Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志傑zh_TW
dc.contributor.advisorChih-Chieh Chenen
dc.contributor.author林睿群zh_TW
dc.contributor.authorRuei-Chun Linen
dc.date.accessioned2025-09-19T16:19:54Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-01-
dc.identifier.citationAliabadi, A. A., Rogak, S. N., Green, S. I., & Bartlett, K. H. (2010). CFD simulation of human coughs and sneezes: a study in droplet dispersion, heat, and mass transfer. ASME International Mechanical Engineering Congress and Exposition,
Almstrand, A.-C., Bake, B., Ljungström, E., Larsson, P., Bredberg, A., Mirgorodskaya, E., & Olin, A.-C. (2010). Effect of airway opening on production of exhaled particles. Journal of applied physiology, 108(3), 584-588.
Barker, J., & Jones, M. (2005). The potential spread of infection caused by aerosol contamination of surfaces after flushing a domestic toilet. Journal of applied microbiology, 99(2), 339-347.
Brodeur, A., Gray, D., Islam, A., & Bhuiyan, S. (2021). A literature review of the economics of COVID‐19. Journal of economic surveys, 35(4), 1007-1044.
Brown, J., Gregson, F. K., Shrimpton, A., Cook, T. M., Bzdek, B. R., Reid, J. P., & Pickering, A. E. (2021). A quantitative evaluation of aerosol generation during tracheal intubation and extubation. Anaesthesia, 76(2), 174-181.
Chao, C. Y. H., Wan, M. P., Morawska, L., Johnson, G. R., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., & Xie, X. (2009). Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. Journal of aerosol science, 40(2), 122-133.
Ciotti, M., Ciccozzi, M., Terrinoni, A., Jiang, W.-C., Wang, C.-B., & Bernardini, S. (2020). The COVID-19 pandemic. Critical reviews in clinical laboratory sciences, 57(6), 365-388.
Cullen, W., Gulati, G., & Kelly, B. D. (2020). Mental health in the COVID-19 pandemic. QJM: An International Journal of Medicine, 113(5), 311-312.
De Wit, E., Van Doremalen, N., Falzarano, D., & Munster, V. J. (2016). SARS and MERS: recent insights into emerging coronaviruses. Nature reviews microbiology, 14(8), 523-534.
Dhand, R., & Li, J. (2020). Coughs and sneezes: their role in transmission of respiratory viral infections, including SARS-CoV-2. American journal of respiratory and critical care medicine, 202(5), 651-659.
Fontana, G. A., & Widdicombe, J. (2007). What is cough and what should be measured? Pulmonary pharmacology & therapeutics, 20(4), 307-312.
Francesco, A., Marina, A., Giuseppina, B., Ernesto, C., & Alfredo, C. (2018). Cough, a vital reflex. Mechanisms, determinants and measurements. Acta Bio Medica: Atenei Parmensis, 89(4), 477.
Gomez, E. D., Ceremsak, J. J., Leibowitz, A., & Jalisi, S. (2021). A Novel Cough Simulation Device for Education of Risk Mitigation Techniques During Aerosol-Generating Medical Procedures. Otolaryngology–Head and Neck Surgery, 165(6), 816-818.
Gupta, J. K., Lin, C. H., & Chen, Q. (2009). Flow dynamics and characterization of a cough. Indoor air, 19(6), 517-525.
Han, Z., Weng, W., & Huang, Q. (2013). Characterizations of particle size distribution of the droplets exhaled by sneeze. Journal of the Royal Society Interface, 10(88), 20130560.
Hinds, W. C., & Zhu, Y. (2022). Aerosol technology: properties, behavior, and measurement of airborne particles. John Wiley & Sons.
Irwin, R. S., Boulet, L.-P., Cloutier, M. M., Fuller, R., Gold, P. M., Hoffstein, V., Ing, A. J., McCool, F. D., O’Byrne, P., & Poe, R. H. (1998). Managing cough as a defense mechanism and as a symptom: a consensus panel report of the American College of Chest Physicians. Chest, 114(2), 133S-181S.
Johnson, G. R., & Morawska, L. (2009). The mechanism of breath aerosol formation. Journal of aerosol medicine and pulmonary drug delivery, 22(3), 229-237.
Jones, R. M., & Brosseau, L. M. (2015). Aerosol transmission of infectious disease. Journal of occupational and environmental medicine, 57(5), 501-508.
Khare, P., & Marr, L. (2015). Simulation of vertical concentration gradient of influenza viruses in dust resuspended by walking. Indoor Air, 25(4), 428-440.
Levine, S. M., & Marciniuk, D. D. (2022). Global impact of respiratory disease: What can we do, together, to make a difference? Chest, 161(5), 1153-1154.
Lindsley, W. G., Pearce, T. A., Hudnall, J. B., Davis, K. A., Davis, S. M., Fisher, M. A., Khakoo, R., Palmer, J. E., Clark, K. E., & Celik, I. (2012). Quantity and size distribution of cough-generated aerosol particles produced by influenza patients during and after illness. Journal of occupational and environmental hygiene, 9(7), 443-449.
Lindsley, W. G., Reynolds, J. S., Szalajda, J. V., Noti, J. D., & Beezhold, D. H. (2013). A cough aerosol simulator for the study of disease transmission by human cough-generated aerosols. Aerosol Science and Technology, 47(8), 937-944.
Mahajan, R., Singh, P., Murty, G., & Aitkenhead, A. (1994). Relationship between expired lung volume, peak flow rate and peak velocity time during a voluntary cough manoeuvre. British Journal of Anaesthesia, 72(3), 298-301.
Morawska, L., Johnson, G., Ristovski, Z., Hargreaves, M., Mengersen, K., Corbett, S., Chao, C. Y. H., Li, Y., & Katoshevski, D. (2009). Size distribution and sites of origin of droplets expelled from the human respiratory tract during expiratory activities. Journal of aerosol science, 40(3), 256-269.
Murphy, B., Cahill, R., McCaul, C., & Buggy, D. (2021). Optical gas imaging of carbon dioxide at tracheal extubation: a novel technique for visualising exhaled breath. British Journal of Anaesthesia, 126(2), e77-e78.
Oh, W., Ooka, R., Kikumoto, H., & Han, M. (2022). Numerical modeling of sneeze airflow and its validation with an experimental dataset. Indoor air, 32(11), e13171.
Palese, P. (2004). Influenza: old and new threats. Nature medicine, 10(Suppl 12), S82-S87.
Ren, S., Niu, J., Luo, Z., Shi, Y., Cai, M., Luo, Z., & Yu, Q. (2020). Cough Expired Volume and Cough Peak Flow Rate Estimation Based on GA‐BP Method. Complexity, 2020(1), 9036369.
Scharfman, B., Techet, A., Bush, J., & Bourouiba, L. (2016). Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets. Experiments in Fluids, 57(2), 1-9.
Shi, Y., Wang, G., Cai, X.-p., Deng, J.-w., Zheng, L., Zhu, H.-h., Zheng, M., Yang, B., & Chen, Z. (2020). An overview of COVID-19. Journal of Zhejiang University. Science. B, 21(5), 343.
Songu, M., & Onerci, T. M. (2023). Physiology and pathophysiology of sneezing and itching: mechanisms of the symptoms. In Nasal Physiology and Pathophysiology of Nasal Disorders (pp. 131-144). Springer.
Stadnytskyi, V., Anfinrud, P., & Bax, A. (2021). Breathing, speaking, coughing or sneezing: What drives transmission of SARS‐CoV‐2? Journal of Internal Medicine, 290(5), 1010-1027.
Tang, J. W., Nicolle, A. D., Klettner, C. A., Pantelic, J., Wang, L., Suhaimi, A. B., Tan, A. Y., Ong, G. W., Su, R., & Sekhar, C. (2013). Airflow dynamics of human jets: sneezing and breathing-potential sources of infectious aerosols. PloS one, 8(4), e59970.
Wang, C. C., Prather, K. A., Sznitman, J., Jimenez, J. L., Lakdawala, S. S., Tufekci, Z., & Marr, L. C. (2021). Airborne transmission of respiratory viruses. Science, 373(6558), eabd9149.
Yang, S., Lee, G. W., Chen, C.-M., Wu, C.-C., & Yu, K.-P. (2007). The size and concentration of droplets generated by coughing in human subjects. Journal of Aerosol Medicine, 20(4), 484-494.
Yang, S. S., Zhang, M., & Chong, J. J. (2020). Comparison of three tracheal intubation methods for reducing droplet spread for use in COVID-19 patients. British journal of anaesthesia, 125(1), e190-e191.
Zayas, G., Chiang, M. C., Wong, E., MacDonald, F., Lange, C. F., Senthilselvan, A., & King, M. (2012). Cough aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious respiratory disease management. BMC pulmonary medicine, 12, 1-12.
Zee, M., Davis, A. C., Clark, A. D., Wu, T., Jones, S. P., Waite, L. L., Cummins, J. J., & Olson, N. A. (2021). Computational fluid dynamics modeling of cough transport in an aircraft cabin. Scientific reports, 11(1), 23329.
Zhang, B., Zhu, C., Ji, Z., & Lin, C.-H. (2017). Design and characterization of a cough simulator. Journal of breath research, 11(1), 016014.
Zhang, H., Li, D., Xie, L., & Xiao, Y. (2015). Documentary research of human respiratory droplet characteristics. Procedia engineering, 121, 1365-1374.
Zhou, G., Burnett, G. W., Shah, R. S., Lai, C. Y., Katz, D., & Fried, E. A. (2022). Development of an Easily Reproducible Cough Simulator With Droplets and Aerosols for Rapidly Testing Novel Personal Protective Equipment. Simulation in Healthcare, 17(5), 336-342.
Zhu, S., Kato, S., & Yang, J.-H. (2006). Study on transport characteristics of saliva droplets produced by coughing in a calm indoor environment. Building and environment, 41(12), 1691-1702.
邱瀞儀. (2023). 呼吸回饋式個人呼出微粒捕集氣罩研發與測試
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99930-
dc.description.abstract許多的呼吸道傳播疾病(如流感、MERS、COVID-19等)具有高傳播力與造成重症的潛力,長期以來一直是公共衛生所關注的議題。在職業衛生的觀點中,源頭控制被視為最直接且有效率之方法,因此本研究團隊研發出一款名為BR-PEBAR(Breath-Responsive Personal Exhaled Breath Aerosol Receiver)的防疫設備,藉由即時過濾使用者的呼氣,以達成防止氣膠傳播與避免污染環境之目的。然而,該設備在開發時,僅於定流量條件下進行效能測試,因此,並無從得知其在咳嗽或噴嚏等情境之下之效能,也因此限制了其在實際應用層面的廣度。有鑑於此,本研究的目標在建立一套可調控氣流與微粒特性的系統,以模擬咳嗽過程中具代表性的動態氣流特徵,在配合微粒的產生後,除了可以用於測試防疫工具在咳嗽情境下的效能外,也可以做為公共衛生教育之輔助工具,協助學員對於氣膠傳播機制的理解,並建立有效的防護策略。

本研究乃為波以耳定律以及氣膠產生技術的結合應用。藉由調整儲氣罐的體積與壓力、氣體通道的阻抗、氣體觸發閥門的開啟速度以及其內部的構形等參數,成功重建文獻中的咳嗽氣流曲線,包括峰值流量、氣流持續時間、上升斜率與排出體積等。該模擬系統具備高度的操作彈性,可透過調整各別操作參數,組合出指定特徵的咳嗽氣流曲線(峰值流量誤差小於1 %)。而在微粒產生方面,透過可更換腔體與霧化溶液之設計,賦予了該系統可客製化的特性。測試結果顯示,若選用越大體積腔體與越濃的食鹽水溶液,可顯著增進可視化的效果。此外,在初步結合防疫產品的使用之後,也進一步確認了本模擬系統作為簡易教學或展示工具的可行性。未來可配合佳化參數設計與光源調整進一步強化視覺呈現效果。於測試防疫工具的效能層面,本研究以BR-PEBAR為例,進行防疫設備在咳嗽條件下捕捉呼氣微粒的效能驗證,結果顯示,在峰值流量為4.56 L/sec的咳嗽條件下,若僅佩戴BR-PEBAR且未啟動抽氣裝置(相當於無動力式裝置)時,對於次微米粒徑微粒捕集效率僅為11.4 %,若啟動內建抽氣風扇,則捕集效率可提升至87.3 %,若把咳嗽峰值流量降低至1.2 L/sec以下時,BR-PEBAR可達100 %的捕集效果。另外,測試結果也顯示,加裝24 ml的預存空間,可以使BR-PEBAR在峰值流量為2.4 L/sec時的捕集效率,由97.3 %增加至98.5 %,因此,未來除了著眼於風扇性能的提升外,亦可透過面體空間的優化設計,藉由創造更大的預存空間,進一步強化BR-PEBAR的整體效能。

綜合上述,本研究成功建構一套具可調整性與高再現性的咳嗽模擬系統,並展示了其具備研究、教學與實務應用等多面向的價值。
zh_TW
dc.description.abstractMany respiratory diseases (such as influenza, MERS, and COVID-19) are characterized by high transmissibility and the potential to cause severe illness, making them a persistent concern in public health. From the perspective of occupational hygiene, source control is considered the most direct and efficient strategy. In response, our research team developed a device called BR-PEBAR (Breath-Responsive Personal Exhaled Breath Aerosol Receiver), designed to filter users' exhaled breath in real time, thereby preventing aerosol transmission and reducing environmental contamination. However, this device was only tested under constant flow rate conditions during development, without considering scenarios involving short-duration, high-flow events such as coughing or sneezing—limiting its applicability in real-world settings. To address this gap, this study aimed to development a controllable system capable of simulating both airflow and particle characteristics representative of a cough event. Combined with particle generation, the system can be used not only to evaluate the performance of protective equipment under coughing conditions but also as an educational tool to assist learners in understanding aerosol transmission mechanisms and developing effective protective strategies.

This study integrates Boyle's law with aerosol generation techniques. By adjusting parameters such as tank volume and pressure, flow pathway resistance, valve actuation speed, and internal valve geometry, the system successfully reconstructed cough airflow profiles found in literature—including peak flow rate, duration, rise time, and exhaled volume. The system offers high operational flexibility, enabling the generation of cough airflow curves with target characteristics (with peak flow rate errors less than 1%). In terms of particle generation, the design allows interchangeable chambers and atomizing solutions, enabling system customization. Experimental results showed that using larger chambers and higher-concentration NaCl solutions significantly enhanced visualization. Furthermore, preliminary demonstrations with protective devices confirmed the system's feasibility as a simple teaching or presentation tool. Future improvements in parameter optimization and lighting configurations may further enhance its educational visual performance.

For protective equipment evaluation, this study used BR-PEBAR to validate its ability to capture exhaled particles under coughing conditions. Results showed that under a cough with a peak flow rate of 4.56 L/sec, BR-PEBAR captured only 11.4% of submicron particles without fan activation (passive mode), while activating the built-in fan increased the efficiency to 87.3%. When the cough peak flow was reduced to below 1.2 L/sec, the device achieved 100% capture efficiency. Additionally, adding a 24 ml reservoir space increased the capture efficiency from 97.3% to 98.5% at a peak flow rate of 2.4 L/sec, indicating that expanding the reservoir volume through facepiece design optimization can further enhance overall performance, alongside fan power improvements.

In summary, this study successfully established a highly adjustable and reproducible cough simulation system, demonstrating its multi-faceted value in research, education, and practical applications.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:19:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:19:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT v
目 次 vii
圖 次 ix
表 次 xi
第一章 研究緣起及目的 1
第二章 文獻探討 3
2-1 呼吸道傳染疾病透過氣膠傳播造成感染 3
2-2 咳嗽與打噴嚏的原因與機制 3
2-3 咳嗽與打噴嚏的氣流特徵 4
2-4 人體產生微粒的機制 6
2-5 咳嗽與打噴嚏的微粒特徵 6
2-6 插管/拔管導致咳嗽之特徵 8
2-7 防疫設備探討 8
2-8 文獻中咳嗽模擬器回顧 9
第三章 研究材料與方法 12
3-1 氣流模擬系統之研發 12
3-2 微粒產生腔之研發 20
3-3 極端呼吸型態模擬系統之應用 23
第四章 結果與討論 27
4-1 表壓對於產生氣流曲線影響 27
4-2 鋁罐儲存體積對於產生氣流曲線影響 27
4-3 使用不同表壓×鋁罐體積組合對於產生氣流曲線影響 28
4-4 閘刀閥阻抗對於產生氣流曲線影響 28
4-5 閥門操作壓力對於產生氣流曲線影響 29
4-6 球閥內部調整對於產生氣流曲線影響 29
4-7 多種參數組合結果 30
4-8 微粒產生腔在不同條件下之可視化表現與應用 32
4-9 防疫工具的捕集效率測試 34
第五章 結論與建議 36
參考文獻 38
-
dc.language.isozh_TW-
dc.subject咳嗽模擬器zh_TW
dc.subject教育教具zh_TW
dc.subject防疫設備評估工具zh_TW
dc.subject呼吸道傳播疾病zh_TW
dc.subjectRespiratory diseasesen
dc.subjectEducational teaching aidsen
dc.subjectEpidemic prevention equipment evaluation deviceen
dc.subjectCough simulatoren
dc.title用於極端呼氣氣流與飛沫模擬之裝置的開發與應用zh_TW
dc.titleDevelopment and Application of a Device for Simulating Extreme Respiratory Airflows and Droplet Dispersionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor黃盛修zh_TW
dc.contributor.coadvisorSheng-Hsiu Huangen
dc.contributor.oralexamcommittee林志威;林文印zh_TW
dc.contributor.oralexamcommitteeChih-Wei Lin;Wen-Yinn Linen
dc.subject.keyword呼吸道傳播疾病,咳嗽模擬器,防疫設備評估工具,教育教具,zh_TW
dc.subject.keywordRespiratory diseases,Cough simulator,Epidemic prevention equipment evaluation device,Educational teaching aids,en
dc.relation.page66-
dc.identifier.doi10.6342/NTU202502999-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2027-08-12-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved