請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99932完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭育良 | zh_TW |
| dc.contributor.advisor | Yue-Liang Leon Guo | en |
| dc.contributor.author | 張珈瑜 | zh_TW |
| dc.contributor.author | Chia-Yu Chang | en |
| dc.date.accessioned | 2025-09-19T16:20:16Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Abcam. (2021). Human Surfactant Protein D / SP-D SimpleStep ELISA® Kit (ab239431). In: Abcam.
Akgündüz, B. (2025). The relationship between connective tissue disease and autoantibody positivity in pneumoconiosis cases. Medicine (Baltimore), 104(10), e41702. https://doi.org/10.1097/md.0000000000041702 American Conference of Governmental Industrial Hygienists (ACGIH). (2009). Silica, Crystalline - α-Quartz and Cristobalite. United States: American Conference of Governmental Industrial Hygienists American Thoracic Society. (1997). Adverse effects of crystalline silica exposure. American Thoracic Society Committee of the Scientific Assembly on Environmental and Occupational Health. Am J Respir Crit Care Med, 155(2), 761-768. https://doi.org/10.1164/ajrccm.155.2.9032226 American Thoracic Society, E. R. S. (2005). ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med, 171(8), 912-930. https://doi.org/10.1164/rccm.200406-710ST Aminian, O., Sharifian, S. A., Mehrdad, R., Haghighi, K. S., & Mazaheri, M. (2009). Antinuclear antibody and rheumatoid factor in silica-exposed workers. Arh Hig Rada Toksikol, 60(2), 185-190. https://doi.org/10.2478/10004-1254-60-2009-1892 Anlar, H. G., Bacanli, M., İritaş, S., Bal, C., Kurt, T., Tutkun, E., Hinc Yilmaz, O., & Basaran, N. (2017). Effects of Occupational Silica Exposure on OXIDATIVE Stress and Immune System Parameters in Ceramic Workers in TURKEY. J Toxicol Environ Health A, 80(13-15), 688-696. https://doi.org/10.1080/15287394.2017.1286923 ATS/ERS. (2005). ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am J Respir Crit Care Med, 171(8), 912-930. https://doi.org/10.1164/rccm.200406-710ST Babusikova, E., Jesenak, M., Durdik, P., Dobrota, D., & Banovcin, P. (2008). Exhaled carbon monoxide as a new marker of respiratory diseases in children. J Physiol Pharmacol, 59 Suppl 6, 9-17. Bama Rajanayagam, M. S., Nag Anand. (2023). Cumulative Effect of Quarry Dust on Respiratory Health of Stone Quarry Workers. Universal Journal of Public Health, 11(3), 305-313. https://doi.org/10.13189/ujph.2023.110304 Blanco-Pérez, J. J., Blanco-Dorado, S., Rodríguez-García, J., Gonzalez-Bello, M. E., Salgado-Barreira, Á., Caldera-Díaz, A. C., Pallarés-Sanmartín, A., Fernandez-Villar, A., & González-Barcala, F. J. (2021). Serum levels of inflammatory mediators as prognostic biomarker in silica exposed workers. Sci Rep, 11(1), 13348. https://doi.org/10.1038/s41598-021-92587-0 Bramwell, B. (1914). Diffuse Sclerodermia: Its Frequency; Its Occurrence in Stone-Masons; Its Treatment by Fibrolysin—Elevations of Temperature Due to Fibrolysin Injections. Edinb Med J, 12(5), 387-401. Brüske, I., Thiering, E., Heinrich, J., Huster, K. M., & Nowak, D. (2014). Respirable quartz dust exposure and airway obstruction: a systematic review and meta-analysis. Occup Environ Med, 71(8), 583-589. https://doi.org/10.1136/oemed-2013-101796 Cameli, P., Bargagli, E., Bergantini, L., d'Alessandro, M., Pieroni, M., Fontana, G. A., Sestini, P., & Refini, R. M. (2020). Extended Exhaled Nitric Oxide Analysis in Interstitial Lung Diseases: A Systematic Review. Int J Mol Sci, 21(17). https://doi.org/10.3390/ijms21176187 Carson, D. A., Pasquali, J. L., Tsoukas, C. D., Fong, S., Slovin, S. F., Lawrance, S. K., Slaughter, L., & Vaughan, J. H. (1981). Physiology and pathology of rheumatoid factors. Springer Semin Immunopathol, 4(2), 161-179. https://doi.org/10.1007/bf01857093 Cayman Chemical. DNA/RNA Oxidative Damage (High Sensitivity) ELISA Kit (Item No. 589320). In: Cayman Chemical. Chen, C. H., Tsai, P. J., Chang, W. W., Chen, C. Y., Chen, C. Y., Yates, D., & Guo, Y. L. (2024). Dose-response relationship between lung function and chest imaging response to silica exposures in artificial stone manufacturing workers. Environ Health, 23(1), 25. https://doi.org/10.1186/s12940-024-01067-1 Cooper, B. G., Stocks, J., Hall, G. L., Culver, B., Steenbruggen, I., Carter, K. W., Thompson, B. R., Graham, B. L., Miller, M. R., Ruppel, G., Henderson, J., Vaz Fragoso, C. A., & Stanojevic, S. (2017). The Global Lung Function Initiative (GLI) Network: bringing the world's respiratory reference values together. Breathe (Sheff), 13(3), e56-e64. https://doi.org/10.1183/20734735.012717 David S, G. J., Edwards CW. (2024). Forced Expiratory Volume. In In: StatPearls [Internet]. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK540970/ Erasmus, L. D. (1957). Scleroderma in goldminers on the Witwatersrand with particular reference to pulmonary manifestations. S Afr J Lab Clin Med, 3(3), 209-231. Fireman, E. M., & Fireman Klein, E. (2024). Association between silicosis and autoimmune disease. Current Opinion in Allergy and Clinical Immunology, 24(2). https://journals.lww.com/co-allergy/fulltext/2024/04000/association_between_silicosis_and_autoimmune.2.aspx Fujisawa, T., Tanaka, Y., Kamiya, Y., Kono, M., Kato, S., Akiyama, N., Koda, K., Matsushima, S., Sumikawa, H., Johkoh, T., Inoue, Y., Yasui, H., Hozumi, H., Suzuki, Y., Karayama, M., Furuhashi, K., Enomoto, N., Inui, N., & Suda, T. (2025). Incidence and clinical significance of acute exacerbation of interstitial lung disease in patients with primary Sjögren's syndrome. Respir Investig, 63(5), 838-843. https://doi.org/10.1016/j.resinv.2025.07.001 Gaunsbaek, M. Q., Rasmussen, K. J., Beers, M. F., Atochina-Vasserman, E. N., & Hansen, S. (2013). Lung surfactant protein D (SP-D) response and regulation during acute and chronic lung injury. Lung, 191(3), 295-303. https://doi.org/10.1007/s00408-013-9452-x Gong, S., Pu, Y., Xie, L., Yang, X., & Mao, H. (2020). Fraction of Exhaled Nitric Oxide Is Elevated in Patients With Stable Chronic Obstructive Pulmonary Disease: A Meta-analysis. Am J Med Sci, 360(2), 166-175. https://doi.org/10.1016/j.amjms.2020.04.038 Gunduzoz, M., Kar Kurt, Ö., Nadir Ozis, T., Bal, C., Buyuksekerci, M., Iritas, S., Tutkun, E., & Yilmaz, O. H. (2016). Elevated neutrophil lymphocyte ratio and T4 levels can be predisposing factors for silicosis. European Respiratory Journal, 48(suppl 60), PA4282. https://doi.org/10.1183/13993003.congress-2016.PA4282 He, X., Ji, J., Zheng, D., Luo, Z., Luo, L., & Guo, L. (2025). Serum surfactant protein D as a significant biomarker for predicting occurrence, progression, acute exacerbation, and mortality in interstitial lung disease: a systematic review and meta-analysis. Front Immunol, 16, 1450798. https://doi.org/10.3389/fimmu.2025.1450798 Hertzberg, V. S., Rosenman, K. D., Reilly, M. J., & Rice, C. H. (2002). Effect of occupational silica exposure on pulmonary function. Chest, 122(2), 721-728. https://doi.org/10.1378/chest.122.2.721 Hoy, R. F., Baird, T., Hammerschlag, G., Hart, D., Johnson, A. R., King, P., Putt, M., & Yates, D. H. (2018). Artificial stone-associated silicosis: a rapidly emerging occupational lung disease. Occup Environ Med, 75(1), 3-5. https://doi.org/10.1136/oemed-2017-104428 Hoy, R. F., & Chambers, D. C. (2020). Silica-related diseases in the modern world. Allergy, 75(11), 2805-2817. https://doi.org/10.1111/all.14202 Hoy, R. F., Dimitriadis, C., Abramson, M., Glass, D. C., Gwini, S., Hore-Lacy, F., Jimenez-Martin, J., Walker-Bone, K., & Sim, M. R. (2023). Prevalence and risk factors for silicosis among a large cohort of stone benchtop industry workers. Occupational and Environmental Medicine, 80(8), 439. https://doi.org/10.1136/oemed-2023-108892 Hoy, R. F., Jones, C., Newbigin, K., Abramson, M. J., Barnes, H., Dimitriadis, C., Ellis, S., Glass, D. C., Gwini, S. M., Hore-Lacy, F., Jimenez-Martin, J., Pasricha, S. S., Pirakalathanan, J., Siemienowicz, M., Walker-Bone, K., & Sim, M. R. (2024). Chest x-ray has low sensitivity to detect silicosis in artificial stone benchtop industry workers. Respirology, 29(9), 785-794. https://doi.org/10.1111/resp.14755 Hua, J. T., Rose, C. S., & Redlich, C. A. (2023). Engineered Stone-Associated Silicosis-A Lethal Variant of an Ancient Disease. JAMA Intern Med, 183(9), 908-910. https://doi.org/10.1001/jamainternmed.2023.3260 ICRP. (1994). Human respiratory tract model for radiological protection. A report of a Task Group of the International Commission on Radiological Protection. Ann ICRP, 24(1-3), 1-482. Jiang, P. R., Cao, Z., Qiu, Z. L., Pan, J. W., Zhang, N., & Wu, Y. F. (2015). Plasma levels of TNF-α and MMP-9 in patients with silicosis. Eur Rev Med Pharmacol Sci, 19(9), 1716-1720. Jones, R. N., Turner-Warwick, M., Ziskind, M., & Weill, H. (1976). High prevalence of antinuclear antibodies in sandblasters' silicosis. Am Rev Respir Dis, 113(3), 393-395. https://doi.org/10.1164/arrd.1976.113.3.393 Kharitonov, S. A., & Barnes, P. J. (2001). Exhaled markers of pulmonary disease. Am J Respir Crit Care Med, 163(7), 1693-1722. https://doi.org/10.1164/ajrccm.163.7.2009041 Kirby, T. (2019). Australia reports on audit of silicosis for stonecutters. Lancet, 393(10174), 861. https://doi.org/10.1016/s0140-6736(19)30478-7 Kramer, M. R., Blanc, P. D., Fireman, E., Amital, A., Guber, A., Rhahman, N. A., & Shitrit, D. (2012). Artificial stone silicosis [corrected]: disease resurgence among artificial stone workers. Chest, 142(2), 419-424. https://doi.org/10.1378/chest.11-1321 Krefft, S., Wolff, J., & Rose, C. (2020). Silicosis: An Update and Guide for Clinicians. Clin Chest Med, 41(4), 709-722. https://doi.org/10.1016/j.ccm.2020.08.012 Kropski, J. A., Fremont, R. D., Calfee, C. S., & Ware, L. B. (2009). Clara cell protein (CC16), a marker of lung epithelial injury, is decreased in plasma and pulmonary edema fluid from patients with acute lung injury. Chest, 135(6), 1440-1447. https://doi.org/10.1378/chest.08-2465 Lee, J. S., Shin, J. H., Lee, J. O., Lee, W. J., Hwang, J. H., Kim, J. H., & Choi, B. S. (2009). Blood Levels of IL-Iβ, IL-6, IL-8, TNF-α, and MCP-1 in Pneumoconiosis Patients Exposed to Inorganic Dusts. Toxicol Res, 25(4), 217-224. https://doi.org/10.5487/tr.2009.25.4.217 Leinardi, R., Longo Sanchez-Calero, C., Ibouraadaten, S., Uwambayinema, F., Yakoub, Y., Pavan, C., Claus, R., Lemaire, F., Ronsmans, S., Ghosh, M., Farczádi, L., Moldovan, H., Vanoirbeek, J. A. J., Turci, F., Hoet, P. H. M., & Huaux, F. (2025). Dynamic biodistribution of inhaled silica particles to extrapulmonary sites: Early and late translocation mechanisms with implication for particle biomonitoring. Environment International, 199, 109473. https://doi.org/https://doi.org/10.1016/j.envint.2025.109473 León-Jiménez, A., Hidalgo-Molina, A., Conde-Sánchez, M., Pérez-Alonso, A., Morales-Morales, J. M., García-Gámez, E. M., & Córdoba-Doña, J. A. (2020). Artificial Stone Silicosis: Rapid Progression Following Exposure Cessation. Chest, 158(3), 1060-1068. https://doi.org/10.1016/j.chest.2020.03.026 Leung, C. C., Yu, I. T., & Chen, W. (2012). Silicosis. Lancet, 379(9830), 2008-2018. https://doi.org/10.1016/s0140-6736(12)60235-9 Liao, C. M., Wu, B. C., Cheng, Y. H., You, S. H., Lin, Y. J., & Hsieh, N. H. (2015). Ceramics manufacturing contributes to ambient silica air pollution and burden of lung disease. Environ Sci Pollut Res Int, 22(19), 15067-15079. https://doi.org/10.1007/s11356-015-4701-6 Liao, S. Y., Lin, X., & Christiani, D. C. (2015). Occupational exposures and longitudinal lung function decline. Am J Ind Med, 58(1), 14-20. https://doi.org/10.1002/ajim.22389 Liu, J., Song, H. Y., Zhu, B. L., Pan, L. P., & Qian, X. L. (2019). The Effect of Silica Dust Exposure on the Serum Clara Cell Protein 16 Levels in Chinese Workers. Biomed Environ Sci, 32(1), 47-50. https://doi.org/10.3967/bes2019.007 Lombardi, E. M. S., Mizutani, R. F., Terra-Filho, M., & Ubiratan de Paula, S. (2023). Biomarkers related to silicosis and pulmonary function in individuals exposed to silica. Am J Ind Med, 66(11), 984-995. https://doi.org/10.1002/ajim.23528 Löndahl, J., Möller, W., Pagels, J. H., Kreyling, W. G., Swietlicki, E., & Schmid, O. (2014). Measurement techniques for respiratory tract deposition of airborne nanoparticles: a critical review. J Aerosol Med Pulm Drug Deliv, 27(4), 229-254. https://doi.org/10.1089/jamp.2013.1044 Mallick, P. K. (2000). 2.09 - Particulate and Short Fiber Reinforced Polymer Composites. In A. Kelly & C. Zweben (Eds.), Comprehensive Composite Materials (pp. 291-331). Pergamon. https://doi.org/https://doi.org/10.1016/B0-08-042993-9/00085-1 Mandler, W. K., Qi, C., & Qian, Y. (2023). Hazardous dusts from the fabrication of countertop: a review. Arch Environ Occup Health, 78(2), 118-126. https://doi.org/10.1080/19338244.2022.2105287 Martínez, C., Prieto, A., García, L., Quero, A., González, S., & Casan, P. (2010). Silicosis: a Disease with an Active Present. Archivos de Bronconeumología ((English Edition)), 46(2), 97-100. https://doi.org/10.1016/S1579-2129(10)70022-7 Standards of Permissible Exposure Limits at Job Site, (2025). Möhner, M., Kersten, N., & Gellissen, J. (2013). Chronic obstructive pulmonary disease and longitudinal changes in pulmonary function due to occupational exposure to respirable quartz. Occup Environ Med, 70(1), 9-14. https://doi.org/10.1136/oemed-2012-100775 Naha, N., Muhamed, J. C. J., Pagdhune, A., Sarkar, B., & Sarkar, K. (2020). Club cell protein 16 as a biomarker for early detection of silicosis. Indian J Med Res, 151(4), 319-325. https://doi.org/10.4103/ijmr.IJMR_1799_18 National Institute for Occupational, S., & Health. (2002). Health effects of occupational exposure to respirable crystalline silica. Dept. of Health and Human Services, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health. National Institute for Occupational Safety and Health (NIOSH). (2019). Silica, crystalline (as respirable dust). United States: NIOSH National Research Council (US) Safe Drinking Water Committee. (1986). 6, Dose-Route Extrapolations: Using Inhalation Toxicity Data to Set Drinking Water Limits. In Thomas RD (Ed.), Drinking Water and Health (Vol. 6). https://www.ncbi.nlm.nih.gov/books/NBK219108/ Newbigin, K., Parsons, R., Deller, D., Edwards, R., & McBean, R. (2019). Stonemasons with silicosis: Preliminary findings and a warning message from Australia. Respirology, 24(12), 1220-1221. https://doi.org/10.1111/resp.13672 NIOSH. (2025). Exposure Assessment. National Institute for Occupational Safety and Health (NIOSH). https://www.cdc.gov/niosh/silica/exposure/index.html Nosal, R. S., Superville, S. S., Amraei, R., & Varacallo, M. A. (2025). Biochemistry, Antinuclear Antibodies (ANA). In StatPearls. StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC. Occupational Safety and Health Administration (OSHA). (2016). Occupational Exposure to Respirable Crystalline Silica. Final rule. Fed Regist, 81(58), 16285-16890. Ogawa, H., Ledford, J. G., Mukherjee, S., Aono, Y., Nishioka, Y., Lee, J. J., Izumi, K., & Hollingsworth, J. W. (2014). Surfactant protein D attenuates sub-epithelial fibrosis in allergic airways disease through TGF-β. Respir Res, 15(1), 143. https://doi.org/10.1186/s12931-014-0143-9 Ophir, N., Shai, A. B., Alkalay, Y., Israeli, S., Korenstein, R., Kramer, M. R., & Fireman, E. (2016). Artificial stone dust-induced functional and inflammatory abnormalities in exposed workers monitored quantitatively by biometrics. ERJ Open Res, 2(1). https://doi.org/10.1183/23120541.00086-2015 Oțelea, M. R., Andrei, N., & Moise, L.-G. (2018). The significance of the neutrophil to lymphocyte ratio in silicosis. J Contemp Clin Pract, 4(2), 53-59. https://doi.org/10.18683/jccp.2018.1036 Otterbein, L. E., Mantell, L. L., & Choi, A. M. (1999). Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol, 276(4), L688-694. https://doi.org/10.1152/ajplung.1999.276.4.L688 Pan, K. T., Leonardi, G. S., Ucci, M., & Croxford, B. (2021). Can Exhaled Carbon Monoxide Be Used as a Marker of Exposure? A Cross-Sectional Study in Young Adults. Int J Environ Res Public Health, 18(22). https://doi.org/10.3390/ijerph182211893 Pilger, A., Germadnik, D., Schaffer, A., Theiler, A., Pils, P., Sluka, F., Winker, N., & Rüdiger, H. W. (2000). 8-Hydroxydeoxyguanosine in leukocyte DNA and urine of quartz-exposed workers and patients with silicosis. Int Arch Occup Environ Health, 73(5), 305-310. https://doi.org/10.1007/s004200000117 Ragnoli, B., Radaeli, A., Pochetti, P., Kette, S., Morjaria, J., & Malerba, M. (2023). Fractional nitric oxide measurement in exhaled air (FeNO): perspectives in the management of respiratory diseases. Ther Adv Chronic Dis, 14, 20406223231190480. https://doi.org/10.1177/20406223231190480 Requena-Mullor, M., Alarcón-Rodríguez, R., Parrón-Carreño, T., Martínez-López, J. J., Lozano-Paniagua, D., & Hernández, A. F. (2021). Association between Crystalline Silica Dust Exposure and Silicosis Development in Artificial Stone Workers. Int J Environ Res Public Health, 18(11). https://doi.org/10.3390/ijerph18115625 Ricciardolo, F. L. (2003). Multiple roles of nitric oxide in the airways. Thorax, 58(2), 175-182. https://doi.org/10.1136/thorax.58.2.175 Rose, C., Heinzerling, A., Patel, K., Sack, C., Wolff, J., Zell-Baran, L., Weissman, D., Hall, E., Sooriash, R., McCarthy, R. B., Bojes, H., Korotzer, B., Flattery, J., Weinberg, J. L., Potocko, J., Jones, K. D., Reeb-Whitaker, C. K., Reul, N. K., LaSee, C. R., . . . Harrison, R. (2019). Severe Silicosis in Engineered Stone Fabrication Workers - California, Colorado, Texas, and Washington, 2017-2019. MMWR Morb Mortal Wkly Rep, 68(38), 813-818. https://doi.org/10.15585/mmwr.mm6838a1 Rosenman, K. D., Reilly, M. J., & Gardiner, J. (2010). Results of spirometry among individuals in a silicosis registry. J Occup Environ Med, 52(12), 1173-1178. https://doi.org/10.1097/JOM.0b013e3181fc5e50 Schins, R. P., Schilderman, P. A., & Borm, P. J. (1995). Oxidative DNA damage in peripheral blood lymphocytes of coal workers. Int Arch Occup Environ Health, 67(3), 153-157. https://doi.org/10.1007/bf00626346 Schreiber, J., Koschel, D., Kekow, J., Waldburg, N., Goette, A., & Merget, R. (2010). Rheumatoid pneumoconiosis (Caplan's syndrome). Eur J Intern Med, 21(3), 168-172. https://doi.org/10.1016/j.ejim.2010.02.004 Shtraichman, O., Blanc, P. D., Ollech, J. E., Fridel, L., Fuks, L., Fireman, E., & Kramer, M. R. (2015). Outbreak of autoimmune disease in silicosis linked to artificial stone. Occup Med (Lond), 65(6), 444-450. https://doi.org/10.1093/occmed/kqv073 Sircar, K., Hnizdo, E., Petsonk, E., & Attfield, M. (2007). Decline in lung function and mortality: implications for medical monitoring. Occup Environ Med, 64(7), 461-466. https://doi.org/10.1136/oem.2006.031419 Slavov, E., Miteva, L., Prakova, G., Gidikova, P., & Stanilova, S. (2010). Correlation between TNF-alpha and IL-12p40-containing cytokines in silicosis. Toxicol Ind Health, 26(8), 479-486. https://doi.org/10.1177/0748233710373082 Sohrabi, Y., Sabet, S., Yousefinejad, S., Rahimian, F., Aryaie, M., Soleimani, E., & Jafari, S. (2022). Pulmonary function and respiratory symptoms in workers exposed to respirable silica dust: A historical cohort study. Heliyon, 8(11), e11642. https://doi.org/10.1016/j.heliyon.2022.e11642 Sutton, B., Corper, A., Bonagura, V., & Taussig, M. (2000). The structure and origin of rheumatoid factors. Immunol Today, 21(4), 177-183. https://doi.org/10.1016/s0167-5699(00)01589-9 Thomas, E. T., Guppy, M., Straus, S. E., Bell, K. J. L., & Glasziou, P. (2019). Rate of normal lung function decline in ageing adults: a systematic review of prospective cohort studies. BMJ Open, 9(6), e028150. https://doi.org/10.1136/bmjopen-2018-028150 Tomic, D., Hoy, R. F., Sin, J., Jimenez Martin, J., Gwini, S. M., Barnes, H., Nikpour, M., Morrisroe, K., Lim, Y. Z., & Walker-Bone, K. (2024). Autoimmune diseases, autoantibody status and silicosis in a cohort of 1238 workers from the artificial stone benchtop industry. Occup Environ Med, 81(8), 388-394. https://doi.org/10.1136/oemed-2024-109526 Tsuda, T., Babazono, A., Yamamoto, E., Mino, Y., & Matsuoka, H. (1997). A Meta-Analysis on the Relationship between Pneumoconiosis and Lung Cancer. Journal of Occupational Health, 39(4), 285-294. https://doi.org/10.1539/joh.39.285 Valavanidis, A., Vlachogianni, T., & Fiotakis, C. (2009). 8-hydroxy-2' -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 27(2), 120-139. 64 https://doi.org/10.1080/10590500902885684 Vallyathan, V., Leonard, S., Kuppusamy, P., Pack, D., Chzhan, M., Sanders, S. P., & Zweir, J. L. (1997). Oxidative stress in silicosis: evidence for the enhanced clearance of free radicals from whole lungs. Mol Cell Biochem, 168(1-2), 125-132. https://doi.org/10.1023/a:1006850920080 Vestbo, J., Edwards, L. D., Scanlon, P. D., Yates, J. C., Agusti, A., Bakke, P., Calverley, P. M., Celli, B., Coxson, H. O., Crim, C., Lomas, D. A., MacNee, W., Miller, B. E., Silverman, E. K., Tal-Singer, R., Wouters, E., & Rennard, S. I. (2011). Changes in forced expiratory volume in 1 second over time in COPD. N Engl J Med, 365(13), 1184-1192. https://doi.org/10.1056/NEJMoa1105482 Watson, A., Madsen, J., & Clark, H. W. (2020). SP-A and SP-D: Dual Functioning Immune Molecules With Antiviral and Immunomodulatory Properties. Front Immunol, 11, 622598. https://doi.org/10.3389/fimmu.2020.622598 Xin, L., An, T. M., Ying, L., Rong, D. W., & Lei, H. (2024). Prevalence and risk factors for obstructive pulmonary dysfunction caused by silica dust exposure: a multicenter cross-sectional study. BMC Pulm Med, 24(1), 297. https://doi.org/10.1186/s12890-024-03106-6 Xue, C., Wu, N., Li, X., Qiu, M., Du, X., & Ye, Q. (2017). Serum concentrations of Krebs von den Lungen-6, surfactant protein D, and matrix metalloproteinase-2 as diagnostic biomarkers in patients with asbestosis and silicosis: a case-control study. BMC Pulm Med, 17(1), 144. https://doi.org/10.1186/s12890-017-0489-0 Yamaya, M., Sekizawa, K., Ishizuka, S., Monma, M., & Sasaki, H. (1999). Exhaled carbon monoxide levels during treatment of acute asthma. Eur Respir J, 13(4), 757-760. https://doi.org/10.1034/j.1399-3003.1999.13d10.x Yanagisawa, S., & Ichinose, M. (2018). Definition and diagnosis of asthma-COPD overlap (ACO). Allergol Int, 67(2), 172-178. https://doi.org/10.1016/j.alit.2018.01.002 Yang, L., Wang, H., Liu, M., Wang, C., Zuo, Y., & Zhai, Z. (2022). Club cell secretory protein 16 is a potential biomarker for silica-induced pulmonary fibrosis. Acta Biochim Pol, 69(4), 697-702. https://doi.org/10.18388/abp.2020_5669 Zaghi, G., Koga, F., Nisihara, R. M., Skare, T. L., Handar, A., Rosa Utiyama, S. R., & Silva, M. B. (2010). Autoantibodies in silicosis patients and in silica-exposed individuals. Rheumatol Int, 30(8), 1071-1075. https://doi.org/10.1007/s00296-009-1116-z 唐壹恬 , & 楊振昌 . (2020). 新興產業人造石造成的矽肺症 . 臨床醫學月刊 , 86(6), 736-739. https://doi.org/10.6666/ClinMed.202012_86(6).0129 索任. (2019). 病例分享 -急性矽肺症 . 防癆雜誌 , 秋季號 , 9-12. 陳韻如, 范豪益 , & 曹又中 . (2022). 流理台切割作業致矽肺症案例討論 . 環境職業醫學會訊 (11108), 3-10. https://doi.org/10.6670/eoma.202211_(11108).0001 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99932 | - |
| dc.description.abstract | 背景與目的
近年來,人造石材的製造與加工已成為高濃度可呼吸性結晶型二氧化矽的職業暴露來源,而長期暴露已知會導致不可逆且進行性的矽肺症。相較於傳統矽肺症,人造石相關矽肺症有罹病者年輕化、死亡率升高的趨勢。然而目前較少文獻探討人造石產業可呼吸性結晶型二氧化矽暴露對勞工肺功能下降程度與早期偵測指標之影響。因此我們的研究針對台灣人造石產業勞工,評估兩年追蹤期間肺功能變化,並希望能發現人造石相關矽肺症早期偵測指標。 方法 2022年時針對兩間人造石製造廠勞工進行橫斷式研究,並於2024年重新邀請勞工進行追蹤與橫斷式研究。透過自填式問卷了解受試者工作史,並進行肺功能檢查,包含用力吐氣第一秒量(FEV1)及用力吐氣量(FVC)。2024年額外進行呼氣測試,包含呼氣一氧化氮(FeNO)、呼氣一氧化碳(FeCO),以及生物標記物分析。 研究使用工作暴露矩陣與空氣採樣結果評估受試者個人可呼吸性結晶型二氧化矽(RCS)累積暴露,並以問卷調查結與暴露加權因子,將受試者分為高、低暴露組。透過RCS暴露程度,討論健康效應,包含肺功能異常、吐氣測試結果與生物樣本標記物分析,並將性別、年齡、身體質量指數、教育程度等納入校正分析。研究中使用相關係數探討肺功能測試之間的關聯性,以t檢定分析肺功能變化跟不同暴露組之間的差異。線性回歸與多元線性回歸用於評估暴露與健康效應之間的劑量反應關係,羅吉斯回歸則以估計不同暴露水準與肺功能異常風險之關聯性。 結果 為期兩年的觀察中,人造石產業勞工肺功能呈現顯著下降,平均每年FEV1與FVC分別降低108.12 mL (SD = 77.72)與101.35 mL (SD = 105.23)。每增加1 mg/m3-year的累積可呼吸性結晶型二氧化矽暴露,FEV1與FVC分別下降15.03 mL (95% 信賴區間 −25.17至−4.89, p = 0.005) 與19.76 mL (95% 信賴區間 −34.78至−4.78, p = 0.01)。在早期偵測指標方面,發現高暴露與高累積暴露組的受試者有更高比例的限制型與阻塞型肺部異常,且發生風險亦顯著提高。此外,高暴露組之血液樣本生物標記物分析也相較低暴露組高,顯示其作為人造石產業勞工健康早期偵測指標之潛力。 結論 人造石製造產業勞工隨時間發生顯著肺功能下降,並與累積可呼吸性結晶型二氧化矽暴露呈現劑量反應關係。初步結果亦支持使用呼氣測試與血液生物標記物作為早期偵測健康效應之評估工具。建議未來研究可擴大樣本規模、延長追蹤時間並擴大生物標記分析範圍,以增進人造石相關肺部損傷之早期偵測與防治策略。 | zh_TW |
| dc.description.abstract | Background
Artificial stone manufacturing and processing have emerged as a significant occupational source of high respirable crystalline silica (RCS) exposure. Prolonged exposure to RCS is known to cause silicosis, a progressive and irreversible lung disease. Compared to traditional silicosis, artificial stone-associated silicosis affects younger workers and progresses more rapidly. Despite increasing global concern, few studies have evaluated lung function changes or explored early markers among artificial stone workers. This study aimed to evaluate the longitudinal changes in lung function over a two-year period among artificial stone workers and to explore potential markers that may serve as early indicators of artificial stone-associated silicosis. Materials and Methods In 2022, workers from two artificial stone manufacturing plants were examined in a cross-sectional study. The participants were invited again for a follow-up examination in 2024. In the two visits, data on job histories were collected using self-reported questionnaires. Lung function tests, including forced expiratory volume in 1 second (FEV₁) and forced vital capacity (FVC), were performed at baseline and the end of the study period. In 2024, additional assessments included fractional exhaled nitric oxide (FeNO), fractional exhaled carbon monoxide (FeCO), and biomarker analyses using blood and urine samples. Cumulative exposure was estimated using air sampling data and job-exposure matrices. Spearman’s correlation coefficients were calculated to explore the association between field-based and hospital-based pulmonary test values. Paired t-tests were used to evaluate changes in lung function; two-sample t-tests assessed the differences between divided groups of workers. Multiple linear regression models assessed exposure-response relationships, while logistic regression estimated the odds of lung function impairment in relation to exposure levels. Results Longitudinal analysis revealed an average annual decline of 108.12 mL (SD = 77.72) in FEV1 and 101.35 mL (SD = 105.23) in FVC. Each 1 mg/m3-year increase in cumulative RCS exposure was associated with a 15.03 mL/year reduction in FEV1 (95% CI −25.17 to −4.89, p = 0.005) and a 19.76 mL/year reduction in FVC (95% CI −34.78 to −4.73, p = 0.01). In the study of exploring early indicators for artificial stone workers, high and high cumulative exposure groups exhibited a greater prevalence and increased odds of both restrictive and obstructive impairments. Additionally, elevated levels of selected biomarkers were observed in high-exposure groups, suggesting their potential as early indicators of silica-related lung damage. Conclusion Artificial stone workers demonstrate significant lung function decline over time, closely linked to cumulative RCS exposure in a dose-dependent manner. Preliminary evidence also supports the utility of blood-based biomarkers in identifying early respiratory effects. Further research with larger cohorts, extended follow-up, and expanded biomarker profiling is warranted to enhance early detection and intervention strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:20:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:20:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ............................................................................................................i
誌謝 .....................................................................................................................................ii 摘要 ....................................................................................................................................iii Abstract .............................................................................................................................v Table of Contents .......................................................................................................viii List of Figures .................................................................................................................xi List of Tables ..................................................................................................................xii Chapter 1 Introduction ...............................................................................................1 1.1 Artificial Stone .........................................................................................................1 1.2 Occupational Exposure and Regulatory Standards ..................................1 1.3 Silicosis .......................................................................................................................3 1.4 Artificial Stone-associated Silicosis .................................................................4 1.5 Lung Function Changes Associated with Artificial Stone .......................5 1.6 Indicators for Artificial Stone Exposure .........................................................6 1.6.1 Exhalation Tests ...................................................................................................7 1.6.2 Autoimmune Factors ........................................................................................8 1.6.3 Inflammatory Markers .....................................................................................9 Chapter 2 Materials and Methods .......................................................................11 2.1 Study Population .................................................................................................11 2.2 Data Collection .....................................................................................................11 2.2.1 Health Evaluation Questionnaire ...............................................................11 2.2.2 Lung Function Tests .........................................................................................12 2.2.3 Exhalation Tests .................................................................................................13 2.2.4 Biological Sample Analysis ...........................................................................13 2.3 Exposure Estimation ...........................................................................................14 2.3.1 Individual Silica Exposure .............................................................................14 2.3.2 Silica Exposure Estimation ............................................................................15 2.3.3 Respiratory Crystalline Silica Deposition Burden ................................16 2.4 Statistical Analysis ...............................................................................................17 Chapter 3 Results .......................................................................................................19 3.1 Longitudinal Changes in Lung Function (2022-2024) ..........................19 3.1.1 Characteristics of Participants ....................................................................19 3.1.2 Lung Function Tests ........................................................................................20 3.1.3 Association between Exposure and Lung Function Changes ........22 3.1.4 Association between Respiratory Crystalline Silica Deposition Burden and Lung Function Changes ......................................................................................................23 3.2 Explore Early Indicators for Artificial Stone Workers .............................25 3.2.1 Characteristics of Participants .....................................................................25 3.2.2 High and Low Exposure Groups .................................................................25 3.2.3 Lung Function ....................................................................................................26 3.2.4 FeNO and FeCO ................................................................................................27 3.2.5 Biological Samples ...........................................................................................28 Chapter 4 Discussion .................................................................................................29 4.1 Longitudinal Changes in Lung Function (2022-2024) ...........................29 4.2 Explore Early Indicators for Artificial Stone Workers ..............................33 Chapter 5 Conclusion ................................................................................................39 Figures .............................................................................................................................42 Tables ...............................................................................................................................46 References ......................................................................................................................56 Appendix .........................................................................................................................66 | - |
| dc.language.iso | en | - |
| dc.subject | 人造石 | zh_TW |
| dc.subject | 可呼吸性結晶型二氧化矽 | zh_TW |
| dc.subject | 肺功能 | zh_TW |
| dc.subject | 早期偵測 | zh_TW |
| dc.subject | 健康效應評估 | zh_TW |
| dc.subject | Artificial stone | en |
| dc.subject | Health effect assessment | en |
| dc.subject | Early indicators | en |
| dc.subject | Lung function | en |
| dc.subject | Respirable crystalline silica | en |
| dc.title | 人造石產業勞工健康效應研究 | zh_TW |
| dc.title | Health Effects on Artificial Stone Manufacturing Workers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡朋枝;陳啟信;秦唯珊 | zh_TW |
| dc.contributor.oralexamcommittee | Perng-Jy Tsai;Chi-Hsien Chen;Wei-Shan Chin | en |
| dc.subject.keyword | 人造石,可呼吸性結晶型二氧化矽,肺功能,早期偵測,健康效應評估, | zh_TW |
| dc.subject.keyword | Artificial stone,Respirable crystalline silica,Lung function,Early indicators,Health effect assessment, | en |
| dc.relation.page | 76 | - |
| dc.identifier.doi | 10.6342/NTU202503870 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-07 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2027-08-16 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 8.46 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
