Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳焜裕zh_TW
dc.contributor.advisorKuen-Yuh Wuen
dc.contributor.author何英綺zh_TW
dc.contributor.authorYing-Qi Heen
dc.date.accessioned2025-09-19T16:19:44Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-04-
dc.identifier.citationAllied Market Research. (2024). Cumene Market by Application and Region - Global Opportunity Analysis and Industry Forecast. Allied Market Research. Retrieved June 19 from https://www.alliedmarketresearch.com/cumene-market
Anderson, E. L. (1983). Quantitative approaches in use to assess cancer risk. Risk analysis, 3(4), 277-295.
ATSDR. (2007). Toxicological Profile for Benzene. U. S. D. o. H. a. H. Services. https://www.epa.gov/foia/toxicological-profile-benzene
ATSDR. (2010a). Toxicological Profile for Ethylbenzene. U.S. Environmental Protection Agency Retrieved from https://www.epa.gov/foia/toxicological-profile-ethylbenzene
ATSDR. (2010b). Toxicological profile for styrene. Agency for Toxic Substances and Disease Registry.
Bastlova, T., & Podlutsky, A. (1996). Molecular analysis of styrene oxide-induced hprt mutation in human T-lymphocytes. Mutagenesis, 11(6), 581-591.
Boffetta, P., Adami, H. O., Cole, P., Trichopoulos, D., & Mandel, J. S. (2009). Epidemiologic studies of styrene and cancer: a review of the literature. Journal of occupational and environmental medicine, 51(11), 1275-1287.
Bonassi, S., Montanaro, F., Ceppi, M., & Abbondandolo, A. (1996). Is human exposure to styrene a cause of cytogenetic damage? A re-analysis of the available evidence. Biomarkers, 1(4), 217-225.
Brenner, D. D., Jeffrey, A. M., Latriano, L., Wazneh, L., Warburton, D., Toor, M., Pero, R. W., Andrews, L. R., Walles, S., & Perera, F. P. (1991). Biomarkers in styrene-exposed boatbuilders. Mutation Research/Genetic Toxicology, 261(3), 225-236.
Chen, L. J., Wegerski, C. J., Kramer, D. J., Thomas, L. A., McDonald, J. D., Dix, K. J., & Sanders, J. M. (2011). Disposition and metabolism of cumene in F344 rats and B6C3F1 mice. Drug Metab Dispos, 39(3), 498-509. https://doi.org/10.1124/dmd.110.034769
Clay, P. (2001). Ethylbenzene: In vivo mouse liver unscheduled DNA synthesis assay. Central Toxicology Laboratory Report, 6-8.
Cohen, J. T., Carlson, G., Charnley, G., Coggon, D., Delzell, E., Graham, J. D., Greim, H., Krewski, D., Medinsky, M., & Monson, R. (2002). A comprehensive evaluation of the potential health risks associated with occupational and environmental exposure to styrene. Journal of Toxicology and Environmental Health, Part B, 5(1-2), 1-263.
Committee to Review the Styrene Assessment in the National Toxicology Program 12th Report on, C., Board on Environmental, S., Toxicology, Division on, E., Life, S., & National Research, C. (2014). In Review of the Styrene Assessment in the National Toxicology Program 12th Report on Carcinogens: Workshop Summary. National Academies Press (US)
Copyright 2014 by the National Academy of Sciences. All rights reserved. https://doi.org/10.17226/18725
Conti, B., Maltoni, C., Perino, G., & Ciliberti, A. (1988). Long‐term carcinogenicity bioassays on styrene administered by inhalation, ingestion and injection and styrene oxide administered by ingestion in Sprague‐Dawley rats, and para‐methylstyrene administered by ingestion in Sprague‐Dawley rats and Swiss mice. Annals of the new York Academy of Sciences, 534(1), 203-234.
Cruzan, G., Bus, J., Banton, M., Gingell, R., & Carlson, G. (2009). Mouse specific lung tumors from CYP2F2-mediated cytotoxic metabolism: an endpoint/toxic response where data from multiple chemicals converge to support a mode of action. Regulatory Toxicology and Pharmacology, 55(2), 205-218.
Cruzan, G., Bus, J., Hotchkiss, J., Harkema, J., Banton, M., & Sarang, S. (2012). CYP2F2-generated metabolites, not styrene oxide, are a key event mediating the mode of action of styrene-induced mouse lung tumors. Regul Toxicol Pharmacol, 62(1), 214-220. https://doi.org/10.1016/j.yrtph.2011.10.007
Cruzan, G., Carlson, G. P., Johnson, K. A., Andrews, L. S., Banton, M. I., Bevan, C., & Cushman, J. R. (2002). Styrene Respiratory Tract Toxicity and Mouse Lung Tumors Are Mediated by CYP2F-Generated Metabolites. Regulatory Toxicology and Pharmacology, 35(3), 308-319. https://doi.org/https://doi.org/10.1006/rtph.2002.1545
Cruzan, G., Cushman, J. R., Andrews, L. S., Granville, G. C., Johnson, K. A., Bevan, C., Hardy, C. J., Coombs, D. W., Mullins, P. A., & Brown, W. R. (2001). Chronic toxicity/oncogenicity study of styrene in CD-1 mice by inhalation exposure for 104 weeks. J Appl Toxicol, 21(3), 185-198. https://doi.org/10.1002/jat.737
Cruzan, G., Cushman, J. R., Andrews, L. S., Granville, G. C., Johnson, K. A., Hardy, C. J., Coombs, D. W., Mullins, P. A., & Brown, W. R. (1998). Chronic toxicity/oncogenicity study of styrene in CD rats by inhalation exposure for 104 weeks. Toxicological Sciences, 46(2), 266-281.
Dean, B., Brooks, T., Hodson-Walker, G., & Hutson, D. (1985). Genetic toxicology testing of 41 industrial chemicals. Mutation Research/Reviews in Genetic Toxicology, 153(1-2), 57-77.
Delzell, E., Sathiakumar, N., Graff, J., Macaluso, M., Maldonado, G., & Matthews, R. (2006). An updated study of mortality among North American synthetic rubber industry workers. Research Report (Health Effects Institute)(132), 1-63; discussion 65.
European Parliament and Council of the European Union. (2004). Directive 2004/42/EC on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999/13/EC. EUR-Lex. Retrieved July 28, 2025 from https://eur-lex.europa.eu/eli/dir/2004/42/oj/eng
Fabiani, R., Rosignoli, P., De Bartolomeo, A., Fuccelli, R., & Morozzi, G. (2007). DNA-damaging ability of isoprene and isoprene mono-epoxide (EPOX I) in human cells evaluated with the comet assay. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 629(1), 7-13. https://doi.org/https://doi.org/10.1016/j.mrgentox.2006.12.007
Glass, D. C., Gray, C. N., Jolley, D. J., Gibbons, C., Sim, M. R., Fritschi, L., Adams, G. G., Bisby, J. A., & Manuell, R. (2003). Leukemia risk associated with low-level benzene exposure. Epidemiology, 14(5), 569-577. https://doi.org/10.1097/01.ede.0000082001.05563.e0
Gollapudi, B. B., Williams, A. L., & Bus, J. S. (2021). A review of the genotoxicity of the industrial chemical cumene. Mutation Research/Reviews in Mutation Research, 787, 108364. https://doi.org/https://doi.org/10.1016/j.mrrev.2021.108364
Grosse, Y., Baan, R., Straif, K., Secretan, B., El Ghissassi, F., Bouvard, V., Altieri, A., & Cogliano, V. (2007). Carcinogenicity of 1, 3-butadiene, ethylene oxide, vinyl chloride, vinyl fluoride, and vinyl bromide. The Lancet Oncology, 8(8), 679-680.
Hayes, R. B., Yin, S. N., Dosemeci, M., Li, G. L., Wacholder, S., Travis, L. B., Li, C. Y., Rothman, N., Hoover, R. N., & Linet, M. S. (1997). Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese Academy of Preventive Medicine--National Cancer Institute Benzene Study Group. J Natl Cancer Inst, 89(14), 1065-1071. https://doi.org/10.1093/jnci/89.14.1065
Hoenerhoff, M. J., Hong, H. H., Ton, T. V., Lahousse, S. A., & Sills, R. C. (2009). A review of the molecular mechanisms of chemically induced neoplasia in rat and mouse models in National Toxicology Program bioassays and their relevance to human cancer. Toxicol Pathol, 37(7), 835-848. https://doi.org/10.1177/0192623309351726
Holz, O., Scherer, G., Brodtmeier, S., Koops, F., Warncke, K., Krause, T., Austen, A., Angerer, J., Tricker, A., & Adlkofer, F. (1995). Determination of low level exposure to volatile aromatic hydrocarbons and genotoxic effects in workers at a styrene plant. Occupational and environmental medicine, 52(6), 420-428.
Hong, H.-H. L., Ton, T.-V. T., Kim, Y., Wakamatsu, N., Clayton, N. P., Chan, P.-C., Sills, R. C., & Lahousse, S. A. (2008). Genetic Alterations in K-ras and p53 Cancer Genes in Lung Neoplasms from B6C3F1 Mice Exposed to Cumene. Toxicologic Pathology, 36(5), 720-726. https://doi.org/10.1177/0192623308320280
Hong, H. L., Devereux, T. R., Melnick, R. L., Eldridge, S. R., Greenwell, A., Haseman, J., Boorman, G. A., & Sills, R. C. (1997). Both K-ras and H-ras protooncogene mutations are associated with Harderian gland tumorigenesis in B6C3F1 mice exposed to isoprene for 26 weeks. Carcinogenesis, 18(4), 783-789. https://doi.org/10.1093/carcin/18.4.783
Hukkanen, J., Pelkonen, O., Hakkola, J., & Raunio, H. (2002). Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol, 32(5), 391-411. https://doi.org/10.1080/20024091064273
IARC. (1999). Species Differences in Thyroid, Kidney and Urinary Bladder Carcinogenesis. Proceedings of a consensus conference. Lyon, France, 3-7 November 1997. IARC Sci Publ(147), 1-225.
IARC. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. World Health Organization.
IARC. (2012). Chemical Agents and Related Occupations (Vol. 100F). International Agency for Research on Cancer. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Chemical-Agents-And-Related-Occupations-2012
IARC. (2013). List of Classifications – IARC Monographs on the Identification of Carcinogenic Hazards to Humans. IARC Monographs Programme, International Agency for Research on Cancer. Retrieved June 19 from https://monographs.iarc.who.int/list-of-classifications/
IARC. (2017). IARC Monographs: List of classifications – Benzene (Group 1). World Health Organization. Retrieved June 20 from https://monographs.iarc.who.int/list-of-classifications
IARC. (2018). Benzene (IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Issue. International Agency for Research on Cancer. https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Benzene-2018
IARC. (2019). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. In Styrene, Styrene-7,8-oxide, and Quinoline. International Agency for Research on Cancer.
IARC. (2025a). Agents classified by the IARC Monographs, Volumes 1–138. International Agency for Research on Cancer. Retrieved June 23, 2025 from https://monographs.iarc.who.int/agents-classified-by-the-iarc/
IARC. (2025b). List of Classifications – Ethylbenzene. Retrieved June 25 from https://monographs.iarc.who.int/list-of-classifications
IARC. (2025c). List of Classifications – IARC Monographs: Isoprene. Retrieved June 25 from https://monographs.iarc.who.int/list-of-classifications
IMARC. (2024a). Benzene Market: Global Industry Trends, Share, Size, Growth, Opportunity and Forecast 2024-2032. IMARC Group. Retrieved June 20 from https://www.imarcgroup.com/benzene-technical-material-market-report
IMARC. (2024b). Styrene Market Report by Product Type (Polystyrene, Acrylonitrile Butadiene Styrene, Styrene Acrylonitrile, Styrene-Butadiene Rubber, and Others), End User (Packaging, Construction, Consumer Goods, Automotive, and Others), and Region 2025-2033. IMARC. https://www.imarcgroup.com/styrene-market
Kim, H. W., Lee, S. M., Seo, J. A., & Kim, Y. S. (2019). Effects of pH and Cultivation Time on the Formation of Styrene and Volatile Compounds by Penicillium expansum. Molecules, 24(7). https://doi.org/10.3390/molecules24071333
Kivistö, K., Kroemer, H., Linder, A., Friedel, G., Beaune, P., Belloc, C., & Fritz, P. (1995). Immunohistochemical localization of cytochrome P450 2E1 in human pulmonary carcinoma and normal bronchial tissue. Virchows Archiv, 426(3), 243-247. https://doi.org/10.1007/BF00191361
Kogevinas, M., Ferro, G., Andersen, A., Bellander, T., Biocca, M., Coggon, D., Gennaro, V., Hutchings, S., Kolstad, H., & Lundberg, I. (1994). Cancer mortality in a historical cohort study of workers exposed to styrene. Scandinavian journal of work, environment & health, 251-261.
Koh, D. H., Kim, T. W., Yoon, Y. H., Shin, K. S., & Yoo, S. W. (2011). Lymphohematopoietic cancer mortality and morbidity of workers in a refinery/petrochemical complex in Korea. Saf Health Work, 2(1), 26-33. https://doi.org/10.5491/shaw.2011.2.1.26
Kolstad, H. A., Juel, K., Olsen, J., & Lynge, E. (1995). Exposure to styrene and chronic health effects: mortality and incidence of solid cancers in the Danish reinforced plastics industry. Occupational and environmental medicine, 52(5), 320-327.
Kolstad, H. A., Lynge, E., Olsen, J., & Breum, N. (1994). Incidence of lymphohematopoietic malignancies among styrene-exposed workers of the reinforced plastics industry. Scandinavian journal of work, environment & health, 272-278.
Kousalová, L., Anzenbacherova, E., Jandova, J., Anzenbacher, P., Skoumalová, I., & Vondrakova, J. (2004). Presence of cytochrome P450 enzymes in human CD34+ haematopoietic progenitor cells. General physiology and biophysics, 23, 251-257.
Lafeuille, J. L., Buniak, M. L., Vioujas, M. C., & Lefevre, S. (2009). Natural formation of styrene by cinnamon mold flora. J Food Sci, 74(6), M276-283. https://doi.org/10.1111/j.1750-3841.2009.01206.x
Lin, Y.-S., Hsieh, N.-H., Schlosser, P. M., Dzierlenga, M. W., & Ju, H. (2025). Bayesian refinement of a physiologically based pharmacokinetic model for ethylbenzene pharmacokinetics in mice, rats, and humans. Toxicological Sciences, kfaf070. https://doi.org/10.1093/toxsci/kfaf070
Linet, M. S., Yin, S. N., Gilbert, E. S., Dores, G. M., Hayes, R. B., Vermeulen, R., Tian, H. Y., Lan, Q., Portengen, L., Ji, B. T., Li, G. L., & Rothman, N. (2015). A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers. Int J Cancer, 137(9), 2184-2197. https://doi.org/10.1002/ijc.29591
Mäki‐Paakkanen, J., Norppa, H., Walles, S., Osterman‐Golkar, S., & Oleson, F. (1991). Single‐strand breaks, chromosome aberrations, sister‐chromatid exchanges, and micronuclei in blood lymphocytes of workers exposed to styrene during the production of reinforced plastics. Environmental and molecular mutagenesis, 17(1), 27-31.
Maltoni, C., Conti, B., & Cotti, G. (1983). Benzene: a multipotential carcinogen. Results of long-term bioassays performed at the Bologna Institute of Oncology. Am J Ind Med, 4(5), 589-630. https://doi.org/10.1002/ajim.4700040503
McGregor, D. B., Brown, A., Cattanach, P., Edwards, I., McBride, D., Riach, C., & Caspary, W. J. (1988). Responses of the L5178Y tk+/tk− mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environmental Mutagenesis, 12(1), 85-154.
Melnick, R. L., & Sills, R. C. (2001). Comparative carcinogenicity of 1,3-butadiene, isoprene, and chloroprene in rats and mice. Chemico-Biological Interactions, 135-136, 27-42. https://doi.org/https://doi.org/10.1016/S0009-2797(01)00213-7
Mordor Intelligence Research & Advisory. (2024). Ethylbenzene Market - Growth, Trends, and Forecasts (2024 - 2030). Mordor Intelligence. Retrieved June 22 from https://www.mordorintelligence.com/industry-reports/ethylbenzene-market
NCBI. (2023). Isoprene. PubChem, U.S. National Library of Medicine. Retrieved June 23, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Isoprene
NCBI. (2024). Styrene. PubChem, U.S. National Library of Medicine. Retrieved June 23, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Styrene
NCBI. (2025a). PubChem Compound Summary for CID 241, Benzene. National Center for Biotechnology Information. Retrieved June 20 from https://pubchem.ncbi.nlm.nih.gov/compound/Benzene
NCBI. (2025b). PubChem Compound Summary for CID 6629, Cumene hydroperoxide. Retrieved June 19 from https://pubchem.ncbi.nlm.nih.gov/compound/Cumene-hydroperoxide
NCBI. (2025c). PubChem Compound Summary for CID 7500, Ethylbenzene. U.S. National Library of Medicine. Retrieved June 22 from https://pubchem.ncbi.nlm.nih.gov/compound/Ethylbenzene
Nikfar, S., & Behboudi, A. F. (2014). Cumene. In P. Wexler (Ed.), Encyclopedia of Toxicology (Third Edition) (pp. 1082-1085). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-386454-3.00599-6
Nohmi, T. (2018). Thresholds of Genotoxic and Non-Genotoxic Carcinogens. Toxicological Research, 34(4), 281-290. https://doi.org/10.5487/TR.2018.34.4.281
Norppa, H., & Vainio, H. (1983). Induction of sister-chromatid exchanges by styrene analogues in cultured human lymphocytes. Mutation Research/Genetic Toxicology, 116(3), 379-387. https://doi.org/https://doi.org/10.1016/0165-1218(83)90076-9
NRC. (1983). In Risk Assessment in the Federal Government: Managing the Process. National Academies Press (US)
Copyright © National Academy of Sciences. https://doi.org/10.17226/366
NTP. (1992). Toxicity Studies of Ethylbenzene in F344/N Rats and B6C3F1 Mice (Inhalation Studies). U. S. D. o. H. a. H. Services. https://ntp.niehs.nih.gov/publications/reports/tox/tox010
NTP. (1995). NTP Technical Report on Toxicity Studies of Isoprene (CAS No. 78-79-5) Administered by Inhalation to F344/N Rats and B6C3F1 Mice.
NTP. (1999a). NTP Technical Report on the Toxicology and Carcinogenesis Studies of Ethylbenzene (CAS No. 100-41-4) in F344/N Rats and B6C3F1 Mice (Inhalation Studies) (NTP TR 466). https://ntp.niehs.nih.gov/publications/reports/tr/tr466
NTP. (1999b). NTP Toxicology and Carcinogenesis Studies of Isoprene (CAS No. 78-79-5) in F344/N Rats (Inhalation Studies). Natl Toxicol Program Tech Rep Ser, 486, 1-176.
NTP. (2007). Toxicology and carcinogenesis studies of alpha-methylstyrene (Cas No. 98-83-9) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser(543), 1-210.
NTP. (2008). Report on Carcinogens Background Document for Styrene (Report on Carcinogens Background Document, Issue. U. S. D. o. H. a. H. Services. https://ntp.niehs.nih.gov/sites/default/files/ntp/roc/twelfth/2010/finalbds/styrene_final_508.pdf
NTP. (2009). Toxicology and carcinogenesis studies of cumene (CAS No. 98-82-8) in F344/N rats and B6C3F1 mice (inhalation studies). Natl Toxicol Program Tech Rep Ser(542), 1-200.
NTP. (2012). Final report on the cumene (CASRN 98-82-8) genotoxicity studies. N. I. o. H. U.S. Department of Health and Human Services. https://ntp.niehs.nih.gov/sites/default/files/ntp/roc/thirteenth/genotoxstudies/cumenegtox_508.pdf
NTP. (2013a). Final report on the cumene (CASRN 98‐82‐8) genotoxicity studies.
NTP. (2013b). Report on Carcinogens Monograph on Cumene: RoC Monograph 02. Rep Carcinog Monogr(02), 1-166. https://doi.org/10.22427/roc-mgraph-02
NTP. (2021a). 15th Report on Carcinogens-cumene. NTP. https://www.ncbi.nlm.nih.gov/books/NBK590843/
NTP. (2021b). 15th Report on Carcinogens-styrene. In 15th Report on Carcinogens-styrene [Internet]. National Toxicology Program. https://ntp.niehs.nih.gov/sites/default/files/ntp/roc/content/profiles/styrene.pdf
NTP. (2021c). Report on Carcinogens, Fifteenth Edition: Isoprene. https://ntp.niehs.nih.gov/sites/default/files/ntp/roc/content/profiles/isoprene.pdf
NTP. (2021d). Report on Carcinogens, Fourteenth Edition: Benzene (NTP RoC 15th Edition, Substance Profile: Benzene). https://ntp.niehs.nih.gov/sites/default/files/ntp/roc/content/profiles/benzene.pdf
OEHHA. (1996). Isoprene. Retrieved June 25 from https://oehha.ca.gov/proposition-65/chemicals/isoprene
OEHHA. (2004). Ethylbenzene. OEHHA, California Environmental Protection Agency. Retrieved June 25 from https://oehha.ca.gov/chemicals/ethylbenzene
OEHHA. (2007). Adoption of an Inhalation Unit Risk Value for Ethylbenzene. California Environmental Protection Agency. Retrieved August 1 from https://oehha.ca.gov/air/report-hot-spots/adoption-unit-risk-value-ethylbenzene
OEHHA. (2016). Notice to Interested Parties: Styrene listed as known to the State of California to cause cancer. California Environmental Protection Agency Retrieved from https://oehha.ca.gov/proposition-65/crnr/styrene-listed-effective-april-22-2016-known-state-california-cause-cancer
OEHHA. (2018). Calculation of rat breathing rate based on bodyweight. https://oehha.ca.gov/sites/default/files/media/downloads/crnr/calcuratbreathingrate092818.pdf
OEHHA. (2025). Isoprene Cancer Inhalation Unit Risk Factor. https://oehha.ca.gov/sites/default/files/media/2025-01/IsopreneIUR010325.pdf
Placke, M. E., Griffis, L., Bird, M., Bus, J., Persing, R. L., & Anthony Cox, L. (1996). Chronic inhalation oncogenicity study of isoprene in B6C3F1 mice. Toxicology, 113(1), 253-262. https://doi.org/https://doi.org/10.1016/0300-483X(96)03454-3
Research and Markets. (2024). Isoprene market size, share & trends analysis report 2024–2030. Retrieved June 23, 2025 from https://www.researchandmarkets.com/report/isoprene
Ruder, A. M., Ward, E. M., Dong, M., Okun, A. H., & Davis‐King, K. (2004). Mortality patterns among workers exposed to styrene in the reinforced plastic boatbuilding industry: an update. American journal of industrial medicine, 45(2), 165-176.
Rushton, L., & Romaniuk, H. (1997). A case-control study to investigate the risk of leukaemia associated with exposure to benzene in petroleum marketing and distribution workers in the United Kingdom. Occup Environ Med, 54(3), 152-166. https://doi.org/10.1136/oem.54.3.152
Sams, C., Loizou, G. D., Cocker, J., & Lennard, M. S. (2004). Metabolism of ethylbenzene by human liver microsomes and recombinant human cytochrome P450s (CYP). Toxicology letters, 147(3), 253-260.
Schnatter, A. R., Glass, D. C., Tang, G., Irons, R. D., & Rushton, L. (2012). Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J Natl Cancer Inst, 104(22), 1724-1737. https://doi.org/10.1093/jnci/djs411
Scott, D., & Preston, R. J. (1994). A re-evaluation of the cytogenetic effects of styrene. Mutation Research/Reviews in Genetic Toxicology, 318(3), 175-203.
Seidel, S., Schisler, M., & Kleinert, K. (2006). Evaluation of ethylbenzene in the mouse lymphoma (L5178YTK+/-) forward mutation assay. Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Study ID, 51157.
Shao, K., & Small, M. J. (2011). Potential uncertainty reduction in model-averaged benchmark dose estimates informed by an additional dose study. Risk Anal, 31(10), 1561-1575. https://doi.org/10.1111/j.1539-6924.2011.01595.x
Sharkey, T. D., Wiberley, A. E., & Donohue, A. R. (2008). Isoprene emission from plants: why and how. Ann Bot, 101(1), 5-18. https://doi.org/10.1093/aob/mcm240
Snyder, C. A., Goldstein, B. D., Sellakumar, A. R., Bromberg, I., Laskin, S., & Albert, R. E. (1980). The inhalation toxicology of benzene: incidence of hematopoietic neoplasms and hematotoxicity in ARK/J and C57BL/6J mice. Toxicol Appl Pharmacol, 54(2), 323-331. https://doi.org/10.1016/0041-008x(80)90202-1
Snyder, C. A., Sellakumar, A. R., James, D. J., & Albert, R. E. (1988). The carcinogenicity of discontinuous inhaled benzene exposures in CD-1 and C57Bl/6 mice. Arch Toxicol, 62(5), 331-335. https://doi.org/10.1007/bf00293618
Stenehjem, J. S., Kjærheim, K., Bråtveit, M., Samuelsen, S. O., Barone-Adesi, F., Rothman, N., Lan, Q., & Grimsrud, T. K. (2015). Benzene exposure and risk of lymphohaematopoietic cancers in 25 000 offshore oil industry workers. Br J Cancer, 112(9), 1603-1612. https://doi.org/10.1038/bjc.2015.108
Sukul, P., Richter, A., Junghanss, C., Schubert, J. K., & Miekisch, W. (2023). Origin of breath isoprene in humans is revealed via multi-omic investigations. Commun Biol, 6(1), 999. https://doi.org/10.1038/s42003-023-05384-y
Tice, R. R. (1988). The cytogenetic evaluation of in vivo genotoxic and cytotoxic activity using rodent somatic cells. Cell Biol Toxicol, 4(4), 475-486. https://doi.org/10.1007/bf00117775
U.S. EPA. (1991). Toxicological Review of Ethylbenzene (CASRN 100-41-4). https://iris.epa.gov/static/pdfs/0051_summary.pdf
U.S. EPA. (1992). Toxicological Review of Styrene (CASRN 100-42-5). https://iris.epa.gov/static/pdfs/0104_summary.pdf
U.S. EPA. (1997). Toxicological Review of Cumene (CASRN 98-82-8). https://iris.epa.gov/static/pdfs/0306_summary.pdf
U.S. EPA. (2003a). Toxicological Review of benzene (CASRN 71-43-2). https://iris.epa.gov/static/pdfs/0276_summary.pdf
U.S. EPA. (2003b). Toxicological Review of Cyclohexane (CASRN 110-82-7). https://iris.epa.gov/static/pdfs/1005_summary.pdf
U.S. EPA. (2005a). Guidelines for Carcinogen Risk Assessment. https://www.epa.gov/sites/default/files/2013-09/documents/cancer_guidelines_final_3-25-05.pdf
U.S. EPA. (2005b). Toxicological Review of n-Hexane (CASRN 110-54-3). https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/0486_summary.pdf
U.S. EPA. (2005c). Toxicological Review of Toluene (CASRN 108-88-3). https://iris.epa.gov/static/pdfs/0118_summary.pdf
U.S. EPA. (2009). Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment). U. S. E. P. Agency. https://semspub.epa.gov/work/HQ/140530.pdf
U.S. EPA. (2011). Recommended use of body weight 3/4 as the default method in derivation of the oral reference dose. https://www.epa.gov/risk/recommended-use-body-weight-34-default-method-derivation-oral-reference-dose
U.S. EPA. (2012). Benchmark Dose Technical Guidance (EPA/100/R-12/001). https://www.epa.gov/sites/default/files/2015-01/documents/benchmark_dose_guidance.pdf
U.S. EPA. (2016). Toxicological Review of 1,3,5-Trimethylbenzene (CASRN 108-67-8). https://cfpub.epa.gov/ncea/iris/iris_documents/documents/subst/1037_summary.pdf
U.S. EPA. (2024). Volatile organic compounds' impact on indoor air quality. U.S. Environmental Protection Agency. Retrieved June 23, 2025 from https://www.epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality
U.S. EPA. (2025). Technical Overview of Volatile Organic Compounds. https://www.epa.gov/indoor-air-quality-iaq/technical-overview-volatile-organic-compounds
Vaghef, H., & Hellman, B. (1998). Detection of styrene and styrene oxide‐induced DNA damage in various organs of mice using the comet assay. Pharmacology & toxicology, 83(2), 69-74.
Vodicka, P., Koskinen, M., Naccarati, A., Oesch-Bartlomowicz, B., Vodickova, L., Hemminki, K., & Oesch, F. (2006). Styrene metabolism, genotoxicity, and potential carcinogenicity. Drug metabolism reviews, 38(4), 805-853.
Vodicka, P., Koskinen, M., Vodicková, L., Štetina, R., Šmerák, P., Bárta, I., & Hemminki, K. (2001). DNA adducts, strand breaks and micronuclei in mice exposed to styrene by inhalation. Chemico-Biological Interactions, 137(3), 213-227.
Walles, S. S., & Orsen, I. (1983). Single-strand breaks in DNA of various organs of mice induced by styrene and styrene oxide. Cancer letters, 21(1), 9-15.
WHO. (1989). Indoor air quality: organic pollutants. Report on a WHO meeting. EURO Rep Stud(111), 1-70.
WHO. (2000). Air quality guidelines for Europe, 2nd edition. https://www.who.int/publications/i/item/9789289013581
Wollny, H. (2000). Cell mutation assay at the thymidine kinase locus (TK+/−) in mouse lymphoma L5178Y cells (soft agar method) with ethylbenzene. RCC-CCR Project No, 635300.
Wong, O., Trent, L. S., & Whorton, M. D. (1994). An updated cohort mortality study of workers exposed to styrene in the reinforced plastics and composites industry. Occupational and environmental medicine, 51(6), 386-396.
Yue, S., Pilon, P., & Cavadias, G. (2002). Power of the Mann–Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series. Journal of Hydrology, 259(1), 254-271. https://doi.org/https://doi.org/10.1016/S0022-1694(01)00594-7
中華民國法務部. (2023). 揮發性有機物空氣污染管制及排放標準. 中華民國法務部. Retrieved 2025年6月23日 from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020030
王介亨. (2022). 品保查核計畫:光化學評估監測站操作品質保例行性計畫(111年度). https://epq.moenv.gov.tw/ProjectData/ResultDetail?proj_id=1110083978&proj_recno=26
行政院環境部. (2025). 空氣品質監測資料集. 行政院環境保護署. Retrieved 2025年6月27日 from https://data.moenv.gov.tw/dataset/detail/aqx_p_25
吳焜裕. (2020). 健康風險評估:科學決策之基礎. 新文京.
國家衛生研究院. (2022). Consumer-only 食物大類攝食量計算結果(資料來源:2017–2020 營養調查). Retrieved 7月2日 from https://tnfcds.nhri.edu.tw/index.php?action=download&p=1
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99929-
dc.description.abstract揮發性有機化合物 (Volatile Organic Compounds, VOCs) 是日常生活環境中常會接觸到的空氣污染物,常溫常壓下多以氣態形式存在,主要透過吸入途徑進入人體。其主要排放源包括交通運輸、石化製程及各類工業活動。其中有些VOCs會參與光化學反應並促成臭氧生成,因此臺灣環保署 (現改為環境部) 自 2003 年起,於臺灣西部地區陸續設置光化學評估監測站 (Photochemical Assessment Monitoring Stations, PAMS),目前全臺共有11座光化測站持續運行中。測站長期逐時監測54種 VOCs的濃度,為臭氧生成分析與空氣品質研究提供重要資料庫。
長期暴露於部分 VOCs 可能會對人體健康造成不良影響,包括損害神經、呼吸及免疫系統,甚至具致癌性。根據國際癌症研究機構 (International Agency for Research on Cancer, IARC) 分類,在PAMS所監測的54種VOCs中,苯、苯乙烯、異戊二烯、異丙基苯與乙苯分別被列為已知、極可能或可能的人類致癌物,顯示長期暴露於VOCs對人體具有潛在健康影響,其健康風險值得進一步評估。
儘管臺灣已累積多年VOCs監測資料,針對其長期暴露所造成的健康風險,特別是致癌風險評估研究仍然非常有限。過去國內相關評估多引用美國環保署風險資訊系統 (Integrated Risk Information System, IRIS) 所提供的致癌斜率係數 (Cancer slope factor, CSF)或吸入單位風險值 (Inhalation Unit Risk, IUR),然而目前僅苯有提供相關IUR值,苯乙烯、異戊二烯、異丙基苯與乙苯,則因尚未完成評估或未曾評估,使得IRIS目前仍無提供這些致癌物質的CSF或IUR值,這也解釋了國內未曾針對這些物質進行致癌風險評估的原因。
因此,本研究整合長期 PAMS 監測數據與 VOCs 毒理學文獻,針對被 IARC 歸類為 2B 級以上、且具基因毒性的VOCs,進行CSF與IUR的推估與健康風險評估。研究篩選出苯、苯乙烯、異戊二烯、異丙基苯與乙苯等五種目標物質,並依循風險評估四大步驟進行分析。在劑量效應評估方面,採用美國國家毒理計畫(National Toxicology Program, NTP) 與其他長期動物吸入試驗數據,並使用美國環保署開發的貝氏統計基準劑量軟體 (Bayesian Benchmark Dose Software, BSBMDS)進行劑量效應關係擬合,推估各物質之基準劑量下限 (Benchmark Dose Lower Confidence Limit, BMDL),以進一步計算CSF及IUR。在暴露評估部分,彙整 2006至2023 年間全臺 11 座 PAMS 測站之逐時 VOCs 監測資料,針對未檢出值 (Not Detected, ND) 以 0 或 1/2 方法偵測極限進行補值,計算年平均濃度。並整理各測站自設立起至 2023 年間的年平均濃度數據,取得平均值、最大值、最小值與標準差,以代表民眾長期暴露情況。並透過 Mann-Kendall 檢定分析濃度變化趨勢。最後,結合暴露濃度分布與 IUR,假設濃度符合截斷常態分布 (Truncated normal distribution),使用 Crystal Ball 軟體進行 10,000 次蒙地卡羅模擬,推估不同地區居民之終身吸入致癌風險。
研究結果顯示,多數監測站的總致癌風險已超過 1 × 10-6,部分地區甚至達到 10-4,顯示特定區域居民長期暴露於較高風險環境中,尤以工業與交通活動密集的高雄、臺南與臺北萬華最為顯著。相較之下,雲林臺西與嘉義朴子等農業區風險則較低。而苯乙烯與異丙基苯因 IUR 較高,是主要風險貢獻物質。
時段分析指出,苯、異丙基苯與乙苯在通勤尖峰時段濃度上升,可能與交通排放相關;異戊二烯則於清晨六時濃度大幅升高,推測可能主要來自移動污染源排放。時間趨勢分析則發現VOCs 濃度多呈下降趨勢,反映污染控制政策的成效。此外,若僅以近年濃度資料進行評估,將低估長期暴露風險約 1 至 3 倍,顯示納入長期監測數據的重要性。
本研究亦存在若干限制與不確定性,需在解讀結果時加以審慎考量。例如,動物實驗顯示雌性老鼠對苯乙烯與異戊二烯所引發的腫瘤反應較為敏感,惟因可能存在代謝飽和效應,導致雌鼠資料擬合不佳,故本研究改採雄性老鼠之腫瘤資料進行劑量效應擬合,可能低估女性或其他易感族群之健康風險。此外,部分常見 VOCs (如1,3-丁二烯) 因僅於特殊工業區進行監測,未能納入本研究的致癌風險總量分析,亦為一潛在限制。
總結而言,本研究針對臺灣地區的 VOCs 致癌風險進行量化分析,首次補足苯乙烯、異戊二烯、異丙基苯與乙苯等物質在IUR的知識缺口,並辨識出潛在高風險區域與主要風險貢獻物質。研究成果可作為未來風險溝通、污染源管理與環境政策擬定的科學依據,亦強調持續更新監測資料與精進風險評估方法的必要性。
zh_TW
dc.description.abstractVolatile organic compounds (VOCs) are common air pollutants in our environment, originating mainly from vehicular emissions, petrochemical processes, and industrial activities. The primary exposure route for humans is inhalation. VOCs are precursors for the formation of ozone through photochemical reactions. Therefore, the former Taiwan Protection Administration (current the Taiwan Ministry of Environmental Protection) gradually established 11 photochemical assessment monitoring stations (PAMSs) in western Taiwan since 2003. Hourly samples have been collected and analyzed for 54 VOCs at each PAMS. Among the 54 VOCs monitored, some of them have been associated with adverse health effects, including neurological, respiratory, and immune toxicity, as well as carcinogenicity. The International Agency for Research on Cancer (IARC) classified benzene, styrene, isoprene, isopropylbenzene, and ethylbenzene as known, possible, or probable human carcinogens, highlighting potential health effects due to long-term exposures to these VOCs and the need for further health risk assessment.
Although the potential health impacts caused by long-term VOC exposures have been of great concern, cancer risk has remained limited. One of the reasons was the lack of cancer slope factors (CSFs) and/or inhalation unit risks (IURs) for many VOCs in the U.S. EPA’s IRIS database, except for benzene, given that the chronological PAMS VOC dataset is valuable for the study of ozone formation and the assessment of VOC exposures and risk to address the potential health impacts to the residents near the PAMSs. This study aims to integrate 11 PAMS monitoring data (2006–2023) with toxicological data to derive CSFs and IURs for four VOCs: styrene, isoprene, isopropylbenzene, and ethylbenzene, and to assess cancer risk for the 4 VOCs and benzene. Benchmark Dose Lower Confidence Limits (BMDLs) were estimated by fitting data from long-term animal studies using the Bayesian statistics Benchmark Dose Software (BSBMDS). The BMDLs were used to derive CSFs and IURs of the four VOCs. Exposures were assessed using hourly VOC data, with non-detectable samples assigned to half the method detection limit. The annual average concentrations across the 11 stations were analyzed for temporal trends with the Mann-Kendall test and assumed to belong to truncated normal distributions. Monte Carlo simulations were applied to estimate lifetime cancer risks with 10000 iterations using the Crystal Ball software.
Results showed elevated risk in industrial and high-traffic areas such as Kaohsiung (Xiaogang, Qiaotou), Tainan, and Wanhua stations. In these regions, styrene and isopropylbenzene—both with high IURs—were major contributors. Conversely, agricultural areas associated with a petrochemical industrial area, such as Taixi and Puzi stations, revealed notably lower concentrations and cancer risks. Temporal trends indicated a general decline in VOC levels, reflecting the effectiveness of air pollution control policies. Hourly concentration patterns further suggested that traffic emissions were responsible for certain VOCs (e.g., benzene, isopropylbenzene, ethylbenzene).
Most of the 11 PAMSs reported total cancer risks exceeding the negligible risk of
1 × 10-6, with some approaching 1 × 10-4, underscoring potential chronic health concerns. Notably, previous assessments that relied on recent year data (e.g., 2023) could underestimate long-term risk by up to 1–3 times.
This study acknowledges limitations, such as potential underestimation of risks for sensitive populations (e.g., females). The female rat rodents showed high tumor incidences, compared with the males, and lacked a dose-dependent increase, which was a poor fit for BSBMDS. Therefore, the IURs and cancer risks of isoprene and styrene may have been underestimated. Additionally, certain carcinogenic VOCs like 1,3-butadiene and acrylonitrile were not included because they were not monitored by the PAMSs. Overall, this assessment, based on the best toxicological and VOC data of the PAMS dataset, provides critical updates to VOC risk parameters and identifies priority pollutants and regions, offering a scientific foundation for future risk communication, regulatory actions, and environmental policy development in Taiwan to improve public protection.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:19:44Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:19:44Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT vi
目 次 ix
圖 次 xii
表 次 xiii
附錄目次 xv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
第二章 研究背景 3
2.1 揮發性有機化合物簡介與篩選 3
2.1.1 苯 (benzene) 4
2.1.2 苯乙烯 (styrene) 6
2.1.3 異戊二烯 (isoprene) 9
2.1.4 異丙基苯 (isopropylbenzene) 11
2.1.5 乙苯 (ethylbenzene) 15
2.2 知識缺口 17
2.3 光化學評估監測站 18
2.4 風險評估步驟 19
2.4.1 有害物質鑑定 20
2.4.2 暴露評估 20
2.4.3 劑量效應評估 21
2.4.4 風險特性化 24
第三章 研究方法 25
3.1 研究架構 25
3.2 暴露評估 25
3.2.1 環境中致癌性VOCs的數據來源與整理 25
3.2.2 趨勢統計分析方法 26
3.3 劑量效應評估 27
3.3.1 苯 (benzene) 28
3.3.2 苯乙烯 (styrene) 28
3.3.3 異戊二烯 (isoprene) 29
3.3.4 異丙基苯 (isopropylbenzene) 29
3.3.5 乙苯 (ethylbenzene) 30
3.4 劑量轉換與物種外插 31
3.5 致癌風險計算 33
第四章 結果 35
4.1 暴露濃度與時空趨勢變化 35
4.1.1 苯 (benzene) 35
4.1.2 苯乙烯 (styrene) 36
4.1.3 異戊二烯 (isoprene) 37
4.1.4 異丙基苯 (isopropylbenzene) 37
4.1.5 乙苯 (ethylbenzene) 38
4.2 劑量效應評估 39
4.2.1 苯 (benzene) 39
4.2.2 苯乙烯 (styrene) 39
4.2.3 異戊二烯 (isoprene) 40
4.2.4 異丙基苯 (isopropylbenzene) 40
4.2.5 乙苯 (ethylbenzene) 40
4.3 健康風險評估 41
4.3.1 苯 (benzene) 41
4.3.2 苯乙烯 (styrene) 42
4.3.3 異戊二烯 (isoprene) 42
4.3.4 異丙基苯 (isopropylbenzene) 43
4.3.5 乙苯 (ethylbenzene) 43
4.3.6 總致癌風險 44
第五章 討論 46
5.1 未檢出值 (ND) 處理方式之影響 46
5.1.1 暴露濃度與時空趨勢變化之差異 46
5.1.2 致癌風險值之差異 47
5.2 VOCs時空分布特徵 47
5.2.1 VOCs空間分布特徵 47
5.2.2 VOCs時間分布特徵 48
5.3 吸入單位風險 (IUR) 之比較 48
5.3.1 本研究五種 VOCs 間之 IUR 比較 48
5.3.2 與其他常見具 IUR 值之 VOCs比較 49
5.3.3 與加州環保局 (OEHHA) 所建議之 IUR 值比較 50
5.4 致癌風險評估結果比較 51
5.5 致癌風險是否可以相加 52
5.6 研究限制與不確定性 52
5.6.1 研究限制 52
5.6.2 不確定性 53
第六章 結論 55
圖 56
表 80
參考文獻 103
附錄 112
-
dc.language.isozh_TW-
dc.subject風險評估zh_TW
dc.subject揮發性有機化合物zh_TW
dc.subject吸入單位風險zh_TW
dc.subject暴露評估zh_TW
dc.subject光化學監測站zh_TW
dc.subjectPhotochemical Assessment Monitoring Stationen
dc.subjectExposure Assessmenten
dc.subjectInhalation Unit Risken
dc.subjectRisk Assessmenten
dc.subjectVolatile Organic Compoundsen
dc.title大氣中致癌揮發性有機化合物的特性及健康風險評估zh_TW
dc.titleCharacterization and Health Risk Assessment for Ambient Carcinogenic Volatile Organic Compoundsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃偉鳴;顏有利;林文印;羅宇軒zh_TW
dc.contributor.oralexamcommitteeWei-Ming Huang;You-Li Yan;Wen-Yinn Lin;Yu-Syuan Luoen
dc.subject.keyword揮發性有機化合物,風險評估,光化學監測站,暴露評估,吸入單位風險,zh_TW
dc.subject.keywordVolatile Organic Compounds,Risk Assessment,Photochemical Assessment Monitoring Station,Exposure Assessment,Inhalation Unit Risk,en
dc.relation.page149-
dc.identifier.doi10.6342/NTU202503791-
dc.rights.note未授權-
dc.date.accepted2025-08-05-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved