請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99931完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳章甫 | zh_TW |
| dc.contributor.advisor | Chang-Fu Wu | en |
| dc.contributor.author | 洪于雅 | zh_TW |
| dc.contributor.author | Yu-Ya Hung | en |
| dc.date.accessioned | 2025-09-19T16:20:05Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Allouche, Y., Fadel, M., Ferté, A., Verdin, A., Ledoux, F., & Courcot, D. (2024). Phenomenology of the composition of PM2.5 at an urban site in northern France. Atmosphere, 15(5), 603. https://doi.org/10.3390/atmos15050603
Asadollahfardi, G., Zangooei, H., & Aria, S. H. (2016). Predicting PM2.5 concentrations using artificial neural networks and Markov chain: A case study Karaj City. Asian Journal of Atmospheric Environment, 10(2), 67–79. https://doi.org/10.5572/ajae.2016.10.2.067 Aw, J., & Kleeman, M. J. (2003). Evaluating the first-order effect of intraannual temperature variability on urban air pollution. Journal of Geophysical Research: Atmospheres, 108(D12), 4365. https://doi.org/10.1029/2002JD002688 AWS. (2025). 深度學習與機器學習的比較 – 資料技術之間的差異. 取自 https://aws.amazon.com/tw/compare/the-difference-between-machine-learning-and-deep-learning/ AWS. (n.d.). 什麼是資料增強?–資料增強技術介紹. 取自 https://aws.amazon.com/tw/what-is/data-augmentation/ Cakmak, S., Dales, R., Kauri, L. M., Mahmud, M., Van Ryswyk, K., Vanos, J., Liu, L., Kumarathasan, P., Thomson, E., Vincent, R., & Weichenthal, S. (2014). Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology. Environmental Pollution, 189, 208–214. https://doi.org/10.1016/j.envpol.2014.03.004 Chang, F.-J., Chang, L.-C., Kang, C.-C., Wang, Y.-S., & Huang, A. (2020). Explore spatio-temporal PM2.5 features in northern Taiwan using machine learning techniques. Science of The Total Environment, 736, 139656. https://doi.org/10.1016/j.scitotenv.2020.139656 Chen, G., Li, S., Knibbs, L. D., Hamm, N. A. S., Cao, W., Li, T., Guo, J., Ren, H., Abramson, M. J., & Guo, Y. (2018). A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Science of The Total Environment, 636, 52–60. https://doi.org/10.1016/j.scitotenv.2018.04.251 Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). https://doi.org/10.1145/2939672.2939785 Cheng, Z., Luo, L., Wang, S., Wang, Y., Sharma, S., Shimadera, H., & Hao, J. (2016). Status and characteristics of ambient PM2.5 pollution in global megacities. Environment International, 89–90, 212–221. https://doi.org/10.1016/j.envint.2016.02.003 Chou, C. C.-K., et al. (2017). Seasonality of the mass concentration and chemical composition of aerosols around an urbanized basin in East Asia. Journal of Geophysical Research: Atmospheres, 122(2), 2026–2042. https://doi.org/10.1002/2016JD025728 Chu, C., Fang, G., Lin, I., & Chou, T. (2008). Measurement and analysis of ambient air particulates and ionic species for composition and concentration studies at the western coast of central Taiwan. Toxicology and Industrial Health, 24(3), 137–145. https://doi.org/10.1177/0748233707084603 Ciampiconi, L., Elwood, A., Leonardi, M., Mohamed, A., & Rozza, A. (2024). A survey and taxonomy of loss functions in machine learning. arXiv. https://arxiv.org/abs/2301.05579 Deters, J. K., Zalakeviciute, R., Gonzalez, M., & Rybarczyk, Y. (2017). Modeling PM2.5 urban pollution using machine learning and selected meteorological parameters. Journal of Electrical and Computer Engineering, 2017, Article 5106045, 14 pages. https://doi.org/10.1155/2017/5106045 Ding, M.-M., Zhou, J.-N., Liu, B.-X., & Wang, Y. (2017). Pollution characteristics of NH4+, NO3-, SO42- in PM2.5 and their precursor gases during 2015 in an urban area of Beijing. Huanjing kexue, 38(4), 1307–1316. https://doi.org/10.13227/j.hjkx.201607005 Duong, H. H., Le, T. T., To, T. H., & Takenaka, N. (2020). Comparative study on water-soluble inorganic ions in PM2.5 from two distinct climate regions and air quality. Journal of Environmental Sciences, 88, 349–360. https://doi.org/10.1016/j.jes.2019.09.010 Encyclopedia of statistics in behavioral science. (2005). John Wiley & Sons, Ltd. https://doi.org/10.1002/0470013192 Fang, G. C., Wu, Y. S., Lin, S. M., & Lin, C. H. (2013). Study of ambient air particulates (particulate matter PM2.5, PM10, and total suspended particulates TSP) ionic species concentrations in Asian countries during 1995–2009. Environmental Forensics, 14(2), 121–132. https://doi.org/10.1080/15275922.2013.781083 George, S. K., Nair, P. R., Parameswaran, K., Jacob, S., & Abraham, A. (2008). Seasonal trends in chemical composition of aerosols at a tropical coastal site of India. Journal of Geophysical Research, 113, D16209. https://doi.org/10.1029/2007JD009507 Geron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow (2nd ed.). O'Reilly Media. Grange, S. K. (2014). Technical note: Averaging wind speeds and directions. https://doi.org/10.13140/RG.2.1.3349.2006 Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep learning on tabular data? arXiv preprint arXiv:2207.08815. https://doi.org/10.48550/arXiv.2207.08815 Han, B., Zhang, R., Yang, W., Bai, Z., Ma, Z., & Zhang, W. (2016). Heavy haze episodes in Beijing during January 2013: Inorganic ion chemistry and source analysis using highly time-resolved measurements from an urban site. Science of The Total Environment, 544, 319–329. https://doi.org/10.1016/j.scitotenv.2015.10.053 Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Elsevier. Ho, C.-C., Chan, C.-C., Cho, C.-W., Lin, H.-I., Lee, J.-H., & Wu, C.-F. (2015). Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmospheric Environment, 104, 256–263. https://doi.org/10.1016/j.atmosenv.2015.01.024 Hsu, S.-C., Liu, S. C., Huang, Y.-T., Chou, C. C. K., Lung, S. C. C., Liu, T.-H., Tu, J.-Y., & Tsai, F. (2009). Long-range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in Northern Taiwan. Journal of Geophysical Research, 114, D14301. https://doi.org/10.1029/2009JD011725 Hsu, Y. C., Lai, M. H., Wang, W. C., Chiang, H. L., & Shieh, Z. X. (2008). Characteristics of water-soluble ionic species in fine (PM2.5) and coarse particulate matter (PM10–2.5) in Kaohsiung, Southern Taiwan. Journal of the Air & Waste Management Association, 58(12), 1579–1589. https://doi.org/10.3155/1047-3289.58.12.1579 Huang, C.-S., Liao, H.-T., Lin, T.-H., Chang, J.-C., Lee, C.-L., Yip, E. C.-W., Wu, Y.-L., & Wu, C.-F. (2021). Evaluation of using satellite-derived aerosol optical depth in land use regression models for fine particulate matter and its elemental composition. Atmosphere, 12(8), 1018. https://doi.org/10.3390/atmos12081018 Huang, C.-S., Lin, T.-H., Hung, H., Kuo, C.-P., Ho, C.-C., Guo, Y.-L., Chen, K.-C., & Wu, C.-F. (2019). Incorporating satellite-derived data with annual and monthly land use regression models for estimating spatial distribution of air pollution. Environmental Modelling & Software, 114, 181–187. https://doi.org/10.1016/j.envsoft.2019.01.010 Huang, H. H., Wang, Y. Q., Li, S. P., & Chen, Q. C. (2020). Seasonal variation of water-soluble ions in PM2.5 in Xi’an. Huanjing kexue, 41(6), 2528–2535. https://doi.org/10.13227/j.hjkx.201910098 Huang, T., Chen, J., Zhao, W., Cheng, J., & Cheng, S. (2016). Seasonal variations and correlation analysis of water-soluble inorganic ions in PM2.5 in Wuhan, 2013. Atmosphere, 7(4), 49. https://doi.org/10.3390/atmos7040049 Huang, X., Zhang, J., Luo, B., Wang, L., Tang, G., Liu, Z., Song, H., Zhang, W., Yuan, L., & Wang, Y. (2018). Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas. Environmental Pollution, 243(Part B), 1740–1749. https://doi.org/10.1016/j.envpol.2018.09.126 Huang, Z., Zhou, Y., Lu, Y., Duan, Y., Tang, X., Deng, Q., & Yuan, H. (2017). A case-crossover study between fine particulate matter elemental composition and emergency admission with cardiovascular disease. Acta Cardiologica Sinica, 33(1), 66–73. https://doi.org/10.6515/ACS20160118B Ichikawa, Y., & Naito, S. (2017). Chemical compositions of primary PM2.5 derived from biomass burning emissions. Asian Journal of Atmospheric Environment, 11(2), 79–95. https://doi.org/10.5572/ajae.2017.11.2.079 Jairi, I., et al. (2024). Enhancing air pollution prediction: A neural transfer learning approach across different air pollutants. Environmental Technology & Innovation, 36, 103793. https://doi.org/10.1016/j.eti.2024.103793 Jeong-Seon Lee. (2024). Exploration of digital divide factors affecting life satisfaction in older people: Using tree-based ensemble machine learning and SHAP. Journal of Digital Contents Society, 25(7), 1847–1860. https://doi.org/10.9728/dcs.2024.25.7.1847 Jung, C.-R., Hwang, B.-F., & Chen, W.-T. (2018). Incorporating long-term satellite-based aerosol optical depth, localized land use data, and meteorological variables to estimate ground-level PM2.5 concentrations in Taiwan from 2005 to 2015. Environmental Pollution, 237, 1000–1010. https://doi.org/10.1016/j.envpol.2017.11.016 Kadra, A., Lindauer, M., Hutter, F., & Grabocka, J. (2021). Well-tuned simple nets excel on tabular datasets. arXiv preprint arXiv:2106.11189. https://doi.org/10.48550/arXiv.2106.11189 Kotta, H., Pardasani, K., Pandya, M., & Ghosh, R. (2021). Optimization of loss functions for predictive soil mapping. In A. E. Hassanien, R. Bhatnagar, & A. Darwish (Eds.), Advanced Machine Learning Technologies and Applications (pp. 95–104). Springer Singapore. https://doi.org/10.1007/978-981-15-3383-9_9 Lee, C. S. L., Chou, C. C.-K., Cheung, H. C., Tsai, C.-Y., Huang, W.-R., Huang, S.-H., Chen, M.-J., Liao, H.-T., Wu, C.-F., Tsao, T.-M., Tsai, M.-J., & Su, T.-C. (2019). Seasonal variation of chemical characteristics of fine particulate matter at a high-elevation subtropical forest in East Asia. Environmental Pollution, 246, 668–677. https://doi.org/10.1016/j.envpol.2018.11.033 Leichtle, T., Geiß, C., Wurm, M., Lakes, T., & Taubenböck, H. (2017). Unsupervised change detection in VHR remote sensing imagery – An object-based clustering approach in a dynamic urban environment. International Journal of Applied Earth Observation and Geoinformation, 54, 15–27. https://doi.org/10.1016/j.jag.2016.08.010 Li, T.-C., Yuan, C.-S., Huang, H.-C., Lee, C.-L., Wu, S.-P., & Tong, C. (2016). Inter-comparison of seasonal variation, chemical characteristics, and source identification of atmospheric fine particles on both sides of the Taiwan Strait. Scientific Reports, 6(1), 22956. https://doi.org/10.1038/srep22956 Li, X., Feng, Y. J., & Liang, H. Y. (2017). The impact of meteorological factors on PM2.5 variations in Hong Kong. In 8th International Conference on Environmental Science and Technology (ICEST 2017), 12–14 June 2017, Madrid, Spain (Vol. 78, Article 012003). IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/78/1/012003 Lin, X. (2021). The application of machine learning models in the prediction of PM2.5/PM10 concentration. In Proceedings of the 2021 4th International Conference on Computers in Management and Business (ICCMB '21) (pp. 94–101). Association for Computing Machinery. https://doi.org/10.1145/3450588.3450605 Lin, X., Mao, J., Kang, L., & Xiao, Z. (2019). Effects of the temporal aggregation and meteorological conditions on the parameter robustness of OCO-2 SIF-based and LUE-based GPP models for croplands. Remote Sensing, 11(11), 1328. https://doi.org/10.3390/rs11111328 Liu, Y., Paciorek, C. J., & Koutrakis, P. (2009). Estimating regional spatial and temporal variability of PM2.5 concentrations using satellite data, meteorology, and land use information. Environmental Health Perspectives, 117(6), 886–892. https://doi.org/10.1289/ehp.0800123 Lo, K., Lin, T.-H., Wang, F.-C., Shiu, Y.-S., Chen, C.-C., Lin, Y.-C., Huang, C.-S., Liao, H.-T., Wu, Y.-L., & Wu, C.-F. (2025). Integrating satellite information, land use regression, and machine learning to estimate the spatiotemporal variation of ionic composition in PM2.5 across Taiwan. Science of The Total Environment, 994, 180050. https://doi.org/10.1016/j.scitotenv.2025.180050 Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30. https://arxiv.org/abs/1705.07874 Ma, X., Chen, T., Ge, R., Cui, C., Xu, F., & Lv, Q. (2022). Time series-based PM2.5 concentration prediction in Jing-Jin-Ji area using machine learning algorithm models. Heliyon, 8(9), e10691. https://doi.org/10.1016/j.heliyon.2022.e10691 Ma, Z., Hu, X., Huang, L., Bi, J., & Liu, Y. (2014). Estimating ground-level PM2.5 in China using satellite remote sensing. Environmental Science & Technology, 48(13), 7436–7444. https://doi.org/10.1021/es5009399 Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J., Huang, L., & Liu, Y. (2015). Satellite-based spatiotemporal trends in PM2.5 concentrations: China, 2004–2013. Environmental Health Perspectives, 124(2), 184–192. https://doi.org/10.1289/ehp.1409481 Maheshwari, K., & Lamba, S. (2019). Air quality prediction using supervised regression model. In 2019 International Conference on Issues and Challenges in Intelligent Computing Techniques (ICICT) (pp. 1–7). IEEE. https://doi.org/10.1109/ICICT46931.2019.8977694 Makhdoomi, A., Sarkhosh, M., & Ziaei, S. (2025). PM2.5 concentration prediction using machine learning algorithms: An approach to virtual monitoring stations. Scientific Reports, 15, 8076. https://doi.org/10.1038/s41598-025-92019-3 Mayer, M., Meier, D., & Wuthrich, M. V. (2023). SHAP for actuaries: Explain any model. Social Science Research Network (SSRN Scholarly Paper No. 4389797). https://doi.org/10.2139/ssrn.4389797 McElfresh, D. C., Krueger, D., Lipton, Z. C., & Bansal, Y. (2023). When do neural nets outperform boosted trees on tabular data? arXiv preprint arXiv:2305.02997. https://doi.org/10.48550/arXiv.2305.02997 McKendry, I. G. (2002). Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting. Journal of the Air & Waste Management Association, 52(9), 1096–1101. https://doi.org/10.1080/10473289.2002.10470836 Medina, Y., Muñoz, E., Clasing, R., & Arumí, J. L. (2022). Analysis of the relative importance of the main hydrological processes at different temporal scales in watersheds of south-central Chile. Water, 14(5), 807. https://doi.org/10.3390/w14050807 Metwaly, A., Sleem, A., & Elhenawy, I. (2023). Integrating machine intelligence to estimate PM2.5 concentration for sustainable urban air quality management. Sustainable Machine Intelligence Journal, 4(6), 1–8. https://doi.org/10.61185/SMIJ.2023.44106 Misic, J., & Markovic, V. (2020). High-accuracy particulate matter prediction model based on artificial neural network [Paper presentation]. 2020 10th International Conference on Advanced Computer Information Technologies (ACIT), Deggendorf, Germany. https://doi.org/10.1109/ACIT49673.2020.9208968 Mohammadi Bardshahi, A., Jaafarzadeh, N., Tayebeh, T., & Amiri, F. (2025). Estimation of ambient air PM2.5 concentration using MLP and RBF. Journal of Advances in Environmental Health Research, 13(2), 129–134. https://doi.org/10.34172/jaehr.1387 Ordieres, J. B., Vergara, E. P., Capuz, R. S., & Salazar, R. E. (2005). Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environmental Modelling & Software, 20(5), 547–559. https://doi.org/10.1016/j.envsoft.2004.03.010 Oztornaci, B., Ata, B., & Kartal, S. (2024). Analysing household food consumption in Turkey using machine learning techniques. AGRIS on-line Papers in Economics and Informatics, 16(2), 97–105. https://doi.org/10.7160/aol.2024.160207 Pan, B. (2018). Application of XGBoost algorithm in hourly PM2.5 concentration prediction. IOP Conference Series: Earth and Environmental Science, 113(1), 012127. https://doi.org/10.1088/1755-1315/113/1/012127 Qian, S., et al. (2025). Streamlined multilayer perceptron for contaminated time series reconstruction: A case study in coastal zones of southern China. ISPRS Journal of Photogrammetry and Remote Sensing, 221, 193–209. https://doi.org/10.1016/j.isprsjprs.2025.01.035 Rastogi, N., Singh, A., Singh, D., & Sarin, M. M. (2014). Chemical characteristics of PM2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environmental Pollution, 184, 563–569. https://doi.org/10.1016/j.envpol.2013.09.037 Raut, V., Wagh, V., Tadse, K., & Karuppannan, S. (2025). Study of seasonal variation in groundwater geochemistry for beneficial use of drinking and irrigation in Aundha Nagnath tehsil of Maharashtra, India. Discover Sustainability, 6. https://doi.org/10.1007/s43621-025-01174-0 Saiohai, J., Bualert, S., Thongyen, T., Duangmal, K., Choomanee, P., & Szymanski, W. W. (2023). Statistical PM2.5 prediction in an urban area using vertical meteorological factors. Atmosphere, 14(3), 589. https://doi.org/10.3390/atmos14030589 Sangkham, S., Phairuang, W., Sherchan, S. P., Pansakun, N., Munkong, N., Sarndhong, K., Islam, M. A., & Sakunkoo, P. (2024). An update on adverse health effects from exposure to PM2.5. Environmental Advances, 18, 100603. https://doi.org/10.1016/j.envadv.2024.100603 Santhana Lakshmi, V., & Vijaya, M. S. (2022). A study on machine learning-based approaches for PM2.5 prediction. In P. Karrupusamy, V. E. Balas, & Y. Shi (Eds.), Sustainable communication networks and application (pp. 163–175). Springer Nature Singapore. https://doi.org/10.1007/978-981-16-6605-6_11 SAP. (n.d.). 什麽是機器學習 | 2025最新定義、類型和範例. SAP. 取自 https://www.sap.com/taiwan/products/artificial-intelligence/what-is-machine-learning.html Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change (3rd ed.). John Wiley & Sons. Singh, N., & Kalpana, S. (2020, June 22). Data normalisation with R. Medium. https://medium.com/swlh/data-normalisation-with-r-6ef1d1947970 Slade, E., & Naylor, M. G. (2020). A fair comparison of tree-based and parametric methods in multiple imputation by chained equations. Statistics in Medicine, 39(8), 1156–1166. https://doi.org/10.1002/sim.8468 Song, Y., Zhang, C., Jin, X., Zhao, X., Huang, W., Sun, X., Yang, Z., & Wang, S. (2023). Spatial prediction of PM2.5 concentration using hyper-parameter optimization XGBoost model in China. Environmental Technology & Innovation, 32, 103272. https://doi.org/10.1016/j.eti.2023.103272 Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., et al. (2013). Factors determining the formation of secondary inorganic aerosol: A case study in the Po Valley (Italy). Atmospheric Chemistry and Physics, 13, 1927–1939. https://doi.org/10.5194/acp-13-1927-2013 Su, S.-H., Chang, C.-W., & Chen, W.-T. (2020). The temporal evolution of PM2.5 pollution events in Taiwan: Clustering and the association with synoptic weather. Atmosphere, 11(11), 1265. https://doi.org/10.3390/atmos11111265 Suleiman, A., Tight, M. R., & Quinn, A. D. (2020). A comparative study of using random forests (RF), extreme learning machine (ELM) and deep learning (DL) algorithms in modelling roadside particulate matter (PM10 & PM2.5). IOP Conference Series: Earth and Environmental Science, 476, 012126. https://doi.org/10.1088/1755-1315/476/1/012126 Sun, J., Chen, H., Mao, J., Zhao, J., Zhang, Y., Wang, L., et al. (2021). Secondary inorganic ions characteristics in PM2.5 along offshore and coastal areas of the megacity Shanghai. Journal of Geophysical Research: Atmospheres, 126, e2021JD035139. https://doi.org/10.1029/2021JD035139 Thepnuan, D., Chantara, S., Lee, C.-T., Lin, N.-H., & Tsai, Y. I. (2019). Molecular markers for biomass burning associated with the characterization of PM2.5 and component sources during dry season haze episodes in Upper South East Asia. Science of The Total Environment, 658, 708–722. https://doi.org/10.1016/j.scitotenv.2018.12.201 Van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. (2010). Global estimates of average ground-level fine particulate matter concentrations from satellite-based aerosol optical depth. Environmental Health Perspectives. Wang, F., Chen, T., Chang, Q., Kao, Y.-W., Li, J., Chen, M., Li, Y., & Shia, B.-C. (2021). Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan. PLoS ONE, 16(4), e0249694. https://doi.org/10.1371/journal.pone.0249694 Wang, H., Wang, X., Zhou, H., Ma, H., Xie, F., Zhou, X., Fan, Q., Lü, C., & He, J. (2021). Stoichiometric characteristics and economic implications of water-soluble ions in PM2.5 from a resource-dependent city. Environmental Research, 193, Article 110522. https://doi.org/10.1016/j.envres.2020.110522 Wang, N. F., Chen, Y., Hao, Q. J., Wang, H. B., Yang, F. M., Zhao, Q., Bo, Y., He, K. B., & Yao, Y. G. (2016). Seasonal variation and source analysis of the water-soluble inorganic ions in fine particulate matter in Suzhou. Huanjing kexue, 37(12), 4482–4489. https://doi.org/10.13227/j.hjkx.201605094 Wang, S.-Y., Ou, H.-Y., Chen, P.-C., & Lin, T.-P. (2024). Implementing policies to mitigate urban heat islands: Analyzing urban development factors with an innovative machine learning approach. Urban Climate, 55, 101868. https://doi.org/10.1016/j.uclim.2024.101868 Wang, W., Maenhaut, W., Yang, W., Liu, X., Bai, Z., Zhang, T., Claeys, M., Cachier, H., Dong, S., & Wang, Y. (2014). One–year aerosol characterization study for PM2.5 and PM10 in Beijing. Atmospheric Pollution Research, 5(3), 554–562. https://doi.org/10.5094/APR.2014.064 Wang, Z., Wu, X., & Wu, Y. (2023). A spatiotemporal XGBoost model for PM2.5 concentration prediction and its application in Shanghai. Heliyon, 9(12), e22569. https://doi.org/10.1016/j.heliyon.2023.e22569 Whitford, A. B. (2005). Correlations. In K. Kempf-Leonard (Ed.), Encyclopedia of social measurement (pp. 523–529). Elsevier. https://doi.org/10.1016/B0-12-369398-5/00149-3 World Health Organization. (2021). WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide (ISBN 978-92-4-003422-8). Geneva: WHO. https://apps.who.int/iris/handle/10665/345329 Wu, A., Harrou, F., Dairi, A., & Sun, Y. (2022). Machine learning and deep learning-driven methods for predicting ambient particulate matters levels: A case study. Concurrency and Computation: Practice and Experience, 34(19), e7035. https://doi.org/10.1002/cpe.7035 Wu, C.-F., Lin, H.-I., Ho, C.-C., Yang, T.-H., Chen, C.-C., & Chan, C.-C. (2014). Modeling horizontal and vertical variation in intraurban exposure to PM2.5 concentrations and compositions. Environmental Research, 133, 96–102. https://doi.org/10.1016/j.envres.2014.04.038 Xu, M., & Matsuda, K. (2020). Dry deposition of PM2.5 nitrate in a forest according to vertical profile measurements. Asian Journal of Atmospheric Environment, 14(4), 367–377. https://doi.org/10.5572/ajae.2020.14.4.367 Yang, D. Y., Liu, B. X., Zhang, D. W., Chen, Y. Y., Zhou, J. N., & Liang, Y. P. (2015). Huan jing kexue, 36(3), 768–773. Yang, J., et al. (2022). Air quality forecasting using deep learning and transfer learning: A survey. 2022 IEEE Global Conference on Computing, Power and Communication Technologies (GlobConPT), New Delhi, India, 1–6. https://doi.org/10.1109/GlobConPT57482.2022.9938230 Yang, T.-T., Hsu, C.-Y., Chen, Y.-C., Young, L.-H., Huang, C.-H., & Ku, C.-H. (2017). Characteristics, sources, and health risks of atmospheric PM2.5-bound polycyclic aromatic hydrocarbons in Hsinchu, Taiwan. Aerosol and Air Quality Research, 17(2), 563–573. https://doi.org/10.4209/aaqr.2016.06.0283 Yuan, C.-S., Ceng, J.-H., Yen, P.-H., Chiang, K.-C., Tseng, Y.-L., Wong, K.-W., & Jeng, M.-S. (2023). Temporospatial variation, chemical composition, and source resolution of PM2.5 in the southeastern Taiwan Island. Aerosol and Air Quality Research, 23(1), 220350. https://doi.org/10.4209/aaqr.220350 Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., & Talebiesfandarani, S. (2019). PM2.5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data. Atmosphere, 10(7), 373. https://doi.org/10.3390/atmos10070373 Zhang, H. (2021). Distribution characteristics and influencing factors of PM2.5 in Northern-Taiwan. E3S Web of Conferences, 257, Article 03046. https://doi.org/10.1051/e3sconf/202125703046 Zhang, H., Hoff, R. M., & Engel-Cox, J. A. (2009). The relation between Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth and PM2.5 over the United States: A geographical comparison by U.S. Environmental Protection Agency regions. Journal of the Air & Waste Management Association, 59(11),1358–1369. https://doi.org/10.3155/1047-3289.59.11.1358 Zhang, L. (2024). Air quality prediction and warning based on machine learning. International Journal of Global Economics and Management, 4(1), 609–616. https://doi.org/10.62051/ijgem.v4n1.72 Zhang, L., Ji, Y., Liu, T., & Li, J. (2020). PM2.5 prediction based on XGBoost. In 2020 7th International Conference on Information Science and Control Engineering (ICISCE) (pp. 1011–1014). IEEE. https://doi.org/10.1109/ICISCE50968.2020.00207 Zhang, Y. F., Yu, R. L., Hu, G. R., Sun, J. W., Zhang, Z. W., & Xu, W. Z. (2017). Huan jing kexue, 38(10), 4044–4053. https://doi.org/10.13227/j.hjkx.201703108 Zheng, A., & Casari, A. (2018). Feature engineering for machine learning: Principles and techniques for data scientists. O'Reilly Media. Zhou, Y., & Kerekes, J. (2022). Temporal MLP network for PM 2.5 estimation. In Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 6662–6665). IEEE. https://doi.org/10.1109/IGARSS46834.2022.9884866 左永真(2022)。應用鏈式方程多重插補法與極限梯度提升法於之缺血性腦中風辨識之研究﹝碩士論文﹞。南臺科技大學。臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/v5tnw2 行政院環境保護署(2013)。台灣細懸浮微粒(PM2.5)成因分析與管制策略研擬(EPA-101-Fall-03-A177)。財團法人成大研究發展基金會 吳義林(2011)。細懸浮微粒(PM2.5)來源成分解析及指標污染源判別技術之研究(第1年期末報告)。行政院環境保護署。取自 https://epti.ftis.org.tw/WPContent/Uploads/140.pdf 李崇德(2022)。細懸浮微粒(PM2.5)化學成分監測及分析計畫:111年度,第111卷。行政院環境保護署。 李崇德(2023)。細懸浮微粒(PM2.5)化學成分監測及分析計畫。行政院環境保護署。 林祐如、許家瑋、李佳禾、曾于庭、翁佩詒、陳保中、陳裕政、吳治達(2024)。使用空間混合模型分析 PM2.5 的長期變化趨勢(1994 年至 2020 年)-以臺中市為例。航測及遙測學刊, 29(2), 65–75. https://doi.org/10.6574/JPRS.202406_29(2).0001 昱山環境技術服務顧問有限公司. (2019). 《108年度宜蘭縣空氣品質改善維護暨環境監測計畫》 [研究報告]. 宜蘭縣環境保護局. 取自 https://www.ilepb.gov.tw/OpenAttch_id.ashx?guid=14cb2d56-1b73-4364-a4e9-a4c8e5e5117f (檢索日期:2025年7月30日) 高以信、江瑞坤(2019)。探討細懸浮微粒PM_(2.5)對成人心血管疾病的影響-以台灣發表於國際期刊為研究對象。秀傳醫學雜誌,18(1),1-12。https://doi.org/10.3966/156104972019061801001 黃志勝. (2018, 3月6日). 機器學習- 神經網路(多層感知機 Multilayer perceptron, MLP) 含倒傳遞(Backward propagation)詳細推導. Medium. 取自 https://chih-sheng-huang821.medium.com/%E6%A9%9F%E5%99%A8%E5%AD%B8%E7%BF%92-%E7%A5%9E%E7%B6%93%E7%B6%B2%E8%B7%AF-%E5%A4%9A%E5%B1%A4%E6%84%9F%E7%9F%A5%E6%A9%9F-multilayer-perceptron-mlp-%E5%90%AB%E8%A9%B3%E7%B4%B0%E6%8E%A8%E5%B0%8E-ee4f3d5d1b41 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99931 | - |
| dc.description.abstract | 細懸浮微粒(PM2.5)的暴露已被廣泛證實對人體健康造成不良影響,PM2.5對健康的影響程度會因其化學組成而異。因此,在健康風險評估中,掌握 PM2.5 中各組成成分的濃度資訊,特別是其離子成分,對於全面理解空氣污染對人體健康之潛在威脅至關重要。然而離子成分的監測資料取得不易,相關研究面臨挑戰。
本研究透過機器學習方法,預測 PM2.5中及其主要離子成分之濃度。研究蒐集2019年至2022年間臺灣28個環境部空氣品質監測站所測得之 PM2.5 濃度與其五種主要離子成分濃度,包括鉀離子 (K⁺)、鈉離子 (Na⁺)、銨離子 (NH₄⁺)、硝酸鹽(NO₃⁻) 及硫酸鹽 (SO₄²⁻)。同時整合各測站對應之時間、土地利用、氣象觀測資料及衛星遙測數據,以建構完整數據集。在模型建構方面,本研究採用極限梯度提升(Extreme Gradient Boosting, XGBoost),以及多層感知器(Multilayer Perceptron, MLP)技術,建立預測 PM2.5 及其離子成分濃度之模型,根據實際應用情境進行模型構建與測試、比較兩模型預測效能上的差異,進行全台濃度分布預測及繪圖,並根據預測結果計算離子於PM2.5中佔比與離子間之比值,以提供相關研究之應用。 實際採樣結果顯示,PM2.5 及其離子成分濃度具顯著季節變化,夏季最低、冬季最高。本研究以XGBoost 與MLP 建立之模型具一定預測準確性與跨時空泛化能力,MLP 整體效能略優。外部測試顯示, NO₃⁻ 與 PM2.5 預測表現最佳,K⁺ 與 Na⁺ 則較差。變數重要性分析指出,模型主要選擇氣象類型特徵變數;其中,XGBoost 次多選擇衛星類別特徵,而 MLP 則偏好土地利用類別,可能反映深度學習架構在學習較高階空間特徵上的優勢。主要離子 NH₄⁺、NO₃⁻、SO₄²⁻ 約佔 PM2.5 質量濃度 40 – 45%。此外,根據全台預測結果進行繪圖,可反應之空間分布結果,唯山區因缺乏監測資料預測準確性較低,不列研究分析範圍。應用機器學習模型能有效預測 PM2.5 及其主要離子成分之濃度,並可據此進行成分分析與污染物來源探討,未來具有進一步應用於空污監測與健康風險評估的潛力。 | zh_TW |
| dc.description.abstract | Exposure to fine particulate matter (PM2.5) has been widely confirmed to have adverse effects on human health, and the impact varies with its chemical composition. Therefore, in health risk assessment, understanding the concentration of PM2.5 components, especially ionic species, is crucial for comprehensively evaluating the potential threats of air pollution to human health. However, monitoring data for ionic components are difficult to obtain, posing challenges to related research.
This study uses machine learning methods to predict the concentrations of PM2.5 and its major ionic components. Data were collected from 28 air quality monitoring stations in Taiwan between 2019 and 2022, including PM2.5 and five main ions: potassium (K⁺), sodium (Na⁺), ammonium (NH₄⁺), nitrate (NO₃⁻), and sulfate (SO₄²⁻). Time, land use, meteorological observations, and satellite remote sensing data were integrated to build a complete dataset. Models were constructed using Extreme Gradient Boosting (XGBoost) and Multilayer Perceptron (MLP), and their prediction performances were compared. Predictions were mapped for Taiwan, and ion proportions and ratios were calculated for further application. Results show significant seasonal variation with lowest concentrations in summer and highest in winter. Both XGBoost and MLP demonstrated good predictive accuracy and spatiotemporal generalization, with MLP performing slightly better. Variable importance analysis indicated that meteorological features were primarily selected; XGBoost secondly favored satellite features, while MLP preferred land use, possibly due to deep learning’s ability to capture higher-level spatial features. Major ions of NH₄⁺, NO₃⁻, and SO₄²⁻ accounted for about 40 – 45% of PM2.5 mass. Spatial distribution maps reflected prediction results, though accuracy was lower in mountainous areas due to sparse monitoring data. Machine learning models effectively predict PM2.5 and ionic concentrations and support further component analysis and pollution source investigation, with potential applications in air quality monitoring and health risk assessment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:20:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:20:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv 第一章、緒論 1 1.1研究背景 1 1.2機器學習在 PM2.5 預測中的應用 2 1.3機器學習與深度學習 3 1.4極限梯度提升 5 1.5多層感知器 6 1.6特徵變數類別 7 1.7鏈式方程多重插補 8 1.8研究目的 8 第二章、研究方法 10 2.1研究資料與建模設計 10 2.2資料集變數 14 2.3研究步驟 16 2.4資料前處理 16 2.5資料增強 17 2.6極限梯度提升程式碼撰寫 18 2.7多層感知器程式碼撰寫 19 2.8全台1公里 × 1公里網格濃度預測 21 第三章、結果與討論 21 3.1離子量測濃度資料分布探討 21 3.2第一階段極限梯度提升模型建模結果與分析 23 3.3第一階段多層感知器模型建模結果與分析 25 3.4第二階段建模結果與分析 27 3.5變數重要性 28 3.6全台1公里 × 1公里網格濃度預測 34 3.7全台1公里 × 1公里網格PM2.5離子佔比預測 40 3.8全台1公里 × 1公里網格離子間濃度比值預測 45 3.9研究限制 47 第四章、結論與建議 47 參考文獻 49 附錄 65 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 極限梯度提升 | zh_TW |
| dc.subject | 多層感知器 | zh_TW |
| dc.subject | 細懸浮微粒 | zh_TW |
| dc.subject | 離子成分 | zh_TW |
| dc.subject | 空間分布 | zh_TW |
| dc.subject | spatial variation | en |
| dc.subject | Multilayer Perceptron | en |
| dc.subject | PM2.5 | en |
| dc.subject | ionic composition | en |
| dc.subject | Extreme Gradient Boosting | en |
| dc.title | 利用極限梯度提升模型和多層感知器模型進行PM2.5及其離子成分預測 | zh_TW |
| dc.title | Using Extreme Gradient Boosting Models and Multilayer Perceptron Models to Predict PM2.5 and Its Ion Composition | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林遠見;陳佳堃 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Chien Lin;Jia-Kun Chen | en |
| dc.subject.keyword | 極限梯度提升,多層感知器,細懸浮微粒,離子成分,空間分布, | zh_TW |
| dc.subject.keyword | Extreme Gradient Boosting,Multilayer Perceptron,PM2.5,ionic composition,spatial variation, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202504257 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-08 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2028-08-08 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 10.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
