請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99922完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏嘉徵 | zh_TW |
| dc.contributor.advisor | Chia-Cheng Wei | en |
| dc.contributor.author | 周倢伃 | zh_TW |
| dc.contributor.author | Chieh-Yu Chou | en |
| dc.date.accessioned | 2025-09-19T16:18:28Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Altun, Z. F. a. H., D.H. (2009). Introduction to C. elegans anatomy. WormAtlas. https://www.wormatlas.org/hermaphrodite/introduction/mainframe.htm
Ambros, V., & Ruvkun, G. (2018). Recent molecular genetic explorations of Caenorhabditis elegans microRNAs. Genetics, 209, 651-673. Andersen, M. E., Butenhoff, J. L., Chang, S.C., Farrar, D. G., Kennedy, G. L., Jr, Lau, C., Olsen, G. W., Seed, J., & Wallace, K. B. (2007). Perfluoroalkyl acids and related chemistries—toxicokinetics and modes of action. Toxicological Sciences, 102, 3-14. Androulakakis, A., Alygizakis, N., Gkotsis, G., Nika, M.C., Nikolopoulou, V., Bizani, E., Chadwick, E., Cincinelli, A., Claßen, D., Danielsson, S., Dekker, R. W. R. J., Duke, G., Glowacka, N., Jansman, H. A. H., Krone, O., Martellini, T., Movalli, P., Persson, S., Roos, A., Thomaidis, N. S. (2022). Determination of 56 per- and polyfluoroalkyl substances in top predators and their prey from Northern Europe by LC-MS/MS. Chemosphere, 287, 131775. Antoshechkin, I., & Sternberg, P. W. (2007). The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nature Reviews Genetics, 8, 518-532. Apelberg, B. J., Witter, F. R., Herbstman, J. B., Calafat, A. M., Halden, R. U., Needham, L. L., & Goldman, L. R. (2007). Cord serum concentrations of perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in relation to weight and size at birth. Environmental Health Perspectives, 115, 1670-1676. ATSDR. (2021). Toxicological profile for perfluoroalkyls. Agency for Toxic Substances and Disease Registry. https://stacks.cdc.gov/view/cdc/59198 Authority, E. F. S. (2012). Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA Journal, 1, 2743. Baker, M. E. (1988). Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase?. Biochemical Journal, 255, 1057-1060. Banzhaf, S., Filipovic, M., Lewis, J., Sparrenbom, C. J., & Barthel, R. (2017). A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio, 46, 335-346. Barrett, E. S., Chen, C., Thurston, S. W., Haug, L. S., Sabaredzovic, A., Fjeldheim, F. N., Frydenberg, H., Lipson, S. F., Ellison, P. T., & Thune, I. (2015). Perfluoroalkyl substances and ovarian hormone concentrations in naturally cycling women. Fertility and Sterility, 103, 1261-1270. Barry, V., Winquist, A., & Steenland, K. (2013). Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environmental Health Perspectives, 121, 1313-1318. Blake, B. E., Cope, H. A., Hall, S. M., Keys, R. D., Mahler, B. W., McCord, J., Scott, B., Stapleton, H. M., Strynar, M. J., Elmore, S. A., & Fenton, S. E. (2020). Evaluation of maternal, embryo, and placental effects in CD-1 mice following gestational exposure to perfluorooctanoic acid (PFOA) or hexafluoropropylene oxide dimer acid (HFPO-DA or GenX). Environmental Health Perspectives, 128, 027006. Boyd, R. I., Ahmad, S., Singh, R., Fazal, Z., Prins, G. S., Madak Erdogan, Z., Irudayaraj, J., & Spinella, M. J. (2022). Toward a mechanistic understanding of poly-and perfluoroalkylated substances and cancer. Cancers, 14, 2919. Boyd, W. A., Smith, M. V., & Freedman, J. H. (2012). Caenorhabditis elegans as a model in developmental toxicology. Developmental Toxicology: Methods and Protocols, 889, 15-24. Brandsma, S. H., Koekkoek, J. C., van Velzen, M. J. M., & de Boer, J. (2019). The PFOA substitute GenX detected in the environment near a fluoropolymer manufacturing plant in the Netherlands. Chemosphere, 220, 493-500. Brase, R. A., Mullin, E. J., & Spink, D. C. (2021). Legacy and emerging per- and polyfluoroalkyl substances: analytical techniques, environmental fate, and health effects. International Journal of Molecular Sciences, 22, 995. Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71-94. Brown-Leung, J. M., & Cannon, J. R. (2022). Neurotransmission targets of per-and polyfluoroalkyl substance neurotoxicity: mechanisms and potential implications for adverse neurological outcomes. Chemical Research in Toxicology, 35, 1312-1333. Brunn, H., Arnold, G., Körner, W., Rippen, G., Steinhäuser, K. G., & Valentin, I. (2023). PFAS: forever chemicals—persistent, bioaccumulative and mobile. Reviewing the status and the need for their phase out and remediation of contaminated sites. Environmental Sciences Europe, 35, 20. Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integrated Environmental Assessment and Management, 7, 513-541. Buhrke, T., Kibellus, A., & Lampen, A. (2013). In vitro toxicological characterization of perfluorinated carboxylic acids with different carbon chain lengths. Toxicology Letters, 218, 97-104. Cao, Z., Dai, L., Li, J., Zhang, J., Wang, X., Xu, A., & Du, H. (2024). Reproductive and germ-cell mutagenic effects of poly-and perfluoroalkyl substances (PFAS) to Caenorhabditis elegans after multigenerational exposure. Science of the Total Environment, 954, 176224. Cave, M. C. (2020). Environmental pollution and the developmental origins of childhood liver disease. Hepatology, 72, 1518-1521. Chambers, W. S., Hopkins, J. G., & Richards, S. M. (2021). A review of per- and polyfluorinated alkyl substance impairment of reproduction. Frontiers in Toxicology, 3, 732436. Chen, W.L., Bai, F.Y., Chang, Y.C., Chen, P.C., & Chen, C.Y. (2018). Concentrations of perfluoroalkyl substances in foods and the dietary exposure among Taiwan general population and pregnant women. Journal of Food and Drug Analysis, 26, 994-1004. Chen, Y., Zhou, L., Xu, J., Zhang, L., Li, M., Xie, X., Xie, Y., Luo, D., Zhang, D., & Yu, X. (2017). Maternal exposure to perfluorooctanoic acid inhibits luteal function via oxidative stress and apoptosis in pregnant mice. Reproductive Toxicology, 69, 159-166. Choi, B.K., Chitwood, D. J., & Paik, Y.K. (2003). Proteomic changes during disturbance of cholesterol metabolism by azacoprostane treatment in Caenorhabditis elegans. Molecular & Cellular Proteomics, 2, 1086-1095. Chowdhury, M. I., Sana, T., Panneerselvan, L., Dharmarajan, R., & Megharaj, M. (2021). Acute toxicity and transgenerational effects of perfluorobutane sulfonate on Caenorhabditis elegans: acute and transgenerational effects of PFBS on C. elegans. Environmental Toxicology and Chemistry, 40, 1971-1980. Chowdhury, M. I., Sana, T., Panneerselvan, L., Sivaram, A. K., & Megharaj, M. (2022). Perfluorooctane sulfonate (PFOS) induces several behavioural defects in Caenorhabditis elegans that can also be transferred to the next generations. Chemosphere, 291, 132896. Christensen, K. Y., Raymond, M., Blackowicz, M., Liu, Y., Thompson, B. A., Anderson, H. A., & Turyk, M. (2017). Perfluoroalkyl substances and fish consumption. Environmental Research, 154, 145-151. Ciosk, R., DePalma, M., & Priess, J. R. (2004). ATX-2, the C. elegans ortholog of ataxin 2, functions in translational regulation in the germline. Development, 131, 4831-4841. Conley, J. M., Lambright, C. S., Evans, N., McCord, J., Strynar, M. J., Hill, D., Medlock-Kakaley, E., Wilson, V. S., & Gray, L. E. (2021). Hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX) alters maternal and fetal glucose and lipid metabolism and produces neonatal mortality, low birthweight, and hepatomegaly in the Sprague-Dawley rat. Environment International, 146, 106204. Consortium, C. e. S. (1998). Genome sequence of the nematode C. elegans: a platform for investigating biology. Science, 282, 2012-2018. Corsi, A. K., Wightman, B., & Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Genetics, 200, 387-407. Craig, A. L., Moser, S. C., Bailly, A. P., & Gartner, A. (2012). Methods for studying the DNA damage response in the Caenorhabdatis elegans germ line. Methods in Cell Biology, 107, 321-352. Cui, L., Zhou, Q.F., Liao, C.Y., Fu, J.J., & Jiang, G.B. (2009). Studies on the toxicological effects of PFOA and PFOS on rats using histological observation and chemical analysis. Archives of Environmental Contamination and Toxicology, 56, 338-349. Currie, S. D., Doherty, J. P., Xue, K. S., Wang, J.S., & Tang, L. (2023). The stage-specific toxicity of per- and polyfluoroalkyl substances (PFAS) in nematode Caenorhabditis elegans. Environmental Pollution, 336, 122429. D’Hollander, W., de Voogt, P., De Coen, W., & Bervoets, L. (2010). Perfluorinated substances in human food and other sources of human exposure. Reviews of Environmental Contamination and Toxicology: Perfluorinated Alkylated Substances, 208, 179-215. D’Hollander, W., Herzke, D., Huber, S., Hajslova, J., Pulkrabova, J., Brambilla, G., De Filippis, S. P., Bervoets, L., & de Voogt, P. (2015). Occurrence of perfluorinated alkylated substances in cereals, salt, sweets and fruit items collected in four European countries. Chemosphere, 129, 179-185. Das, K. P., Grey, B. E., Rosen, M. B., Wood, C. R., Tatum-Gibbs, K. R., Zehr, R. D., Strynar, M. J., Lindstrom, A. B., & Lau, C. (2015). Developmental toxicity of perfluorononanoic acid in mice. Reproductive Toxicology, 51, 133-144. Deji, Z., Liu, P., Wang, X., Zhang, X., Luo, Y., & Huang, Z. (2021). Association between maternal exposure to perfluoroalkyl and polyfluoroalkyl substances and risks of adverse pregnancy outcomes: a systematic review and meta-analysis. Science of the Total Environment, 783, 146984. DeLuca, N. M., Angrish, M., Wilkins, A., Thayer, K., & Cohen Hubal, E. A. (2021). Human exposure pathways to poly- and perfluoroalkyl substances (PFAS) from indoor media: a systematic review protocol. Environment International, 146, 106308. Domingo, J. L., Ericson-Jogsten, I., Perello, G., Nadal, M., Van Bavel, B., & Karrman, A. (2012). Human exposure to perfluorinated compounds in Catalonia, Spain: contribution of drinking water and fish and shellfish. Journal of Agricultural and Food Chemistry, 60, 4408-4415. Dong, Z., Wang, H., Yu, Y. Y., Li, Y. B., Naidu, R., & Liu, Y. (2019). Using 2003–2014 US NHANES data to determine the associations between per-and polyfluoroalkyl substances and cholesterol: trend and implications. Ecotoxicology and Environmental Safety, 173, 461-468. Du, G., Hu, J., Huang, Z., Yu, M., Lu, C., Wang, X., & Wu, D. (2019). Neonatal and juvenile exposure to perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS): advance puberty onset and kisspeptin system disturbance in female rats. Ecotoxicology and Environmental Safety, 167, 412-421. Ehrlich, V., Bil, W., Vandebriel, R., Granum, B., Luijten, M., Lindeman, B., Grandjean, P., Kaiser, A. M., Hauzenberger, I., Hartmann, C., Gundacker, C., & Uhl, M. (2023). Consideration of pathways for immunotoxicity of per- and polyfluoroalkyl substances (PFAS). Environmental Health, 22, 19. Eriksson, U., Kärrman, A., Rotander, A., Mikkelsen, B., & Dam, M. (2013). Perfluoroalkyl substances (PFASs) in food and water from Faroe Islands. Environmental Science and Pollution Research, 20, 7940-7948. ECHA. (2025). Per- and polyfluoroalkyl substances (PFAS). European Chemicals Agency. https://echa.europa.eu/hot-topics/perfluoroalkyl-chemicals-pfas EU. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006 (Text with EEA relevance). Official Journal of the European Union. https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32023R0915 Fairley, K. J., Purdy, R., Kearns, S., Anderson, S. E., & Meade, B. (2007). Exposure to the immunosuppresant, perfluorooctanoic acid, enhances the murine IgE and airway hyperreactivity response to ovalbumin. Toxicological Sciences, 97, 375-383. Felizeter, S., McLachlan, M. S., & De Voogt, P. (2012). Uptake of perfluorinated alkyl acids by hydroponically grown lettuce (Lactuca sativa). Environmental Science & Technology, 46, 11735-11743. Feng, L., Lang, Y., Feng, Y., Tang, X., Zhang, Q., Xu, H., & Liu, Y. (2024). Maternal F-53B exposure during pregnancy and lactation affects bone growth and development in male offspring. Ecotoxicology and Environmental Safety, 279, 116501. Feng, X., Wang, X., Cao, X., Xia, Y., Zhou, R., & Chen, L. (2015). Chronic exposure of female mice to an environmental level of perfluorooctane sulfonate suppresses estrogen synthesis through reduced histone H3K14 acetylation of the StAR promoter leading to deficits in follicular development and ovulation. Toxicological Sciences, 148, 368-379. Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., & Roberts, S. M. (2020). Per‐ and polyfluoroalkyl substance toxicity and human health review: current state of knowledge and strategies for informing future research. Environmental Toxicology and Chemistry, 40, 606-630. Meersman, T. (2024). Minnesota. Study: death rate up for 3M workers exposed to PFOA. Fluoride Action Network. https://fluoridealert.org/news/minnesota-study-death-rate-up-for-3m-workers-exposed-to-pfoa/ Fox, P. M., & Schedl, T. (2015). Analysis of germline stem cell differentiation following loss of GLP-1 notch activity in Caenorhabditis elegans. Genetics, 201, 167-184. Fraser, A. J., Webster, T. F., Watkins, D. J., Nelson, J. W., Stapleton, H. M., Calafat, A. M., Kato, K., Shoeib, M., Vieira, V. M., & McClean, M. D. (2012). Polyfluorinated compounds in serum linked to indoor air in office environments. Environmental Science & Technology, 46, 1209-1215. Gaillard, L., Barouki, R., Blanc, E., Coumoul, X., & Andréau, K. (2025). Per- and polyfluoroalkyl substances as persistent pollutants with metabolic and endocrine-disrupting impacts. Trends in Endocrinology & Metabolism, 36, 249-261. Gaines, L. G. T. (2023). Historical and current usage of per- and polyfluoroalkyl substances (PFAS): a literature review. American Journal of Industrial Medicine, 66, 353-378. Gallo, V., Leonardi, G., Genser, B., Lopez-Espinosa, M.J., Frisbee, S. J., Karlsson, L., Ducatman, A. M., & Fletcher, T. (2012). Serum perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) concentrations and liver function biomarkers in a population with elevated PFOA exposure. Environmental Health Perspectives, 120, 655-660. Gao, J., Liu, Z., Huang, J., & Liu, J. (2022). Degradation pathways and complete defluorination of chlorinated polyfluoroalkyl substances (Clx-PFAS). Gao, K., Fu, J., Xue, Q., Li, Y., Liang, Y., Pan, Y., Zhang, A., & Jiang, G. (2018). An integrated method for simultaneously determining 10 classes of per- and polyfluoroalkyl substances in one drop of human serum. Analytica Chimica Acta, 999, 76-86. Gao, Y., Luo, J., Zhang, Y., Pan, C., Ren, Y., Zhang, J., & Tian, Y. (2022). Prenatal exposure to per- and polyfluoroalkyl substances and child growth trajectories in the first two years. Environmental Health Perspectives, 130, 037006. Ge, Y., Wang, Z., Chen, X., Wang, W., Liu, Z., Sun, H., & Zhang, L. (2023). Comparative toxicological effects of perfluorooctane sulfonate and its alternative 6:2 chlorinated polyfluorinated ether sulfonate on earthworms. Environmental Toxicology and Chemistry, 43, 170-181. Gebbink, W. A., Bossi, R., Rigét, F. F., Rosing-Asvid, A., Sonne, C., & Dietz, R. (2016). Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals. Chemosphere, 144, 2384-2391. Ghosh, N., Das, A., Chaffee, S., Roy, S., & Sen, C. K. (2018). Reactive oxygen species, oxidative damage and cell death. Immunity and Inflammation in Health and Disease, 4, 45-55. Giesy, J. P., & Kannan, K. (2001). Global distribution of perfluorooctane sulfonate in wildlife. Environmental Science & Technology, 35, 1339-1342. Gjorgjieva, J., Biron, D., & Haspel, G. (2014). Neurobiology of Caenorhabditis elegans locomotion: where do we stand? BioScience, 64, 476-486. Göckener, B., Weber, T., Rüdel, H., Bücking, M., & Kolossa-Gehring, M. (2020). Human biomonitoring of per- and polyfluoroalkyl substances in German blood plasma samples from 1982 to 2019. Environment International, 145, 106123. Godthi, A. (2024). Neuronal IL-17 controls C. elegans developmental diapause through CEP-1/p53. Developmental Biology. 121. e2315248121. Govindan, J. A., Nadarajan, S., Kim, S., Starich, T. A., & Greenstein, D. (2009). Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans. Development, 136, 2211-2221. Grandjean, P., Heilmann, C., Weihe, P., Nielsen, F., Mogensen, U. B., & Budtz-Jørgensen, E. (2017). Serum vaccine antibody concentrations in adolescents exposed to perfluorinated compounds. Environmental Health Perspectives, 125, 077018. Grant, B., & Hirsh, D. (1999). Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. Molecular Biology of the Cell, 10, 4311-4326. Gumienny, T. L., Lambie, E., Hartwieg, E., Horvitz, H. R., & Hengartner, M. O. (1999). Genetic control of programmed cell death in the Caenorhabditis elegans hermaphrodite germline. Development, 126, 1011-1022. Guo, C., Zhao, Z., Zhao, K., Huang, J., Ding, L., Huang, X., Meng, L., Li, L., Wei, H., & Zhang, S. (2021). Perfluorooctanoic acid inhibits the maturation rate of mouse oocytes cultured in vitro by triggering mitochondrial and DNA damage. Birth Defects Research, 113, 1074-1083. Guo, X., Li, Q., Shi, J., Shi, L., Li, B., Xu, A., Zhao, G., & Wu, L. (2016). Perfluorooctane sulfonate exposure causes gonadal developmental toxicity in Caenorhabditis elegans through ROS-induced DNA damage. Chemosphere, 155, 115-126. Gutch, M. J., Flint, A. J., Keller, J., Tonks, N. K., & Hengartner, M. O. (1998). The Caenorhabditis elegans SH2 domain-containing protein tyrosine phosphatase PTP-2 participates in signal transduction during oogenesis and vulval development. Genes & Development, 12, 571-585. Habib, Z., Song, M., Ikram, S., & Zahra, Z. (2024). Overview of per- and polyfluoroalkyl substances (PFAS), their applications, sources, and potential impacts on human health. Pollutants, 4, 136-152. Hærvig, K. K., Petersen, K. U., Hougaard, K. S., Lindh, C., Ramlau-Hansen, C. H., Toft, G., Giwercman, A., Høyer, B. B., Flachs, E. M., Bonde, J. P., & Tøttenborg, S. S. (2022). Maternal exposure to per- and polyfluoroalkyl substances (PFAS) and male peproductive function in young adulthood: combined exposure to seven PFAS. Environmental Health Perspectives, 130, 107001. Hall, D. H., Winfrey, V. P., Blaeuer, G., Hoffman, L. H., Furuta, T., Rose, K. L., Hobert, O., & Greenstein, D. (1999). Ultrastructural features of the adult hermaphrodite gonad of Caenorhabditis elegans: relations between the germ line and soma. Developmental Biology, 212, 101-123. Hanson, M. L., Sibley, P. K., Mabury, S. A., Muir, D. C., & Solomon, K. R. (2001). Chlorodifluoroacetic acid fate and toxicity to the macrophytes Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms. Environmental Toxicology and Chemistry, 20, 2758-2767. Haug, L. S., Thomsen, C., Brantsæter, A. L., Kvalem, H. E., Haugen, M., Becher, G., Alexander, J., Meltzer, H. M., & Knutsen, H. K. (2010). Diet and particularly seafood are major sources of perfluorinated compounds in humans. Environment International, 36, 772-778. He, Y., Lv, D., Li, C., Liu, X., Liu, W., & Han, W. (2022). Human exposure to F-53B in China and the evaluation of its potential toxicity: an overview. Environment International, 161, 107108. Hirsh, D., Oppenheim, D., & Klass, M. (1976). Development of the reproductive system of Caenorhabditis elegans. Developmental Biology, 49, 200-219. Hoogewijs, D., Houthoofd, K., Matthijssens, F., Vandesompele, J., & Vanfleteren, J. R. (2008). Selection and validation of a set of reliable reference genes for quantitative sod gene expression analysis in C. elegans. BMC Molecular Biology, 9, 9. Houde, M., De Silva, A. O., Muir, D. C. G., & Letcher, R. J. (2011). Monitoring of perfluorinated compounds in aquatic biota: an updated review. Environmental Science & Technology, 45, 7962-7973. How, C. M., Li, Y.S., Huang, W.Y., & Wei, C.C. (2024). Early-life exposure to mycotoxin zearalenone exacerbates aberrant immune response, oxidative stress, and mortality of Caenorhabditis elegans under pathogen Bacillus thuringiensis infection. Ecotoxicology and Environmental Safety, 272, 116085. Hunt, P. R. (2017). The C. elegans model in toxicity testing. Journal of Applied Toxicology, 37, 50-59. Hussain, M. M., Strickland, D. K., & Bakillah, A. (1999). The mammalian low-density lipoprotein receptor family. Annual Review of Nutrition, 19, 141-172. IARC. (2017). IARC monographs on the evaluation of carcinogenic risks to humans. International Agency for Research on Cancer. IARC. (2025). Perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS). IARC Monographs, 135. Jantzen, C. E., Annunziato, K. A., Bugel, S. M., & Cooper, K. R. (2016). PFOS, PFNA, and PFOA sub-lethal exposure to embryonic zebrafish have different toxicity profiles in terms of morphometrics, behavior and gene expression. Aquatic Toxicology, 175, 160-170. Jiang, J.J., Okvitasari, A. R., Huang, F.Y., & Tsai, C.S. (2021). Characteristics, pollution patterns and risks of perfluoroalkyl substances in drinking water sources of Taiwan. Chemosphere, 264, 128579. Jiang, J.Y., How, C. M., Huang, C.W., Luo, Y.S., & Wei, C.C. (2024). Comparing the obesogenic effect and regulatory mechanisms of long-term exposure to per/polyfluoroalkyl substances with different terminal groups in Caenorhabditis elegans. Chemosphere, 365, 143396. Jiang, Q., Lust, R. M., Strynar, M. J., Dagnino, S., & DeWitt, J. C. (2012). Perfluorooctanoic acid induces developmental cardiotoxicity in chicken embryos and hatchlings. Toxicology, 293, 97-106. Jiao, X., Liu, N., Xu, Y., & Qiao, H. (2021). Perfluorononanoic acid impedes mouse oocyte maturation by inducing mitochondrial dysfunction and oxidative stress. Reproductive Toxicology, 104, 58-67. Jin, Y. H., Liu, W., Sato, I., Nakayama, S. F., Sasaki, K., Saito, N., & Tsuda, S. (2009). PFOS and PFOA in environmental and tap water in China. Chemosphere, 77, 605-611. Johansson, N., Fredriksson, A., & Eriksson, P. (2008). Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. NeuroToxicology, 29, 160-169. Kaletta, T., & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery, 5, 387-399. Kalyn, M., Lee, H., Curry, J., Tu, W., Ekker, M., & Mennigen, J. A. (2023). Effects of PFOS, F-53B and OBS on locomotor behaviour, the dopaminergic system and mitochondrial function in developing zebrafish (Danio rerio). Environmental Pollution, 326, 121479. Kashino, I., Sasaki, S., Okada, E., Matsuura, H., Goudarzi, H., Miyashita, C., Okada, E., Ito, Y. M., Araki, A., & Kishi, R. (2020). Prenatal exposure to 11 perfluoroalkyl substances and fetal growth: a large-scale, prospective birth cohort study. Environment International, 136, 105355. Killian, D. J., & Hubbard, E. J. A. (2005). Caenorhabditis elegans germline patterning requires coordinated development of the somatic gonadal sheath and the germ line. Developmental Biology, 279, 322-335. Kimble, J., & Hirsh, D. (1979). The postembryonic cell lineages of the hermaphrodite and male gonads in Caenorhabditis elegans. Developmental Biology, 70, 396-417. Kimble, J., & Sharrock, W. J. (1983). Tissue-specific synthesis of yolk proteins in Caenorhabditis elegans. Developmental Biology, 96, 189-196. Kimble, J. E., & White, J. G. (1981). On the control of germ cell development in Caenorhabditis elegans. Developmental Biology, 81, 208-219. Kishore, R., Arnaboldi, V., Chen, W. J., & Sternberg, P. W. (2024). Expanding automated gene summaries for Caenorhabditis and parasitic nematode species in WormBase. Micropublication Biology. Kishore, R., Arnaboldi, V., Van Slyke, C. E., Chan, J., Nash, R. S., Urbano, J. M., Dolan, M. E., Engel, S. R., Shimoyama, M., & Sternberg, P. W. (2020). Automated generation of gene summaries at the Alliance of genome resources. microPublication Biology. Ko, S., Kawasaki, I., & Shim, Y.H. (2013). PAB-1, a Caenorhabditis elegans poly (A)-binding protein, regulates mRNA metabolism in germline by interacting with CGH-1 and CAR-1. Plos One, 8, e84798. L’Hernault, S. W. (2009). The genetics and cell biology of spermatogenesis in the nematode C. elegans. Molecular and Cellular Endocrinology, 306, 59-65. Lai, C.H., Chou, C.Y., Ch'ang, L.Y., Liu, C.S., & Lin, W.C. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Research, 10, 703-713. Lan, Y., Nie, P., Yuan, H., & Xu, H. (2024). Adolescent F-53B exposure induces ovarian toxicity in rats: autophagy-apoptosis interplay. Science of the Total Environment, 951, 175609. Lau, C., Butenhoff, J. L., & Rogers, J. M. (2004). The developmental toxicity of perfluoroalkyl acids and their derivatives. Toxicology and Applied Pharmacology, 198, 231-241. Lau, C., Thibodeaux, J. R., Hanson, R. G., Narotsky, M. G., Rogers, J. M., Lindstrom, A. B., & Strynar, M. J. (2006). Effects of perfluorooctanoic acid exposure during pregnancy in the mouse. Toxicological Sciences, 90, 510-518. Lau, C., Thibodeaux, J. R., Hanson, R. G., Rogers, J. M., Grey, B. E., Stanton, M. E., Butenhoff, J. L., & Stevenson, L. A. (2003). Exposure to perfluorooctane sulfonate during pregnancy in rat and mouse. Toxicological Sciences, 74, 382-392. Lee, M.H., & Schedl, T. (2001). Identification of in vivo mRNA targets of GLD-1, a maxi-KH motif containing protein required for C. elegans germ cell development. Genes & Development, 15, 2408-2420. Leung, M. C. K., Williams, P. L., Benedetto, A., Au, C., Helmcke, K. J., Aschner, M., & Meyer, J. N. (2008). Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicological Sciences, 106, 5-28. Li, C.H., Ren, X.M., Ruan, T., Cao, L.Y., Xin, Y., Guo, L.H., & Jiang, G. (2018). Chlorinated polyfluorinated ether sulfonates exhibit higher activity toward peroxisome proliferator-activated receptors signaling pathways than perfluorooctanesulfonate. Environmental Science & Technology, 52, 3232-3239. Li, F., Xu, X., Wang, Z., Xie, J., Wei, S., Ji, Z., Liu, L., Wu, H., & Zhao, Y. (2025). Polystyrene nanoplastics induced transgenerational reproductive toxicity in Caenorhabditis elegans through enhanced DNA damage accompanied by DNA repair inhibition. Ecotoxicology and Environmental Safety, 301, 118500. Li, S., Yue, Y., Qian, Z., Teng, Z., Clark, J. M., Timme-Laragy, A. R., & Park, Y. (2025). Preconception exposure to perfluorooctanesulfonic acid (PFOS) and perfluorobutanesulfonic acid (PFBS) impaired reproduction via insulin/insulin-like growth factor signaling pathway without effects on the second generation in Caenorhabditis elegans. Toxicology Reports, 14, 101966. Li, Y.S., & Wei, C.C. (2024). Mycotoxin zearalenone induces multi-/trans-generational toxic effects and germline toxicity transmission via histone methyltransferase MES-4 in Caenorhabditis elegans. Environmental Pollution, 361, 124787. Li, Y., Cam, J., & Bu, G. (2001). Low-density lipoprotein receptor family. Molecular Neurobiology, 23, 53-67. Liao, V. H.C. (2018). Use of Caenorhabditis elegans to study the potential bioactivity of natural compounds. Journal of Agricultural and Food Chemistry, 66, 1737-1742. Lieder, P. H., York, R. G., Hakes, D. C., Chang, S.C., & Butenhoff, J. L. (2009). A two-generation oral gavage reproduction study with potassium perfluorobutanesulfonate (K+PFBS) in Sprague Dawley rats. Toxicology, 259, 33-45. Lin, A. Y.C., Panchangam, S. C., & Ciou, P.S. (2010). High levels of perfluorochemicals in Taiwan’s wastewater treatment plants and downstream rivers pose great risk to local aquatic ecosystems. Chemosphere, 80, 1167-1174. Lin, A. Y.C., Panchangam, S. C., Tsai, Y.T., & Yu, T.H. (2014). Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environmental Monitoring and Assessment, 186, 3265-3275. Lin, C.Y., Lee, H.L., Wang, C., Sung, F.C., & Su, T.C. (2024). Examining the impact of polyfluoroalkyl substance exposure on erythrocyte profiles and its related nutrients: insights from a prospective study on young Taiwanese. Environmental Pollution, 359, 124576. Lin, C.Y., Lin, L.Y., Chiang, C.K., Wang, W.J., Su, Y.N., Hung, K.Y., & Chen, P.C. (2010). Investigation of the associations between low-dose serum perfluorinated chemicals and liver enzymes in US adults. Official Journal of the American College of Gastroenterology, 105, 1354-1363. Lin, C.Y., Wang, C., Sung, F.C., & Su, T.C. (2022). Association between serum per- and polyfluoroalkyl substances and thrombograms in young and middle-aged Taiwanese populations. Ecotoxicology and Environmental Safety, 236, 113457. Lin, Q., Zhou, C., Chen, L., Li, Y., Huang, X., Wang, S., Qiu, R., & Tang, C. (2020). Accumulation and associated phytotoxicity of novel chlorinated polyfluorinated ether sulfonate in wheat seedlings. Chemosphere, 249, 126447. Liu, B., Zhang, H., Li, J., Dong, W., & Xie, L. (2017). Perfluoroalkyl acids (PFAAs) in sediments from rivers of the Pearl River Delta, southern China. Environmental Monitoring and Assessment, 189, 213. Liu, G., Zhang, B., Hu, Y., Rood, J., Liang, L., Qi, L., Bray, G. A., DeJonge, L., Coull, B., & Grandjean, P. (2020). Associations of perfluoroalkyl substances with blood lipids and apolipoproteins in lipoprotein subspecies: the POUNDS-lost study. Environmental Health, 19, 1-10. Liu, H., Sheng, N., Zhang, W., & Dai, J. (2015). Toxic effects of perfluorononanoic acid on the development of zebrafish (Danio rerio) embryos. Journal of Environmental Sciences, 32, 26-34. Liu, W., Li, J., Gao, L., Zhang, Z., Zhao, J., He, X., & Zhang, X. (2018). Bioaccumulation and effects of novel chlorinated polyfluorinated ether sulfonate in freshwater alga Scenedesmus obliquus. Environmental Pollution, 233, 8-15. Liu, X., Ge, P., Lu, Z., Yang, R., Liu, Z., Zhao, F., & Chen, M. (2022). Reproductive toxicity and underlying mechanisms of fine particulate matter (PM2.5) on Caenorhabditis elegans in different seasons. Ecotoxicology and Environmental Safety, 248, 114281. Liu, Y., Pereira, A. D. S., & Martin, J. W. (2015). Discovery of C5–C17 poly- and perfluoroalkyl substances in water by in-line SPE-HPLC-orbitrap with in-source fragmentation flagging. Analytical Chemistry, 87, 4260-4268. Long, N. P., Kang, J. S., & Kim, H. M. (2023). Caenorhabditis elegans: a model organism in the toxicity assessment of environmental pollutants. Environmental Science and Pollution Research, 30, 39273-39287. López-Arellano, P., López-Arellano, K., Luna, J., Flores, D., Jiménez-Salazar, J., Gavia, G., Teteltitla, M., Rodríguez, J. J., Domínguez, A., Casas, E., Bahena, I., Betancourt, M., González, C., Ducolomb, Y., & Bonilla, E. (2019). Perfluorooctanoic acid disrupts gap junction intercellular communication and induces reactive oxygen species formation and apoptosis in mouse ovaries. Environmental Toxicology, 34, 92-98. Lu, Z., Lu, R., Zheng, H., Yan, J., Song, L., Wang, J., Yang, H., & Cai, M. (2018). Risk exposure assessment of per-and polyfluoroalkyl substances (PFASs) in drinking water and atmosphere in central eastern China. Environmental Science and Pollution Research, 25, 9311-9320. Luebker, D. J., Case, M. T., York, R. G., Moore, J. A., Hansen, K. J., & Butenhoff, J. L. (2005). Two-generation reproduction and cross-foster studies of perfluorooctanesulfonate (PFOS) in rats. Toxicology, 215, 126-148. MacInnis, J. J., Lehnherr, I., Muir, D. C. G., Quinlan, R., & De Silva, A. O. (2019). Characterization of perfluoroalkyl substances in sediment cores from high and low arctic lakes in Canada. Science of the Total Environment, 666, 414-422. Maerten, A., Callewaert, E., Sanz-Serrano, J., Devisscher, L., & Vinken, M. (2024). Effects of per- and polyfluoroalkyl substances on the liver: human-relevant mechanisms of toxicity. Science of the Total Environment, 954, 176717. Mak, Y. L., Taniyasu, S., Yeung, L. W., Lu, G., Jin, L., Yang, Y., Lam, P. K., Kannan, K., & Yamashita, N. (2009). Perfluorinated compounds in tap water from China and several other countries. Environmental Science & Technology, 43, 4824-4829. Makey, C. M., Webster, T. F., Martin, J. W., Shoeib, M., Harner, T., Dix-Cooper, L., & Webster, G. M. (2017). Airborne precursors predict maternal serum perfluoroalkyl acid concentrations. Environmental Science & Technology, 51, 7667-7675. Marcello, M. R., & Singson, A. (2010). Fertilization and the oocyte-to-embryo transition in C. elegans. BMB Reports., 43, 389-399. Mariussen, E. (2012). Neurotoxic effects of perfluoroalkylated compounds: mechanisms of action and environmental relevance. Archives of Toxicology, 86, 1349-1367. Martin, J. W., Franklin, J., Hanson, M. L., Solomon, K. R., Mabury, S. A., Ellis, D. A., Scott, B. F., & Muir, D. C. G. (2000). Detection of chlorodifluoroacetic acid in precipitation: a possible product of fluorocarbon degradation. Environmental Science & Technology, 34, 274-281. Matyash, V., Geier, C., Henske, A., Mukherjee, S., Hirsh, D., Thiele, C., Grant, B., Maxfield, F. R., & Kurzchalia, T. V. (2001). Distribution and transport of cholesterol in Caenorhabditis elegans. Molecular Biology of the Cell, 12, 1725-1736. McCarter, J., Bartlett, B., Dang, T., & Schedl, T. (1997). Soma-germ cell interactions in Caenorhabditis elegans: multiple events of hermaphrodite germline development require the somatic sheath and spermathecal lineages. Developmental Biology, 181, 121-143. McLachlan, M. S., Felizeter, S., Klein, M., Kotthoff, M., & De Voogt, P. (2019). Fate of a perfluoroalkyl acid mixture in an agricultural soil studied in lysimeters. Chemosphere, 223, 180-187. Moya, A., Tejedor, D., Manetti, M., Clavijo, A., Pagano, E., Munarriz, E., & Kronberg, M. F. (2022). Reproductive toxicity by exposure to low concentrations of pesticides in Caenorhabditis elegans. Toxicology, 475, 153229. Muir, D., Bossi, R., Carlsson, P., Evans, M., De Silva, A., Halsall, C., Rauert, C., Herzke, D., Hung, H., Letcher, R., Rigét, F., & Roos, A. (2019). Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment –an update. Emerging Contaminants, 5, 240-271. Mukherjee, S., Ghosh, R. N., & Maxfield, F. R. (1997). Endocytosis. Physiological Reviews, 77, 759-803. Munoz, G., Giraudel, J.-L., Botta, F., Lestremau, F., Dévier, M.-H., Budzinski, H., & Labadie, P. (2015). Spatial distribution and partitioning behavior of selected poly- and perfluoroalkyl substances in freshwater ecosystems: a French nationwide survey. Science of the Total Environment, 517, 48-56. Nannaware, M., Mayilswamy, N., & Kandasubramanian, B. (2024). PFAS: exploration of neurotoxicity and environmental impact. Environmental Science and Pollution Research, 31, 12815-12831. Nie, P., Lan, Y., You, T., Jia, T., & Xu, H. (2024). F-53B mediated ROS affects uterine development in rats during puberty by inducing apoptosis. Ecotoxicology and Environmental Safety, 277, 116399. NTP. (2016). Monograph on immunotoxicity associated with exposure to perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). National Toxicology Program. https://ntp.niehs.nih.gov/go/mgraph04 NTP. (2023). NTP technical report on the toxicology and carcinogenesis studies of perfluorooctanoic acid administered in feed to Sprague Dawley rats. National Toxicology Program. https://www.ncbi.nlm.nih.gov/books/NBK560147/ O’Neil, N., & Rose, A. (2006). DNA repair. WormBook. https://wormbook.org/chapters/www_DNArepair/DNArepair.html OECD, H. (2021). Reconciling terminology of the universe of per-and polyfluoroalkyl substances: recommendations and practical guidance. https://www.oecd.org/en/publications/reconciling-terminology-of-the-universe-of-per-and-polyfluoroalkyl-substances_e458e796-en.html Padilla, S., Corum, D., Padnos, B., Hunter, D. L., Beam, A., Houck, K. A., Sipes, N., Kleinstreuer, N., Knudsen, T., Dix, D. J., & Reif, D. M. (2012). Zebrafish developmental screening of the ToxCast™ phase I chemical library. Reproductive Toxicology, 33, 174-187. Palazzolo, S., Caligiuri, I., Sfriso, A. A., Mauceri, M., Rotondo, R., Campagnol, D., Canzonieri, V., & Rizzolio, F. (2022). Early warnings by liver organoids on short- and long-chain PFAS toxicity. Toxics, 10, 91. Pan, G., Zhou, Q., Luan, X., & Fu, Q. S. (2014). Distribution of perfluorinated compounds in Lake Taihu (China): impact to human health and water standards. Science of the Total Environment, 487, 778-784. Pan, Y., Wen, B., Zhang, H., & Zhang, S. (2021). Comparison of 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) and perfluorooctane sulfonate (PFOS) accumulation and toxicity in mung bean. Environmental Pollution, 287, 117332. Pazdernik, N., & Schedl, T. (2013). Germ cell development in C. elegans: introduction to germ cell development in Caenorhabditis elegans. Advances in Experimental Medicine and Biology, 757, 1-16. Piekarski, D. J., Diaz, K. R., & McNerney, M. W. (2020). Perfluoroalkyl chemicals in neurological health and disease: human concerns and animal models. NeuroToxicology, 77, 155-168. Poothong, S., Papadopoulou, E., Padilla-Sánchez, J. A., Thomsen, C., & Haug, L. S. (2020). Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): from external exposure to human blood. Environment International, 134, 105244. Pramanik, B. K. (2014). Occurrence of perfluoroalkyl and polyfluoroalkyl substances in the water environment and their removal in a water treatment process. Journal of Water Reuse and Desalination, 5, 196-210. Prevedouros, K., Cousins, I. T., Buck, R. C., & Korzeniowski, S. H. (2006). Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology, 40, 32-44. Qin, W.P., Cao, L.Y., Li, C.H., Guo, L.H., Colbourne, J., & Ren, X.M. (2020). Perfluoroalkyl substances stimulate insulin secretion by islet β cells via G protein-coupled receptor 40. Environmental Science & Technology, 54, 3428-3436. Qiu, K., Zuo, J., Li, H.S., Tang, W., Zhao, X., Cheng, M.Y., Yang, Z., Tian, S., Li, P., & Xie, X. (2024). Machine learning assisted single-molecule sensing of per-and polyfluoroalkyl carboxylic acids: quantification without standards. Qiu, Y., Gao, M., Cao, T., Wang, J., Luo, M., Liu, S., Zeng, X., & Huang, J. (2024). PFOS and F-53B disrupted inner cell mass development in mouse preimplantation embryo. Chemosphere, 349, 140948. Qu, M., Qiu, Y., Kong, Y., & Wang, D. (2019). Amino modification enhances reproductive toxicity of nanopolystyrene on gonad development and reproductive capacity in nematode Caenorhabditis elegans. Environmental Pollution, 254, 112978. Ray, P. D., Huang, B.W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cellular Signalling, 24, 981-990. Reiner, J. L., & Place, B. J. (2015). Toxicological effects of perfluoroalkyl and polyfluoroalkyl substances perfluorinated alkyl acids in wildlife. Molecular and Integrative Toxicology, 127-150. Rotander, A., Kärrman, A., Toms, L.M. L., Kay, M., Mueller, J. F., & Gómez Ramos, M. J. (2015). Novel fluorinated surfactants tentatively identified in firefighters using liquid chromatography quadrupole time-of-flight tandem mass spectrometry and a case-control approach. Environmental Science & Technology, 49, 2434-2442. Ruszkiewicz, J. A., Pinkas, A., Miah, M. R., Weitz, R. L., Lawes, M. J. A., Akinyemi, A. J., Ijomone, O. M., & Aschner, M. (2018). C. elegans as a model in developmental neurotoxicology. Toxicology and Applied Pharmacology, 354, 126-135. Sana, T., Chowdhury, M. I., Logeshwaran, P., Dharmarajan, R., & Megharaj, M. (2021). Perfluorooctanoic acid (PFOA) induces behavioural, reproductive and developmental toxicological impacts in Caenorhabditis elegans at concentrations relevant to the contaminated areas. Environmental Advances, 4, 100053. Sana, T., Chowdhury, M. I., Logeshwaran, P., & Megharaj, M. (2023). Behavioural, developmental and reproductive toxicological impacts of perfluorobutanoic acid (PFBA) in Caenorhabditis elegans. Environmental Challenges, 10, 100662. Schwanz, T. G., Llorca, M., Farré, M., & Barceló, D. (2016). Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain. Science of The Total Environment, 539, 143-152. Sharrock, W. J. (1983). Yolk proteins of Caenorhabditis elegans. Developmental Biology, 96, 182-188. Shi, G., Cui, Q., Pan, Y., Sheng, N., Sun, S., Guo, Y., & Dai, J. (2017). 6:2 Chlorinated polyfluorinated ether sulfonate, a PFOS alternative, induces embryotoxicity and disrupts cardiac development in zebrafish embryos. Aquatic Toxicology, 185, 67-75. Shin, H.M., Oh, J., Schmidt, R. J., & Pearce, E. N. (2022). Prenatal exposure to per-and polyfluoroalkyl substances, maternal thyroid dysfunction, and child autism spectrum disorder. Endocrinology and Metabolism, 37, 819-829. So, M., Taniyasu, S., Yamashita, N., Giesy, J., Zheng, J., Fang, Z., Im, S., & Lam, P. K. (2004). Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology, 38, 4056-4063. So, M. K., Miyake, Y., Yeung, W. Y., Ho, Y. M., Taniyasu, S., Rostkowski, P., Yamashita, N., Zhou, B. S., Shi, X. J., Wang, J. X., Giesy, J. P., Yu, H., & Lam, P. K. S. (2007). Perfluorinated compounds in the Pearl River and Yangtze River of China. Chemosphere, 68, 2085-2095. Song, X., Vestergren, R., Shi, Y., Huang, J., & Cai, Y. (2018). Emissions, transport, and fate of emerging per- and polyfluoroalkyl substances from one of the major fluoropolymer manufacturing facilities in China. Environmental Science & Technology, 52, 9694-9703. Sonnenberg, N. K., Ojewole, A. E., Ojewole, C. O., Lucky, O. P., & Kusi, J. (2023). Trends in serum per- and polyfluoroalkyl substance (PFAS) concentrations in teenagers and adults, 1999-2018 NHANES. International Journal of Environmental Research and Public Health, 20, 6984. Spieth, J., Nettleton, M., Zucker-Aprison, E., Lea, K., & Blumenthal, T. (1991). Vitellogenin motifs conserved in nematodes and vertebrates. Journal of Molecular Evolution, 32, 429-438. Stanifer, J. W., Stapleton, H. M., Souma, T., Wittmer, A., Zhao, X., & Boulware, L. E. (2018). Perfluorinated chemicals as emerging environmental threats to kidney health: a scoping review. Clinical Journal of the American Society of Nephrology, 13, 1479-1492. Starkov, A. A., & Wallace, K. B. (2002). Structural determinants of fluorochemical-induced mitochondrial dysfunction. Toxicological Sciences, 66, 244-252. Steenland, K., Jin, C., MacNeil, J., Lally, C., Ducatman, A., Vieira, V., & Fletcher, T. (2009). Predictors of PFOA levels in a community surrounding a chemical plant. Environ Health Perspect, 117, 1083-1088. Stein, C. R., McGovern, K. J., Pajak, A. M., Maglione, P. J., & Wolff, M. S. (2016). Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children aged 12-19 y: National Health and Nutrition Examination Survey. Pediatric Research, 79, 348-357. Sternberg, P. W. (2005). Vulval development. WormBook, 1-28. Sulston, J. E., & Horvitz, H. R. (1977). Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Developmental Biology, 56, 110-156. Sun, C. Y., Chen, M. H., Lin, C. C., & Chen, P. C. (2023). Legacy and alternative per- and polyfluoroalkyl substances in paired serum-urine data from the 2009-2012 Taiwan birth panel study. ISEE Conference Abstracts, 2023. Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology, 29, 131-147. Taniyasu, S., Kannan, K., Horii, Y., Hanari, N., & Yamashita, N. (2003). A survey of perfluorooctane sulfonate and related perfluorinated organic compounds in water, fish, birds, and humans from Japan. Environmental Science & Technology, 37, 2634-2639. Tsalik, E. L., & Hobert, O. (2003). Functional mapping of neurons that control locomotory behavior in Caenorhabditis elegans. Journal of Neurobiology, 56, 178-197. Tucker, D. K., Macon, M. B., Strynar, M. J., Dagnino, S., Andersen, E., & Fenton, S. E. (2015). The mammary gland is a sensitive pubertal target in CD-1 and C57Bl/6 mice following perinatal perfluorooctanoic acid (PFOA) exposure. Reproductive Toxicology, 54, 26-36. USEPA. (2025). Final PFAS national primary drinking water regulation. U.S. Environmental Protection Agency. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas Vieira, V. M., Hoffman, K., Shin, H.-M., Weinberg, J. M., Webster, T. F., & Fletcher, T. (2013). Perfluorooctanoic acid exposure and cancer outcomes in a contaminated community: a geographic analysis. Environmental Health Perspectives, 121, 318-323. Wang, J., Pan, Y., Cui, Q., Yao, B., Wang, J., & Dai, J. (2018). Penetration of PFASs across the blood cerebrospinal fluid barrier and its determinants in humans. Environmental Science & Technology, 52, 13553-13561. Wang, S., Huang, J., Yang, Y., Hui, Y., Ge, Y., Larssen, T., Yu, G., Deng, S., Wang, B., & Harman, C. (2013). First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environmental Science & Technology, 47, 10163-10170. Wang, T., Wang, P., Meng, J., Liu, S., Lu, Y., Khim, J. S., & Giesy, J. P. (2015). A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China. Chemosphere, 129, 87-99. Wang, Y., Yu, N., Zhu, X., Guo, H., Jiang, J., Wang, X., Shi, W., Wu, J., Yu, H., & Wei, S. (2018). Suspect and nontarget screening of per- and polyfluoroalkyl substances in wastewater from a fluorochemical manufacturing park. Environmental Science & Technology, 52, 11007-11016. Ward, S., & Carrel, J. S. (1979). Fertilization and sperm competition in the nematode Caenorhabditis elegans. Developmental Biology, 73, 304-321. Washington, J. W., Rosal, C. G., McCord, J. P., Strynar, M. J., Lindstrom, A. B., Bergman, E. L., Goodrow, S. M., Tadesse, H. K., Pilant, A. N., Washington, B. J., Davis, M. J., Stuart, B. G., & Jenkins, T. M. (2020). Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science, 368, 1103-1107. Waters, K. A., & Reinke, V. (2011). Extrinsic and intrinsic control of germ cell proliferation in Caenorhabditis elegans. Mol Reprod Dev, 78, 151-160. Wielsøe, M., Long, M., Ghisari, M., & Bonefeld-Jørgensen, E. C. (2015). Perfluoroalkylated substances (PFAS) affect oxidative stress biomarkers in vitro. Chemosphere, 129, 239-245. Wilhelm, M., Bergmann, S., & Dieter, H. H. (2010). Occurrence of perfluorinated compounds (PFCs) in drinking water of North Rhine-Westphalia, Germany and new approach to assess drinking water contamination by shorter-chained C4-C7 PFCs. International Journal of Hygiene and Environmental Health, 213, 224-232. WormAtlas. (2009). Introduction to C. elegans anatomy. WormAtlas. https://www.wormatlas.org/hermaphrodite/introduction/mainframe.htm Wu, Q., He, K., Liu, P., Li, Y., & Wang, D. (2011). Association of oxidative stress with the formation of reproductive toxicity from mercury exposure on hermaphrodite nematode Caenorhabditis elegans. Environmental Toxicology and Pharmacology, 32, 175-184. Wu, Y., Huang, J., Deng, M., Jin, Y., Yang, H., Liu, Y., Cao, Q., Mennigen, J. A., & Tu, W. (2019). Acute exposure to environmentally relevant concentrations of Chinese PFOS alternative F-53B induces oxidative stress in early developing zebrafish. Chemosphere, 235, 945-951. Xiao, J., Yang, D., Hu, B., Zha, W., Li, W., Wang, Y., Liu, F., Liao, X., Li, H., Tao, Q., Zhang, S., & Cao, Z. (2025). Perfluorodecanoic acid induces the increase of innate cells in zebrafish embryos by upregulating oxidative stress levels. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 287, 110037. Yi, S., Chen, P., Yang, L., & Zhu, L. (2019). Probing the hepatotoxicity mechanisms of novel chlorinated polyfluoroalkyl sulfonates to zebrafish larvae: implication of structural specificity. Environment International, 133, 105262. Yin, J., Liu, R., Jian, Z., Yang, D., Pu, Y., Yin, L., & Wang, D. (2018). Di (2-ethylhexyl) phthalate-induced reproductive toxicity involved in dna damage-dependent oocyte apoptosis and oxidative stress in Caenorhabditis elegans. Ecotoxicology and Environmental Safety, 163, 298-306. Yu, C.-W., Luk, T. C., & Liao, V. H.C. (2021). Long-term nanoplastics exposure results in multi and trans-generational reproduction decline associated with germline toxicity and epigenetic regulation in Caenorhabditis elegans. Journal of Hazardous Materials, 412, 125173. Yu, R.S., Yu, H.C., Yang, Y.F., & Singh, S. (2025). A global overview of per- and polyfluoroalkyl substance regulatory strategies and their environmental impact. Toxics, 13, 251. Yu, T., Zhou, G., Cai, Z., Liang, W., Du, Y., & Wang, W. (2021). Behavioral effects of early-life exposure to perfluorooctanoic acid might synthetically link to multiple aspects of dopaminergic neuron development and dopamine functions in zebrafish larvae. Aquatic Toxicology, 238, 105926. Yu, Y., Hua, X., Chen, H., Wang, Y. e., Li, Z., Han, Y., & Xiang, M. (2020). Toxicity of lindane induced by oxidative stress and intestinal damage in Caenorhabditis elegans. Environmental Pollution, 264, 114731. Yu, Y., Hua, X., Chen, H., Yang, Y., Dang, Y., & Xiang, M. (2022). Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. Chemosphere, 300, 134588. Zeng, X.-W., Qian, Z., Emo, B., Vaughn, M., Bao, J., Qin, X.D., Zhu, Y., Li, J., Lee, Y. L., & Dong, G.H. (2015). Association of polyfluoroalkyl chemical exposure with serum lipids in children. Science of the Total Environment, 512, 364-370. Zhao, Y., Wu, Q., & Wang, D. (2016). An epigenetic signal encoded protection mechanism is activated by graphene oxide to inhibit its induced reproductive toxicity in Caenorhabditis elegans. Biomaterials, 79, 15-24. Zheng, X.M., Liu, H.L., Shi, W., Wei, S., Giesy, J. P., & Yu, H.X. (2012). Effects of perfluorinated compounds on development of zebrafish embryos. Environmental Science and Pollution Research, 19, 2498-2505. Ziech, D., Franco, R., Georgakilas, A. G., Georgakila, S., Malamou-Mitsi, V., Schoneveld, O., Pappa, A., & Panayiotidis, M. I. (2010). The role of reactive oxygen species and oxidative stress in environmental carcinogenesis and biomarker development. Chemico-Biological Interactions, 188, 334-339. 行政院環境部化學物質管理署。(2025)。 https://www.cha.gov.tw/sp-toch-list-1.html?query=%E5%85%A8%E6%B0%9F&type=all 飲用水水質標準 - 全國法規資料庫。(2025)。https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0040019&kw=%e9%a3%b2%e7%94%a8%e6%b0%b4%e6%b0%b4%e8%b3%aa%e6%a8%99%e6%ba%96 韓國的管理政策和對持久性有機污染物全球趨勢的反應。(2024)。 https://chemical-net.env.go.jp/pdf/20240124_Seminar2_ENG.pdf 中國固體廢棄物與化學品管理中心。(2023) https://www.meescc.cn/ggzc/bszn/wx_yd_hxpgl/zcfg/202311/P020231102368288153046.pdf 厚生勞動省。(2024)。 https://public-comment.e-gov.go.jp/servlet/Public? | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99922 | - |
| dc.description.abstract | 全氟和多氟烷基物質 (Per- and polyfluoroalkyl substances, PFASs) 是一類結構多樣的化學物質,廣泛應用於工業和商業領域。由於其穩定性與持久性,全球環境、食品以及人類和動物的血液中都檢測到PFASs的污染。近年來,含氯多氟烷基物質 (Chlorinated polyfluoroalkyl substances, Cl-PFASs) 因其在受PFASs相關產業影響的環境中持續存在而備受關注。先前研究顯示,PFASs對生長發育、運動和生殖具有毒性作用,然而,關於Cl-PFASs毒性的數據仍然非常有限。基於此背景,本研究以秀麗隱桿線蟲 (Caenorhabditis elegans, C. elegans) 作為模式生物,評估Cl-PFASs的毒性效應,並且以Cl-PFASs中屬含氯多氟羧酸 (Chlorinated polyfluorocarboxylic acids, Cl-PFCAs) 之氯二氟乙酸 (Chlorodifluoroacetic acid, CDFA) 與九氯全氟壬酸 (9-Chloroperfluorononanoic acid, 9Cl-PFNA) 為主研究其毒性效應,並進一步探討CDFA誘導生殖毒性之分子調控機制。本研究結果發現,在比較1和5 μM CDFA以及9Cl-PFNA暴露下之C. elegans生長發育、運動行為和繁殖毒性,發現9Cl-PFNA並不會影響C. elegans的體長,而CDFA於濃度5 μM時會減少體長;9Cl-PFNA和CDFA均會影響運動行為和生殖能力,且CDFA對於身體彎曲次數的影響較9Cl-PFNA顯著,顯示CDFA在運動行為上具有較高的毒性。針對CDFA的研究結果發現,長期暴露於10、50、75和150 μM CDFA 顯著影響C. elegans的生長,而暴露於1、5、10、50、75和150 μM CDFA則顯著影響其運動行為和繁殖。另外,長期暴露於1和150 μM CDFA 也顯著增加C. elegans生殖細胞DNA損傷以及其體內ROS含量。而進一步以qRT-PCR分析發現,1和150 μM CDFA 顯著改變了C. elegans生殖相關基因的表達,結果顯示,CDFA 顯著增加了與DNA損傷反應相關之hus-1、調控DNA損傷誘導的細胞週期停滯之cep-1及其下游與生殖細胞週期停滯相關之phg-1的mRNA表達量,並顯著降低了與生殖細胞的維持和增殖相關之glp-1的mRNA表達量。此外,CDFA也顯著上調了與卵黃蛋白生成相關的卵黃蛋白編碼基因vit-2和vit-6的mRNA表達量,同時下調了卵黃內吞受體蛋白編碼基因rme-2的mRNA表達量。另外,CDFA並不會在經rme-2 RNAi的C. elegans中誘導生殖毒性,顯示rme-2在介導CDFA誘導的生殖毒性效應中扮演關鍵的角色。
結合上述,本研究結果表明,CDFA可對C. elegans的生長發育、運動和生殖產生毒性作用,其中生殖毒性可能透過影響C. elegans DNA損傷所誘導的細胞週期停滯並且干擾卵黃蛋白的內吞作用來介導。本研究結果提供Cl-PFASs相關之毒理學數據,並提供其潛在分子機制解析,可為未來研究因Cl-PFASs環境或食品污染造成之毒性危害提供參考依據。 | zh_TW |
| dc.description.abstract | Per- and polyfluoroalkyl substances (PFASs) are structurally diverse chemicals that are used in a wide range of industrial and commercial applications. Consequently, PFASs contamination has been detected in the environment, food, and the blood of humans and animals worldwide. Recently, chlorinated polyfluoroalkyl substances (Cl-PFASs) have drawn more attention because of their continued presence in the environment affected by PFASs-related industries. Previous studies have demonstrated that PFASs exert toxic effects on development, locomotion, and reproduction. However, studies on the toxicity of Cl-PFASs are very limited. Based on these backgrounds, this study aimed to use Caenorhabditis elegans (C. elegans) as a model organism to evaluate the toxic effects of Cl-PFASs. Specifically, it focused on chlorodifluoroacetic acid (CDFA) and 9-chloroperfluorononanoic acid (9Cl-PFNA), two chlorinated polyfluorocarboxylic acids (Cl-PFCAs) within the Cl-PFASs, to assess their toxicity and further investigate the molecular mechanisms underlying CDFA-induced reproductive toxicity. The results showed that when comparing the toxic effects of 1 and 5 μM CDFA and 9Cl-PFNA exposure on C.elegans growth, locomotion, and reproduction, 9Cl-PFNA did not affect the body length of C. elegans, whereas 5 μM CDFA significantly reduced body length. Both 9Cl-PFNA and CDFA impaired locomotion and reproduction. Compared to 9Cl-PFNA, CDFA had a more pronounced effect on body bend, indicating CDFA has higher locomotor toxicity. Further investigations on CDFA revealed that long-term exposure to 10, 50, 75, and 150 μM CDFA significantly affected the growth, while exposure to 1, 10, 50, 75, and 150 μM CDFA significantly affected the locomotion and reproduction of C. elegans. In addition, long-term exposure to 1 and 150 μM CDFA demonstrated significant increase in C. elegans germline DNA damage and ROS levels. Furthermore, 1 and 150 μM CDFA significantly altered the expression the expression of reproduction-related genes in C. elegans, as determined by qRT-PCR. The results showed that CDFA significantly increased the mRNA levels of hus-1, associated with the DNA damage response; cep-1, which regulates DNA damage-induced cell cycle arrest; and its downstream gene phg-1, related to germ cell cycle arrest. Additionally, CDFA significantly decreased the mRNA level of glp-1, a gene related to the maintenance and proliferation of germ cells. Moreover, CDFA significantly increased the mRNA levels of the vitellogenin-encoding genes vit-2 and vit-6, which are involved in yolk lipoprotein production, while reducing the mRNA level of rme-2, the gene encoding the yolk endocytic receptor. Apart from this, rme-2 RNA interference in C. elegans eliminated the toxic effects on reproduction induced by CDFA, suggesting that rme-2 plays a key role in mediating CDFA-induced reproductive toxicity.
In conclusion, our findings suggest that CDFA induce toxic effects on development, locomotion, and reproduction in C. elegans, among which reproductive toxicity potentially mediated through affecting the cell cycle arrest induced by DNA damage and interfering with the endocytosis of yolk protein in C. elegans. This study contributes to a better understanding of the toxicological profile of Cl-PFASs and provides insights into their underlying mechanisms, which can provide a reference for future research on the toxic hazards caused by Cl-PFASs contamination in the environment or food. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:18:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:18:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv Graphic Abstract vi Highlights vii 目次 viii 圖次 xi 表次 xii 1. 研究動機 1 2. 文獻回顧與研究目的 2 2.1 全氟和多氟烷基物質 (Per- and polyfluoroalkyl substances, PFASs) 2 2.1.1 PFASs之物理與化學特性 2 2.1.2 PFASs之污染狀況 2 2.1.3 PFASs之相關法規與各國管制情形 4 2.1.4 PFASs之生物毒性 10 2.1.5 含氯多氟烷基物質 (Cl-PFASs) 14 2.2 秀麗隱桿線蟲 (Caenorhabditis elegans, C. elegans) 18 2.2.1 C. elegans 基本介紹 18 2.2.2 以C. elegans作為模式生物探討生殖毒性 20 2.3 研究目的 23 3. 材料與方法 25 3.1 實驗架構 25 3.2 實驗藥品及試劑 26 3.3 C. elegans品系與培養 26 3.4 PFASs對C. elegans生長發育影響之試驗 26 3.5 PFASs對C. elegans運動行為影響之試驗 27 3.6 PFASs對C. elegans生殖能力影響之試驗 27 3.6.1 子宮內卵數目 (Uterus eggs) 28 3.6.2 總子代數目 (Brood size) 28 3.7 Cl-PFCAs對C. elegans生殖細胞DNA損傷 (Germline DNA damage) 影響之試驗 28 3.8 Cl-PFCAs對C. elegans 生殖細胞凋亡 (Germline apoptosis) 影響之試驗 29 3.9 Cl-PFCAs對C. elegans 體內ROS含量影響之試驗 30 3.10 即時定量聚合酶鏈鎖反應 (Quantitative real-time polymerase chain reaction, qRT-PCR) 30 3.11 RNA干擾試驗 (RNA interference, RNAi) 31 3.12 統計分析 31 4. 結果與討論 33 4.1 Cl-PFCAs對C. elegans毒性影響之比較 33 4.2 CDFA對C. elegans生長發育之影響 37 4.3 CDFA對C. elegans運動行為之影響 39 4.4 CDFA對C. elegans 生殖能力之影響 41 4.5 CDFA對C. elegans生殖細胞DNA損傷之影響 44 4.6 CDFA對C. elegans體內ROS之影響 47 4.7 CDFA對C. elegans生殖相關基因表達量之影響 (qRT-PCR) 50 4.8 rme-2介導CDFA暴露導致C. elegans 產生之生殖毒性 53 5. 結論 55 6. 建議 57 7. 參考文獻 59 8. 附錄 79 附錄表 一、基因引子序列 79 附錄圖 一、CDFA對C. elegans生殖細胞凋亡之影響 80 附錄圖 二、CDFA對C. elegans氧化壓力相關基因表達量 (qRT-PCR) 之影響 81 附錄圖 三、暴露CDFA、9Cl-PFNA與PFNA對C. elegans脂質合成之影響 82 附錄圖 四、暴露9Cl-PFNA與PFNA對C. elegans毒性影響之比較 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氯二氟乙酸 | zh_TW |
| dc.subject | 卵黃蛋白內吞作用 | zh_TW |
| dc.subject | 含氯多氟烷基物質 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 生殖毒性 | zh_TW |
| dc.subject | 細胞週期停滯 | zh_TW |
| dc.subject | cell cycle arrest | en |
| dc.subject | chlorodifluoroacetic acid | en |
| dc.subject | chlorinated polyfluoroalkyl substances | en |
| dc.subject | endocytosis of yolk protein | en |
| dc.subject | Caenorhabditis elegans | en |
| dc.subject | reproductive toxicity | en |
| dc.title | 含氯多氟烷基物質 (Cl-PFASs) 對秀麗隱桿線蟲之生殖毒性及其相關機制:以含氯多氟羧酸 (Cl-PFCAs) 作探討 | zh_TW |
| dc.title | Reproductive toxicity and underlying mechanisms of chlorinated polyfluoroalkyl substances (Cl-PFASs) in Caenorhabditis elegans: Emphasis on chlorinated polyfluorocarboxylic acids (Cl-PFCAs) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 童心欣;李月嘉;陳俊豪 | zh_TW |
| dc.contributor.oralexamcommittee | Hsin-Hsin Tung;Yue-Jia Lee;Chun-Hao Chen | en |
| dc.subject.keyword | 含氯多氟烷基物質,氯二氟乙酸,生殖毒性,秀麗隱桿線蟲,細胞週期停滯,卵黃蛋白內吞作用, | zh_TW |
| dc.subject.keyword | chlorinated polyfluoroalkyl substances,chlorodifluoroacetic acid,reproductive toxicity,Caenorhabditis elegans,cell cycle arrest,endocytosis of yolk protein, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202503777 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 食品安全與健康研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
