food-contact paper packaging matrices. Anchem sp. z o.o.: Poland, 2021. https://anchem.pl/wp-content/uploads/2021/10/The-effect-of-particle-size-reduction-techniques.pdf (accessed 2025 August 5)
(90) van der Veen, I.; Weiss, J. M.; Hanning, A.-C.; de Boer, J.; Leonards, P. E. G. Development and validation of a method for the quantification of extractable perfluoroalkyl acids (PFAAs) and perfluorooctane sulfonamide (FOSA) in textiles. Talanta 2016, 147, 8-15. DOI: https://doi.org/10.1016/j.talanta.2015.09.021
(91) Herzke, D.; Olsson, E.; Posner, S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway – A pilot study. Chemosphere 2012, 88 (8), 980-987. DOI: https://doi.org/10.1016/j.chemosphere.2012.03.035
(92) Ao, J.; Tang, W.; Liu, X.; Ao, Y.; Zhang, Q.; Zhang, J. Polyfluoroalkyl phosphate esters (PAPs) as PFAS substitutes and precursors: An overview. Journal of Hazardous Materials 2024, 464, 133018. DOI: https://doi.org/10.1016/j.jhazmat.2023.133018
(93) Institute, C. I. R. Technical Report 1: PFAS and Human Health: Exposures and Effects From Consumer Textiles; UL Research Institutes, 2023. DOI: https://doi.org/10.60752/102376.28034189.v1
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99934-
dc.description.abstract全氟/多氟烷基化合物(PFAS)是一大類有機化合物,其共同特徵為碳鏈上的氫原子全部或部分被替換為氟原子,並包含至少一個全氟甲基基團(-CF₃)或全氟亞甲基基團(-CF₂-)的結構單元。在紡織與皮革產業中,PFAS常作為製程中的加工劑與表面處理劑,賦予產品耐久性防潑水功能。絕大部分PFAS在環境中具高度持久性,有些已被證實具有生物累積性且對人類健康造成不利影響;傳統使用的長碳PFAS已逐步被淘汰與管制,產業也隨之轉向使用新型或替代的PFAS。
目前不同類型 PFAS 在多元應用領域的使用趨勢研究仍不明朗,尤其是紡織品等特定領域的使用情形,相關文獻極為有限。因此,本研究選取市售標榜具有防水或防污功能的紡織與皮革產品,涵蓋服飾、居家用品與功能性產品三大類。樣品以全自動加壓流體萃取系統(EDGE)萃取,並以極致液相層析串聯質譜儀(UPLC-MS/MS)與大氣壓氣相層析串聯質譜儀(APGC-MS/MS),檢測31種PFAS。
本研究首度將全自動加壓流體萃取系統應用於紡織與皮革製品中PFAS的前處理,並同時分析涵蓋短鏈、長鏈及新型替代物等共31種的PFAS。相對於傳統超音波輔助萃取(UAE)需較長時間,EDGE系統提供全自動化且簡便快速的萃取流程。本次優化後的方法可於10分鐘內完成單一樣本萃取,可顯著提高複雜樣品前處理效率。
所有樣品裁切為100 cm²,接著剪成小碎片後以均質機處理。透過全自動加壓流體萃取系統,先以10 mL甲醇於70°C下萃取5分鐘,再以相同溫度、時間使用10 mL丙酮進行第二次萃取。合併之萃取液濃縮至1.5 mL,經0.22 μm尼龍濾膜過濾後進行分析。本研究選用兩種布料作為方法驗證的空白基質31種PFAS於兩種基質中的回收率大多介於70–130%,相對標準差低於20%,偵測極限範圍為0.04–0.44 μg/m²,顯示分析之準確性與再現性良好。
本研究使用上述已開發的方法分析於 19 件市售產品,已開發的方法揭示此類消費性產品為暴露多種 PFAS的潛在來源,初步樣本分析的成果可作為未來暴露評估、健康風險分析及政策制定之重要參採。實際樣品分析結果顯示,不同類型的紡織與皮革品中均可檢出多種 PFAS;由檢出PFAS之輪廓,反映出產業逐步由傳統使用之 PFAS(如 PFOA、PFOS)轉向短鏈或替代型化合物。其中以氟調聚合醇類(FTOHs)中的 8:2 FTOH(13.9–794 ng/dm²)與 10:2 FTOH(5.0–301 ng/dm²)以及多氟烷基磷酸酯類(PAPs)中的6:2 PAP ( 15.4-236 ng/dm²) 與8:2 PAP(7.60-299 ng/dm²)最為常見,在所有樣品中皆有檢出濃度分布範圍廣泛,顯示此類型 PFAS可能為當前具防水防污功能之紡織與皮革製品中的主要應用趨勢。短鏈PFAS(PFCAs為C4–C7,PFSAs為C4–C6)檢出頻率高達89–100%,而大多數長鏈PFAS(超過C8)檢出率較低,介於21–58%。其中C8化合物檢出頻率約為80%,但濃度普遍低於10 ng/dm²。其結果反映出業界為符合日益嚴格的法規限制,已逐步採用短鏈與替代型PFAS作為功能性處理劑,但仍可能殘留部分受管制之長鏈化合物,突顯紡織與皮革品作為潛在新興污染來源的可能性,亦反映其在環境中所扮演之多重且複雜角色。
zh_TW
dc.description.abstractPer- and polyfluoroalkyl substances (PFAS) are a large class of persistent organic compounds characterized by hydrogen atoms on the carbon chains, in which fluorine atoms entirely or partially replace hydrogen atoms, and most PFAS are persistent in the environment. In the textile and leather industries, PFAS are used as processing aids, surface treatment agents, and coatings. These substances enable products to impart functional properties, such as water durability, oil repellency, and stain-resistance, and increase the longevity of fabrics and leather products. However, growing scientific evidence supports that the environmental persistence and bioaccumulation of PFAS, along with their potential adverse effects on human health, are which have prompted regulatory attention and enforcement worldwide.
Adopting alternative compounds has become increasingly common with the gradual phasing out of legacy PFAS. However, studies investigating the usage patterns and application trends of these PFAS remain insufficient, especially in specific products like textiles. Therefore, this study selected samples from commercially available textile and leather products marketed as water- or stain-resistant for the analysis, including the three main categories of apparel, household goods, and functional items. The objective of this study was to optimize and validate an analytical method for measuring 31 PFAS with the employment of an automated energized dispersive guided extraction (EDGE) for sample preparation, followed by separation using ultra-performance liquid chromatography (UPLC) or atmospheric pressure gas chromatography (APGC), and determination by tandem mass spectrometry (MS/MS).
This study is the first to apply the EDGE extraction system to extract PFAS from textile and leather products, enabling the simultaneous analysis of 31 PFAS compounds, including short-chain, long-chain, and emerging alternatives. Compared to traditional ultrasound-assisted extraction (UAE), which is time-consuming, the EDGE system offers a fully automated, simple, and rapid extraction process. The optimized method developed in this study allows for extracting a single sample within 10 minutes, significantly improving the efficiency of pretreating complex samples. All samples were cut into 100 cm² sections first, then further cut into small pieces with a pair of scissors before grinding and homogenization, followed by extraction using energized dispersive guided extraction (EDGE) with 10 mL of methanol and acetone, respectively, at 70°C under 30–35 psi. After concentration to 1.5 mL, the extract was filtered through a 0.22-μm Nylon membrane filter and was ready for instrumental analysis. This study selected two fabric types as blank matrices for method validation. Recoveries of the 31 PFAS in these matrices mostly ranged from 70% to 130%, with relative standard deviations (%RSD) below 20%, demonstrating good accuracy and precision. The method was also sensitive, with detection limits between 0.05 and 0.43 ng/dm².
The developed method was applied to analyze 19 commercial products, and the results revealed the simultaneous use of multiple PFAS. The study results reflect an industry shift from traditional PFAS (PFOA, PFOS) to short-chain and alternative PFAS. Fluorotelomer alcohols (FTOHs), specifically 8:2 FTOH (13.9–794 ng/dm²) and 10:2 FTOH (5.0–301 ng/dm²), and polyfluoroalkyl phosphoric acid diesters (PAPs), including 6:2 PAP (15.4–236 ng/dm²) and 8:2 PAP (7.60–299 ng/dm²), were the most prevalent. However, they were in a wide concentration range and were detectable in each sample. Short-chain PFAS (C4–C7 for PFCAs, C4–C6 for PFSAs) were frequently detected, with positive rates of 89–100%. In contrast, most long-chain PFAS (above C8) showed lower detection rates of 21–58%. An exception was C8 compounds, which had a relatively high detection frequency (~about 80%) but generally low concentrations (<10 ng/dm²).
In summary, this study demonstrated that textile and leather products are potential sources of exposure to PFAS and reflect current usage trends of these substances in consumer goods. These findings provide critical data on PFAS content in various textile and leather materials and serve as an essential reference for future exposure assessment, health risk evaluation, and policy development. Furthermore, the study investigated the PFAS pattern across different categories of textile and leather products, aiming to explore potential new sources of contamination and possible environmental transformation pathways.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:20:37Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:20:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgment i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Figures viii
List of Tables ix
Chapter 1 Introduction 1
1.1 Per- and polyfluoroalkyl substances 1
1.2 Use of PFAS in textile and leather products 4
1.3 Analysis of PFAS in textile and leather products 5
1.4 Objectives 7
Chapter 2 Methods 9
2.1 Reagents and materials 9
2.2 Sample collection 12
2.3 Sample preparation 13
2.4 Instrumental analysis 14
2.4.1 UPLC-MS/MS parameters 15
2.4.2 APGC-MS/MS parameters 16
2.5 Method validation 16
2.5.1 Matrix effect 16
2.5.2 Accuracy and precision 17
2.5.3 Quantification parameters and data processing 18
2.5.4 Quality assurance and quality control 18 
Chapter 3 Results and Discussions 21
3.1 Optimization of EDGE extraction 21
3.1.1 Sample selection for the optimization 21
3.1.2 Extraction solvents test 22
3.2 Method validation 24
3.2.1 Sample selection 24
3.2.2 Matrix effect 24
3.2.3 Accuracy and precision 26
3.3 Real samples 27
Chapter 4 Conclusions 31
References 32
Figures 45
Tables 67
Appendix 93
-
dc.language.isoen-
dc.subject皮革產品zh_TW
dc.subject全氟/多氟烷基化合物zh_TW
dc.subject大氣壓氣相層析/串聯式質譜儀zh_TW
dc.subject極致液相層析/串聯式質譜儀zh_TW
dc.subject全自動加壓流體萃取系統zh_TW
dc.subject紡織品zh_TW
dc.subjectatmospheric pressure gas chromatography/tandem mass spectrometryen
dc.subjectper and poly-fluoroalkyl substances (PFAS)en
dc.subjecttextilesen
dc.subjectleatheren
dc.subjectconsumer productsen
dc.subjectenergized dispersive guided extraction system (EDGE)en
dc.subjectultra-performance liquid chromatography/tandem mass spectrometryen
dc.title以自動加壓流體萃取搭配極致液相層析和大氣壓氣相層析/串聯質譜術分析紡織品和皮革產品中之全氟與多氟烷基化合物zh_TW
dc.titleEnergized Dispersive Guided Extraction of Per- and Polyfluoroalkyl Substances in Textile and Leather Products with the Determination using Ultra-Performance Liquid Chromatography and Atmospheric Pressure Gas Chromatography/Tandem Mass Spectrometryen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳保中;陳珮珊;陳鑫昌zh_TW
dc.contributor.oralexamcommitteePau-Chung Chen;Pai-Shan Chen;Hsin-Chang Chenen
dc.subject.keyword全氟/多氟烷基化合物,紡織品,皮革產品,全自動加壓流體萃取系統,極致液相層析/串聯式質譜儀,大氣壓氣相層析/串聯式質譜儀,zh_TW
dc.subject.keywordper and poly-fluoroalkyl substances (PFAS),textiles,leather,consumer products,energized dispersive guided extraction system (EDGE),ultra-performance liquid chromatography/tandem mass spectrometry,atmospheric pressure gas chromatography/tandem mass spectrometry,en
dc.relation.page98-
dc.identifier.doi10.6342/NTU202504179-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2027-10-01-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved