Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99921
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏嘉徵zh_TW
dc.contributor.advisorChia-Cheng Weien
dc.contributor.author呂佳恩zh_TW
dc.contributor.authorJia-En Luen
dc.date.accessioned2025-09-19T16:18:17Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAbdelhady, W., Bayer, A. S., Seidl, K., Moormeier, D. E., Bayles, K. W., Cheung, A., Yeaman, M. R., & Xiong, Y. Q. (2014). Impact of vancomycin on sarA-mediated biofilm formation: role in persistent endovascular infections due to methicillin-resistant Staphylococcus aureus. The Journal of Infectious Diseases, 209, 1231-1240.
Agathokleous, E., Wang, Q., Iavicoli, I., & Calabrese, E. J. (2022). The relevance of hormesis at higher levels of biological organization: hormesis in microorganisms. Current Opinion in Toxicology, 29, 1-9.
Ahmad-Mansour, N., Loubet, P., Pouget, C., Dunyach-Remy, C., Sotto, A., Lavigne, J.-P., & Molle, V. (2021). Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments. Toxins, 13, 677.
Al-Momani, H., Aolymat, I., Ibrahim, L., Albalawi, H., Al Balawi, D. a., Albiss, B. A., Almasri, M., & Alghweiri, S. (2024). Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiology, 24, 290.
Aljamali, N. M., Najim, M., & Alabbasy, A. (2021). Review on food poisoning (types, causes, symptoms, diagnosis, treatment). Global Academic Journal of Pharmacy and Drug Research, 3, 54-61.
Almatroudi, A., Gosbell, I. B., Hu, H., Jensen, S. O., Espedido, B., Tahir, S., Glasbey, T., Legge, P., Whiteley, G., & Deva, A. (2016). Staphylococcus aureus dry-surface biofilms are not killed by sodium hypochlorite: implications for infection control. Journal of Hospital Infection, 93, 263-270.
Alonzo III, F., & Torres, V. J. (2014). The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiology and Molecular Biology Reviews, 78, 199-230.
Alshaikh, S. A., El-Banna, T., Sonbol, F., & Farghali, M. H. (2024). Correlation between antimicrobial resistance, biofilm formation, and virulence determinants in uropathogenic Escherichia coli from Egyptian hospital. Annals of Clinical Microbiology and Antimicrobials, 23, 20.
Apan, O. C., Apan, T. Z., & Apan, A. (2016). In vitro antimicrobial activity of commonly used vasoactive drugs. Journal of Clinical Anesthesia, 34, 407-411.
Archer, N. K., Mazaitis, M. J., Costerton, J. W., Leid, J. G., Powers, M. E., & Shirtliff, M. E. (2011). Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence, 2, 445-459.
Argudín, M. Á., Mendoza, M. C., & Rodicio, M. R. (2010). Food poisoning and Staphylococcus aureus enterotoxins. Toxins, 2, 1751-1773.
Awuchi, C. G., Ondari, E. N., Ogbonna, C. U., Upadhyay, A. K., Baran, K., Okpala, C. O. R., Korzeniowska, M., & Guiné, R. P. (2021). Mycotoxins affecting animals, foods, humans, and plants: types, occurrence, toxicities, action mechanisms, prevention, and detoxification strategies—a revisit. Foods, 10, 1279.
Bacon, C. W., Hinton, D. M., & Mitchell, T. R. (2017). Is quorum signaling by mycotoxins a new risk-mitigating strategy for bacterial biocontrol of Fusarium verticillioides and other endophytic fungal species? Journal of Agricultural and Food Chemistry, 65, 7071-7080.
Bai, A. D., Lo, C. K., Komorowski, A. S., Suresh, M., Guo, K., Garg, A., Tandon, P., Senecal, J., Del Corpo, O., & Stefanova, I. (2022). Staphylococcus aureus bacteraemia mortality: a systematic review and meta-analysis. Clinical Microbiology and Infection, 28, 1076-1084.
Bai, J., Zhou, Y., Luo, X., Hai, J., Si, X., Li, J., Fu, H., Dai, Z., Yang, Y., & Wu, Z. (2022). Roles of stress response‐related signaling and its contribution to the toxicity of zearalenone in mammals. Comprehensive Reviews in Food Science and Food Safety, 21, 3326-3345.
Balló, A., Busznyákné Székvári, K., Czétány, P., Márk, L., Török, A., Szántó, Á., & Máté, G. (2023). Estrogenic and non-estrogenic disruptor effect of zearalenone on male reproduction: a review. International Journal of Molecular Sciences, 24, 1578.
Battilani, P., Toscano, P., Van der Fels-Klerx, H., Moretti, A., Camardo Leggieri, M., Brera, C., Rortais, A., Goumperis, T., & Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports, 6, 24328.
Beaufort, A. (2011). The determination of ready-to-eat foods into Listeria monocytogenes growth and no growth categories by challenge tests. Food Control, 22, 1498-1502.
Bedran, T. B. L., Grignon, L., Spolidorio, D. P., & Grenier, D. (2014). Subinhibitory concentrations of triclosan promote Streptococcus mutans biofilm formation and adherence to oral epithelial cells. PloS One, 9, e89059.
Beenken, K. E., Blevins, J. S., & Smeltzer, M. S. (2003). Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infection and Immunity, 71, 4206-4211.
Beenken, K. E., Mrak, L. N., Griffin, L. M., Zielinska, A. K., Shaw, L. N., Rice, K. C., Horswill, A. R., Bayles, K. W., & Smeltzer, M. S. (2010). Epistatic relationships between sarA and agr in Staphylococcus aureus biofilm formation. PloS One, 5, e10790.
Begley, M., & Hill, C. (2015). Stress adaptation in foodborne pathogens. Annual Review of Food Science and Technology, 6, 191-210.
Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16, 497.
Beringer, M., & Rodnina, M. V. (2007). The ribosomal peptidyl transferase. Molecular cell, 26, 311-321.
Bidaud-Meynard, A., Demouchy, F., Nicolle, O., Pacquelet, A., Suman, S. K., Plancke, C. N., Robin, F. B., & Michaux, G. (2021). High-resolution dynamic mapping of the C. elegans intestinal brush border. Development, 148, dev200029.
Bien, J., Sokolova, O., & Bozko, P. (2011). Characterization of virulence factors of Staphylococcus aureus: novel function of known virulence factors that are implicated in activation of airway epithelial proinflammatory response. Journal of Pathogens, 2011, 601905.
Biscoto, G. L., Salvato, L. A., Alvarenga, É. R., Dias, R. R., Pinheiro, G. R., Rodrigues, M. P., Pinto, P. N., Freitas, R. P., & Keller, K. M. (2022). Mycotoxins in cattle feed and feed ingredients in Brazil: a five-year survey. Toxins, 14, 552.
Blaskovich, M. A., Hansford, K. A., Butler, M. S., Jia, Z., Mark, A. E., & Cooper, M. A. (2018). Developments in glycopeptide antibiotics. ACS Infectious Diseases, 4, 715-735.
Bokarewa, M. I., Jin, T., & Tarkowski, A. (2006). Staphylococcus aureus: staphylokinase. The International Journal of Biochemistry & Cell Biology, 38, 504-509.
Borutova, R., Aragon, Y. A., Nährer, K., & Berthiller, F. (2012). Co-occurrence and statistical correlations between mycotoxins in feedstuffs collected in the Asia–Oceania in 2010. Animal Feed Science and Technology, 178, 190-197.
Boukerb, A. M., Cambronel, M., Rodrigues, S., Mesguida, O., Knowlton, R., Feuilloley, M. G., Zommiti, M., & Connil, N. (2021). Inter-kingdom signaling of stress hormones: sensing, transport and modulation of bacterial physiology. Frontiers in Microbiology, 12, 690942.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.
Bronesky, D., Wu, Z., Marzi, S., Walter, P., Geissmann, T., Moreau, K., Vandenesch, F., Caldelari, I., & Romby, P. (2016). Staphylococcus aureus RNAIII and its regulon link quorum sensing, stress responses, metabolic adaptation, and regulation of virulence gene expression. Annual Review of Microbiology, 70, 299-316.
Bronner, S., Monteil, H., & Prévost, G. (2004). Regulation of virulence determinants in Staphylococcus aureus: complexity and applications. FEMS Microbiology Reviews, 28, 183-200.
Cai, P., Liu, S., Tu, Y., & Shan, T. (2024). Toxicity, biodegradation, and nutritional intervention mechanism of zearalenone. Science of the Total Environment, 911, 168648.
Calabrese, E. J., & Agathokleous, E. (2020). Theodosius Dobzhansky's view on biology and evolution v. 2.0:“Nothing in biology makes sense except in light of evolution and evolution's dependence on hormesis-mediated acquired resilience that optimizes biological performance and numerous diverse short and longer term protective strategies”. Environmental Research, 186, 109559.
Cambronel, M., Tortuel, D., Biaggini, K., Maillot, O., Taupin, L., Réhel, K., Rincé, I., Muller, C., Hardouin, J., & Feuilloley, M. (2019). Epinephrine affects motility, and increases adhesion, biofilm and virulence of Pseudomonas aeruginosa H103. Scientific Reports, 9, 20203.
Campos, B., Pickering, A. C., Rocha, L. S., Aguilar, A. P., Fabres-Klein, M. H., de Oliveira Mendes, T. A., Fitzgerald, J. R., & de Oliveira Barros Ribon, A. (2022). Diversity and pathogenesis of Staphylococcus aureus from bovine mastitis: current understanding and future perspectives. BMC Veterinary Research, 18, 115.
Carcione, D., Leccese, G., Conte, G., Rossi, E., Intra, J., Bonomi, A., Sabella, S., Moreo, M., Landini, P., & Brilli, M. (2022). Lack of direct correlation between biofilm formation and antimicrobial resistance in clinical Staphylococcus epidermidis isolates from an Italian hospital. Microorganisms, 10, 1163.
CAST. (2003). Mycotoxins: risks in plant, animal, and human systems. Council for Agricultural Science & Technology.
CDC. (2024). Infection control guidance: preventing methicillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. Available online: https://www.cdc.gov/mrsa/hcp/infection-control/index.html
Ceri, H., Olson, M. E., Stremick, C., Read, R., Morck, D., & Buret, A. (1999). The calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. Journal of Clinical Microbiology, 37, 1771-1776.
Cervini, C., Naz, N., Verheecke-Vaessen, C., & Medina, A. (2024). Impact of predicted climate change environmental conditions on the growth of Fusarium asiaticum strains and mycotoxins production on a wheat-based matrix. International Journal of Food Microbiology, 416, 110658.
Chen, C., & Hooper, D. C. (2018). Effect of Staphylococcus aureus Tet38 native efflux pump on in vivo response to tetracycline in a murine subcutaneous abscess model. Journal of Antimicrobial Chemotherapy, 73, 720-723.
Cheung, A. L., Bayer, A. S., Zhang, G., Gresham, H., & Xiong, Y.-Q. (2004). Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunology & Medical Microbiology, 40, 1-9.
Cheung, G. Y., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12, 547-569.
Chhaya, R. S., O'Brien, J., Nag, R., & Cummins, E. (2024). Prevalence and concentration of mycotoxins in bovine feed and feed components: a global systematic review and meta-analysis. Science of the Total Environment, 929, 172323.
Corsi, A. K., Wightman, B., & Chalfie, M. (2015). A transparent window into biology: a primer on Caenorhabditis elegans. Genetics, 200, 387-407.
Costa, S. S., Viveiros, M., Amaral, L., & Couto, I. (2013). Multidrug efflux pumps in Staphylococcus aureus: an update. The Open Microbiology Journal, 7, 59.
Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science, 284, 1318-1322.
Culver, G. M. (2003). Assembly of the 30S ribosomal subunit. Biopolymers: Original Research on Biomolecules, 68, 234-249.
Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.
De Gregorio, E., Esposito, A., Vollaro, A., De Fenza, M., D’Alonzo, D., Migliaccio, A., Iula, V. D., Zarrilli, R., & Guaragna, A. (2020). N-nonyloxypentyl-l-deoxynojirimycin inhibits growth, biofilm formation and virulence factors expression of Staphylococcus aureus. Antibiotics, 9, 362.
Dean, P. (2011). Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiology Reviews, 35, 1100-1125.
DeFlorio, W., Liu, S., White, A. R., Taylor, T. M., Cisneros‐Zevallos, L., Min, Y., & Scholar, E. M. (2021). Recent developments in antimicrobial and antifouling coatings to reduce or prevent contamination and cross‐contamination of food contact surfaces by bacteria. Comprehensive Reviews in Food Science and Food Safety, 20, 3093-3134.
Diamond, M., Reape, T. J., Rocha, O., Doyle, S. M., Kacprzyk, J., Doohan, F. M., & McCabe, P. F. (2013). The Fusarium mycotoxin deoxynivalenol can inhibit plant apoptosis-like programmed cell death. PloS One, 8, e69542.
Dimov, I., & Maduro, M. F. (2019). The C. elegans intestine: organogenesis, digestion, and physiology. Cell and Tissue Research, 377, 383-396.
Dinges, M. M., Orwin, P. M., & Schlievert, P. M. (2000). Exotoxins of Staphylococcus aureus. Clinical Microbiology Reviews, 13, 16-34.
Duchenne-Moutien, R. A., & Neetoo, H. (2021). Climate change and emerging food safety issues: a review. Journal of Food Protection, 84, 1884-1897.
Dunman, P. á., Murphy, E., Haney, S., Palacios, D., Tucker-Kellogg, G., Wu, S., Brown, E., Zagursky, R., Shlaes, D., & Projan, S. (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. American Society for Microbiology, 183, 7341-7353
EFSA. (2011). Scientific opinion on the risks for public health related to the presence of zearalenone in food. Efsa Journal, 9, 2197.
EFSA. (2017). Risks for animal health related to the presence of zearalenone and its modified forms in feed. Efsa Journal, 15, e04851.
EFSA. (2024). The European Union one health 2023 zoonoses report. Efsa Journal, 22, e9106.
El-Sayed, R. A., Jebur, A. B., Kang, W., & El-Demerdash, F. M. (2022). An overview on the major mycotoxins in food products: characteristics, toxicity, and analysis. Journal of Future Foods, 2, 91-102.
Eskola, M., Kos, G., Elliott, C. T., Hajšlová, J., Mayar, S., & Krska, R. (2020). Worldwide contamination of food-crops with mycotoxins: validity of the widely cited ‘FAO estimate’of 25%. Critical Reviews in Food Science and Nutrition, 60, 2773-2789.
EUCAST. (2024). European Committee on Antimicrobial Susceptibility Testing.
F. Abdallah, M., Girgin, G., & Baydar, T. (2019). Mycotoxin detection in maize, commercial feed, and raw dairy milk samples from Assiut City, Egypt. Veterinary Sciences, 6, 57.
Fagundes, H., Barchesi, L., Nader Filho, A., Ferreira, L. M., & Oliveira, C. A. F. (2010). Occurrence of Staphylococcus aureus in raw milk produced in dairy farms in São Paulo state, Brazil. Brazilian Journal of Microbiology, 41, 376-380.
Ferullo, D. J., & Lovett, S. T. (2008). The stringent response and cell cycle arrest in Escherichia coli. PLoS genetics, 4, e1000300.
Fisher, J. F., & Mobashery, S. (2020). β-lactams against the fortress of the gram-positive Staphylococcus aureus bacterium. Chemical Reviews, 121, 3412-3463.
Flannagan, R. S., Heit, B., & Heinrichs, D. E. (2015). Antimicrobial mechanisms of macrophages and the immune evasion strategies of Staphylococcus aureus. Pathogens, 4, 826-868.
Flint, A., Butcher, J., & Stintzi, A. (2016). Stress responses, adaptation, and virulence of bacterial pathogens during host gastrointestinal colonization. Virulence Mechanisms of Bacterial Pathogens, 385-411.
Foster, T. J. (2017). Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiology Reviews, 41, 430-449.
Francis, V. I., Stevenson, E. C., & Porter, S. L. (2017). Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiology Letters, 364, fnx104.
Freestone, P. P., Hirst, R. A., Sandrini, S. M., Sharaff, F., Fry, H., Hyman, S., & O'Callaghan, C. (2012). Pseudomonas aeruginosa-catecholamine inotrope interactions: a contributory factor in the development of ventilator-associated pneumonia? Chest, 142, 1200-1210.
Freestone, P. P. E., Haigh, R. D., & Lyte, M. (2008). Catecholamine inotrope resuscitation of antibiotic-damaged staphylococci and its blockade by specific receptor antagonists. The Journal of Infectious Diseases, 197, 1044-1052.
Fridman, O., Goldberg, A., Ronin, I., Shoresh, N., & Balaban, N. Q. (2014). Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature, 513, 418-421.
Gajdács, M., Baráth, Z., Kárpáti, K., Szabó, D., Usai, D., Zanetti, S., & Donadu, M. G. (2021). No correlation between biofilm formation, virulence factors, and antibiotic resistance in Pseudomonas aeruginosa: results from a laboratory-based in vitro study. Antibiotics, 10, 1134.
García-Gómez, E., González-Pedrajo, B., & Camacho-Arroyo, I. (2013). Role of sex steroid hormones in bacterial‐host interactions. BioMed Research International, 2013, 928290.
Garsin, D. A., Villanueva, J. M., Begun, J., Kim, D. H., Sifri, C. D., Calderwood, S. B., Ruvkun, G., & Ausubel, F. M. (2003). Long-lived C. elegans daf-2 mutants are resistant to bacterial pathogens. Science, 300, 1921-1921.
Golge, O., & Kabak, B. (2020). Occurrence of deoxynivalenol and zearalenone in cereals and cereal products from Turkey. Food Control, 110, 106982.
Gravato‐Nobre, M. J., & Hodgkin, J. (2005). Caenorhabditis elegans as a model for innate immunity to pathogens. Cellular Microbiology, 7, 741-751.
Grispoldi, L., Karama, M., Armani, A., Hadjicharalambous, C., & Cenci-Goga, B. T. (2021). Staphylococcus aureus enterotoxin in food of animal origin and staphylococcal food poisoning risk assessment from farm to table. Italian Journal of Animal Science, 20, 677-690.
Gromadzka, K., Waśkiewicz, A., Świetlik, J., Bocianowski, J., & Goliński, P. (2015). Possible way of zearalenone migration in the agricultural environment. Plant, Soil and Environment, 61, 358-363.
Gruber-Dorninger, C., Jenkins, T., & Schatzmayr, G. (2019). Global mycotoxin occurrence in feed: a ten-year survey. Toxins, 11, 375.
Gullberg, E., Cao, S., Berg, O. G., Ilbäck, C., Sandegren, L., Hughes, D., & Andersson, D. I. (2011). Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathogens, 7, e1002158.
Guo, Y., Song, G., Sun, M., Wang, J., & Wang, Y. (2020). Prevalence and therapies of antibiotic-resistance in Staphylococcus aureus. Frontiers in Cellular and Infection Microbiology, 10, 107.
Gurtler, J. B., & Gibson, K. E. (2022). Irrigation water and contamination of fresh produce with bacterial foodborne pathogens. Current Opinion in Food Science, 47, 100889.
Haag, A. F., & Bagnoli, F. (2016). The role of two-component signal transduction systems in Staphylococcus aureus virulence regulation. Staphylococcus aureus: Microbiology, Pathology, Immunology, Therapy and Prophylaxis, 409, 145-198.
Hall-Stoodley, L., Costerton, J. W., & Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2, 95-108.
Han, X., Huangfu, B., Xu, T., Xu, W., Asakiya, C., Huang, K., & He, X. (2022). Research progress of safety of zearalenone: a review. Toxins, 14, 386.
Hartmann, N., Erbs, M., Forrer, H.-R., Vogelgsang, S., Wettstein, F. E., Schwarzenbach, R. P., & Bucheli, T. D. (2008). Occurrence of zearalenone on Fusarium graminearum infected wheat and maize fields in crop organs, soil, and drainage water. Environmental Science & Technology, 42, 5455-5460.
Henly, E., Dowling, J., Maingay, J., Lacey, M., Smith, T., & Forbes, S. (2019). Biocide exposure induces changes in susceptibility, pathogenicity, and biofilm formation in uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 63, 01892-01818.
Hidy, P., Baldwin, R., Greasham, R., Keith, C., & McMullen, J. (1977). Zearalenone and some derivatives: production and biological activities. Advances in Applied Microbiology, 22, 59-82.
Howden, B. P., Giulieri, S. G., Wong Fok Lung, T., Baines, S. L., Sharkey, L. K., Lee, J. Y., Hachani, A., Monk, I. R., & Stinear, T. P. (2023). Staphylococcus aureus host interactions and adaptation. Nature Reviews Microbiology, 21, 380-395.
Hunt, P. R. (2017). The C. elegans model in toxicity testing. Journal of Applied Toxicology, 37, 50-59.
IARC. (1993). Some naturally occurring substances: food items and constituents, heterocyclic aromatic amines and mycotoxins. World Health Organization, 5.
Idrees, M., Sawant, S., Karodia, N., & Rahman, A. (2021). Staphylococcus aureus biofilm: morphology, genetics, pathogenesis and treatment strategies. International Journal of Environmental Research and Public Health, 18, 7602.
Irazoqui, J. E., Troemel, E. R., Feinbaum, R. L., Luhachack, L. G., Cezairliyan, B. O., & Ausubel, F. M. (2010). Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathogens, 6, e1000982.
JebaMercy, G., Prithika, U., Lavanya, N., Sekar, C., & Balamurugan, K. (2015). Changes in Caenorhabditis elegans immunity and Staphylococcal virulence factors during their interactions. Gene, 558, 159-172.
JECFA. (2000). Safety evaluation of certain food additives and contaminants. WHO Food Additives Series 44, Zearalenone, 393-482.
Jenul, C., & Horswill, A. R. (2019). Regulation of Staphylococcus aureus virulence. Microbiology Spectrum, 7, 10-1128
Ji, F., Xu, J., Liu, X., Yin, X., & Shi, J. (2014). Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. Food Chemistry, 157, 393-397.
Jing, S., Liu, C., Zheng, J., Dong, Z., & Guo, N. (2022). Toxicity of zearalenone and its nutritional intervention by natural products. Food & Function, 13, 10374-10400.
Johnson, P. J., & Levin, B. R. (2013). Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genetics, 9, e1003123.
Josenhans, C., & Suerbaum, S. (2002). The role of motility as a virulence factor in bacteria. International Journal of Medical Microbiology, 291, 605-614.
Juraschek, L. M., Kappenberg, A., & Amelung, W. (2022). Mycotoxins in soil and environment. Science of the Total Environment, 814, 152425.
Kaletta, T., & Hengartner, M. O. (2006). Finding function in novel targets: C. elegans as a model organism. Nature Reviews Drug Discovery, 5, 387-399.
Kapoor, G., Saigal, S., & Elongavan, A. (2017). Action and resistance mechanisms of antibiotics: a guide for clinicians. Journal of Anaesthesiology Clinical Pharmacology, 33, 300-305.
Karavolos, M., Spencer, H., Bulmer, D., Thompson, A., Winzer, K., Williams, P., Hinton, J., & Khan, C. A. (2008). Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics, 9, 1-14.
Karygianni, L., Ren, Z., Koo, H., & Thurnheer, T. (2020). Biofilm matrixome: extracellular components in structured microbial communities. Trends in Microbiology, 28, 668-681.
Khan, F., Jain, S., & Oloketuyi, S. F. (2018). Bacteria and bacterial products: foe and friends to Caenorhabditis elegans. Microbiological Research, 215, 102-113.
Kim, D. H. (2015). Signaling in the innate immune response. WormBook, 1-51
Kluytmans, J., Van Belkum, A., & Verbrugh, H. (1997). Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clinical Microbiology Reviews, 10, 505-520.
Kornman, K. S., & Loesche, W. J. (1982). Effects of estradiol and progesterone on Bacteroides melaninogenicus and Bacteroides gingivalis. Infection and Immunity, 35, 256-263.
Kos, J., Anić, M., Radić, B., Zadravec, M., Janić Hajnal, E., & Pleadin, J. (2023). Climate change—a global threat resulting in increasing mycotoxin occurrence. Foods, 12, 2704.
Kowalska, K., Habrowska-Górczyńska, D. E., & Piastowska-Ciesielska, A. W. (2016). Zearalenone as an endocrine disruptor in humans. Environmental Toxicology and Pharmacology, 48, 141-149.
Kozajda, A., Jeżak, K., & Kapsa, A. (2019). Airborne Staphylococcus aureus in different environments—a review. Environmental Science and Pollution Research, 26, 34741-34753.
Krakauer, T. (1999). Immune response to staphylococcal superantigens. Immunologic Research, 20, 163-173.
Kumar, A., Baruah, A., Tomioka, M., Iino, Y., Kalita, M. C., & Khan, M. (2020). Caenorhabditis elegans: a model to understand host–microbe interactions. Cellular and Molecular Life Sciences, 77, 1229-1249.
Kurz, C. L., & Ewbank, J. J. (2000). Caenorhabditis elegans for the study of host–pathogen interactions. Trends in Microbiology, 8, 142-144.
Lagarde, F., Beausoleil, C., Belcher, S. M., Belzunces, L. P., Emond, C., Guerbet, M., & Rousselle, C. (2015). Non-monotonic dose-response relationships and endocrine disruptors: a qualitative method of assessment. Environmental Health, 14, 1-15.
Lai, C.-H., Chou, C.-Y., Ch'ang, L.-Y., Liu, C.-S., & Lin, W.-c. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Research, 10, 703-713.
Lakhundi, S., & Zhang, K. (2018). Methicillin-resistant Staphylococcus aureus: molecular characterization, evolution, and epidemiology. Clinical Microbiology Reviews, 31, e00020-18.
Laverty, G., Gorman, S. P., & Gilmore, B. F. (2013). Biomolecular mechanisms of staphylococcal biofilm formation. Future Microbiology, 8, 509-524.
Le Loir, Y., Baron, F., & Gautier, M. (2003). Staphylococcus aureus and food poisoning. Genetics and Molecular Research: GMR, 2, 63-76.
Li, Q., Dou, L., Zhang, Y., Luo, L., Yang, H., Wen, K., Yu, X., Shen, J., & Wang, Z. (2024). A comprehensive review on the detection of Staphylococcus aureus enterotoxins in food samples. Comprehensive Reviews in Food Science and Food Safety, 23, e13264.
Li, Q., Yu, S., Han, J., Wu, J., You, L., Shi, X., & Wang, S. (2022). Synergistic antibacterial activity and mechanism of action of nisin/carvacrol combination against Staphylococcus aureus and their application in the infecting pasteurized milk. Food chemistry, 380, 132009.
Liang, T., Liang, Z., Wu, S., Ding, Y., Wu, Q., & Gu, B. (2023). Global prevalence of Staphylococcus aureus in food products and its relationship with the occurrence and development of diabetes mellitus. Medicine Advances, 1, 53-78.
Liaqat, I., Bachmann, R. T., Sabri, A. N., & Edyvean, R. G. (2010). Isolate-specific effects of patulin, penicillic acid and EDTA on biofilm formation and growth of dental unit water line biofilm isolates. Current Microbiology, 61, 148-156.
Lijalem, Y. G., Gab-Allah, M. A., Yu, H., Choi, K., & Kim, B. (2023). Occurrence of zearalenone and its major metabolites in cereal flour from Korea. Food Additives & Contaminants: Part A, 40, 675-687.
Lin, C.-H., Wu, C.-Y., Kou, H.-S., Chen, C.-Y., Huang, M.-C., Hu, H.-M., Wu, M.-C., Lu, C.-Y., Wu, D.-C., & Wu, M.-T. (2013). Effect of Di (2‐ethylhexyl) phthalate on Helicobacter pylori‐induced apoptosis in AGS cells. Gastroenterology Research and Practice, 2013, 924769.
Liu, C., & Van der Fels-Klerx, H. (2021). Quantitative modeling of climate change impacts on mycotoxins in cereals: a review. Toxins, 13, 276.
Liu, J., Sun, L., Zhang, J., Guo, J., Chen, L., Qi, D., & Zhang, N. (2016). Aflatoxin B1, zearalenone and deoxynivalenol in feed ingredients and complete feed from central China. Food Additives & Contaminants: Part B, 9, 91-97.
Liu, M., Wu, X., Li, J., Liu, L., Zhang, R., Shao, D., & Du, X. (2017). The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control, 73, 613-618.
Liu, Y., Zhang, J., & Ji, Y. (2020). Environmental factors modulate biofilm formation by Staphylococcus aureus. Science Progress, 103, 0036850419898659.
Lovelace, C. E., & Nyathi, C. B. (1977). Estimation of the fungal toxins, zearalenone and aflatoxin, contaminating opaque maize beer in Zambia. Journal of the Science of Food and Agriculture, 28, 288-292.
Lowy, F. D. (1998). Staphylococcus aureus infections. New England Journal of Medicine, 339, 520-532.
Lowy, F. D. (2003). Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of Clinical Investigation, 111, 1265-1273.
Lu, J., Jin, M., Nguyen, S. H., Mao, L., Li, J., Coin, L. J., Yuan, Z., & Guo, J. (2018). Non-antibiotic antimicrobial triclosan induces multiple antibiotic resistance through genetic mutation. Environment International, 118, 257-265.
Lu, J., Wang, Y., Li, J., Mao, L., Nguyen, S. H., Duarte, T., Coin, L., Bond, P., Yuan, Z., & Guo, J. (2018). Triclosan at environmentally relevant concentrations promotes horizontal transfer of multidrug resistance genes within and across bacterial genera. Environment International, 121, 1217-1226.
Luo, Z.-x., Li, Y., Liu, M.-f., & Zhao, R. (2023). Ciprofloxacin enhances the biofilm formation of Staphylococcus aureus via an agrC-dependent mechanism. Frontiers in Microbiology, 14, 1328947.
Luo, Z., Xi, H., Huang, W., Liu, M.-f., Yuan, L., Chen, Q., Xiao, Y., Zhu, Q., Zhao, R., & Sheng, Y.-y. (2024). The role of male hormones in bacterial infections: enhancing Staphylococcus aureus virulence through testosterone-induced Agr activation. Archives of Microbiology, 206, 401.
Lutz, M. P., Feichtinger, G., Défago, G., & Duffy, B. (2003). Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Applied and Environmental Microbiology, 69, 3077-3084.
Lv, Q., Xu, W., Yang, F., Wei, W., Chen, X., Zhang, Z., & Liu, Y. (2025). Reproductive toxicity of zearalenone and its molecular mechanisms: a review. Molecules, 30, 505.
Lyte, M., & Ernst, S. (1992). Catecholamine induced growth of gram negative bacteria. Life Sciences, 50, 203-212.
Mah, T.-F. C., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9, 34-39.
Mahato, D. K., Devi, S., Pandhi, S., Sharma, B., Maurya, K. K., Mishra, S., Dhawan, K., Selvakumar, R., Kamle, M., & Mishra, A. K. (2021). Occurrence, impact on agriculture, human health, and management strategies of zearalenone in food and feed: a review. Toxins, 13, 92.
Mahey, N., Tambat, R., Verma, D. K., Chandal, N., Thakur, K. G., & Nandanwar, H. (2021). Antifungal azoles as tetracycline resistance modifiers in Staphylococcus aureus. Applied and Environmental Microbiology, 87, e00155-00121.
Mangu, J. C. K., Stylianou, M., Olsson, P.-E., & Jass, J. (2022). Per-and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response. Environmental Pollution, 314, 120294.
Mangwani, N., Kumari, S., & Das, S. (2016). Bacterial biofilms and quorum sensing: fidelity in bioremediation technology. Biotechnology and Genetic Engineering Reviews, 32, 43-73.
Mannaa, M., & Kim, K. D. (2017). Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45, 240-254.
Maragos, C. M. (2012). Zearalenone occurrence in surface waters in central Illinois, USA. Food Additives and Contaminants: Part B, 5, 55-64.
Martineau, C. N., Kirienko, N. V., & Pujol, N. (2021). Innate immunity in C. elegans. Current Topics in Developmental Biology, 144, 309-351.
Martín-Rodríguez, A. J., Reyes, F., Martín, J., Pérez-Yépez, J., León-Barrios, M., Couttolenc, A., Espinoza, C., Trigos, Á., Martín, V. S., & Norte, M. (2014). Inhibition of bacterial quorum sensing by extracts from aquatic fungi: first report from marine endophytes. Marine Drugs, 12, 5503-5526.
Mattson, M. P. (2008). Hormesis defined. Ageing Research Reviews, 7, 1-7.
McCallum, N., Berger-Bächi, B., & Senn, M. M. (2010). Regulation of antibiotic resistance in Staphylococcus aureus. International Journal of Medical Microbiology, 300, 118-129.
McGhee, J. D. (2007). The C. elegans intestine. WormBook: The Online Review of C. elegans Biology [Internet].
McMahon, M. A. S., Xu, J., Moore, J. E., Blair, I. S., & McDowell, D. A. (2007). Environmental stress and antibiotic resistance in food-related pathogens. Applied and Environmental Microbiology, 73, 211-217.
Mlynarczyk-Bonikowska, B., Kowalewski, C., Krolak-Ulinska, A., & Marusza, W. (2022). Molecular mechanisms of drug resistance in Staphylococcus aureus. International Journal of Molecular Sciences, 23, 8088.
Moormeier, D. E., Bose, J. L., Horswill, A. R., & Bayles, K. W. (2014). Temporal and stochastic control of Staphylococcus aureus biofilm development. MBio, 5, 01341-01314.
Mueller, D. S., Wise, K. A., Sisson, A. J., Allen, T. W., Bergstrom, G. C., Bissonnette, K. M., Bradley, C. A., Byamukama, E., Chilvers, M. I., & Collins, A. A. (2020). Corn yield loss estimates due to diseases in the United States and Ontario, Canada, from 2016 to 2019. Plant Health Progress, 21, 238-247.
Murray, R. (2005). Recognition and management of Staphylococcus aureus toxin-mediated disease. Internal medicine journal, 35, S106-119.
Mushak, P. (2007). Hormesis and its place in nonmonotonic dose–response relationships: some scientific reality checks. Environmental Health Perspectives, 115, 500-506.
Myers, J. P., Zoeller, R. T., & vom Saal, F. S. (2009). A clash of old and new scientific concepts in toxicity, with important implications for public health. Environmental Health Perspectives, 117, 1652-1655.
Nahle, S., El Khoury, A., & Atoui, A. (2021). Current status on the molecular biology of zearalenone: its biosynthesis and molecular detection of zearalenone producing Fusarium species. European Journal of Plant Pathology, 159, 247-258.
Nguyen, H. T., Nguyen, T. H., & Otto, M. (2020). The staphylococcal exopolysaccharide PIA–biosynthesis and role in biofilm formation, colonization, and infection. Computational and Structural Biotechnology Journal, 18, 3324-3334.
Nicholas, H. R., & Hodgkin, J. (2004). Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Molecular Immunology, 41, 479-493.
Nordholt, N., Kanaris, O., Schmidt, S. B., & Schreiber, F. (2021). Persistence against benzalkonium chloride promotes rapid evolution of tolerance during periodic disinfection. Nature Communications, 12, 6792.
Nyachuba, D. G. (2010). Foodborne illness: is it on the rise? Nutrition Reviews, 68, 257-269.
O'Gara, J. P. (2007). ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiology Letters, 270, 179-188.
Ote, I., Taminiau, B., Duprez, J.-N., Dizier, I., & Mainil, J. G. (2011). Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Veterinary Microbiology, 153, 285-292.
Otto, M. (2014). Staphylococcus aureus toxins. Current Opinion in Microbiology, 17, 32-37.
Pack, E. D., Weiland, S., Musser, R., & Schmale, D. G. (2021). Survey of zearalenone and type-B trichothecene mycotoxins in swine feed in the USA. Mycotoxin Research, 37, 297-313.
Pal, M., Ketchakmadze, D., Durglishvili, N., & Ketchakmadze, K. (2022). Staphylococcus aureus: a major pathogen of food poisoning: a rare research report. Nutr. Food Process, 5, 1-3.
Papkou, A., Hedge, J., Kapel, N., Young, B., & MacLean, R. C. (2020). Efflux pump activity potentiates the evolution of antibiotic resistance across S. aureus isolates. Nature Communications, 11, 3970.
Parastan, R., Kargar, M., Solhjoo, K., & Kafilzadeh, F. (2020). Staphylococcus aureus biofilms: structures, antibiotic resistance, inhibition, and vaccines. Gene Reports, 20, 100739.
Park, S., & Ronholm, J. (2021). Staphylococcus aureus in agriculture: lessons in evolution from a multispecies pathogen. Clinical Microbiology Reviews, 34, e00182-20.
Pasqua, M., Coluccia, M., Eguchi, Y., Okajima, T., Grossi, M., Prosseda, G., Utsumi, R., & Colonna, B. (2022). Roles of two-component signal transduction systems in Shigella virulence. Biomolecules, 12, 1321.
Peng, Q., Tang, X., Dong, W., Sun, N., & Yuan, W. (2022). A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics, 12, 12.
Pereira, V., Lopes, C., Castro, A., Silva, J., Gibbs, P., & Teixeira, P. (2009). Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiology, 26, 278-282.
Piras, C., Di Ciccio, P. A., Soggiu, A., Greco, V., Tilocca, B., Costanzo, N., Ceniti, C., Urbani, A., Bonizzi, L., & Ianieri, A. (2021). S. aureus biofilm protein expression linked to antimicrobial resistance: a proteomic study. Animals, 11, 966.
Pleadin, J., Frece, J., Lešić, T., Zadravec, M., Vahčić, N., Malenica Staver, M., & Markov, K. (2017). Deoxynivalenol and zearalenone in unprocessed cereals and soybean from different cultivation regions in Croatia. Food Additives & Contaminants: Part B, 10, 268-274.
Pukkila-Worley, R., & Ausubel, F. M. (2012). Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current Opinion in Immunology, 24, 3-9.
Purves, J., Hussey, S. J., Corscadden, L., Purser, L., Hall, A., Misra, R., Selley, L., Monks, P. S., Ketley, J. M., & Andrew, P. W. (2022). Air pollution induces Staphylococcus aureus USA300 respiratory tract colonization mediated by specific bacterial genetic responses involving the global virulence gene regulators Agr and Sae. Environmental Microbiology, 24, 4449-4465.
Qiu, M., Feng, L., Zhao, C., Gao, S., Bao, L., Zhao, Y., Fu, Y., & Hu, X. (2022). Commensal Bacillus subtilis from cow milk inhibits Staphylococcus aureus biofilm formation and mastitis in mice. FEMS Microbiology Ecology, 98, fiac065.
Queirós, L., Pereira, J., Gonçalves, F., Pacheco, M., Aschner, M., & Pereira, P. (2019). Caenorhabditis elegans as a tool for environmental risk assessment: emerging and promising applications for a “nobelized worm”. Critical Reviews in Toxicology, 49, 411-429.
Ranganathan, N., Johnson, R., & Edwards, A. M. (2020). The general stress response of Staphylococcus aureus promotes tolerance of antibiotics and survival in whole human blood. Microbiology, 166, 1088-1094.
Rajasekharan, S. K., Lee, J.-H., Zhao, Y., & Lee, J. (2018). The mycotoxin zearalenone hinders Candida albicans biofilm formation and hyphal morphogenesis. Indian Journal of Microbiology, 58, 19-27.
Reddy, K., Salleh, B., Saad, B., Abbas, H., Abel, C., & Shier, W. (2010). An overview of mycotoxin contamination in foods and its implications for human health. Toxin Reviews, 29, 3-26.
Rode, T. M., Langsrud, S., Holck, A., & Møretrø, T. (2007). Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. International Journal of Food Microbiology, 116, 372-383.
Rong, D., Liu, Z., Huang, J., Zhang, F., Wu, Q., Dai, J., Li, Y., Zhao, M., Li, Q., & Zhang, J. (2023). Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus isolated from rice and flour products in Guangdong, China. International Journal of Food Microbiology, 406, 110348.
Ropejko, K., & Twarużek, M. (2021). Zearalenone and its metabolites—general overview, occurrence, and toxicity. Toxins, 13, 35.
Rubab, M., Shahbaz, H. M., Olaimat, A. N., & Oh, D.-H. (2018). Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors and Bioelectronics, 105, 49-57.
Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M.-A., Roy, S. L., Jones, J. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States—major pathogens. Emerging Infectious Diseases, 17, 7.
SCF. (2000). Opinion of the Scientific Committee on Food on Fusarium Toxins Part 2: Zearalenone (ZEA).
Schilcher, K., Andreoni, F., Dengler Haunreiter, V., Seidl, K., Hasse, B., & Zinkernagel, A. S. (2016). Modulation of Staphylococcus aureus biofilm matrix by subinhibitory concentrations of clindamycin. Antimicrobial Agents and Chemotherapy, 60, 5957-5967.
Schilcher, K., & Horswill, A. R. (2020). Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiology and Molecular Biology Reviews, 84, 00026-00019.
Schulenburg, H., Hoeppner, M. P., Weiner III, J., & Bornberg-Bauer, E. (2008). Specificity of the innate immune system and diversity of C-type lectin domain (CTLD) proteins in the nematode Caenorhabditis elegans. Immunobiology, 213, 237-250.
SCOOP. (2003). Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU Member States.
Shapiro, J. A. (2024). The deeper meaning of the 2024 nobel prize in physiology or medicine. Natural Sciences, 5.
Sharma, S., Mohler, J., Mahajan, S. D., Schwartz, S. A., Bruggemann, L., & Aalinkeel, R. (2023). Microbial biofilm: a review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms, 11, 1614.
Sifri, C. D., Begun, J., Ausubel, F. M., & Calderwood, S. B. (2003). Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infection and Immunity, 71, 2208-2217.
Sinha, S., Aggarwal, S., & Singh, D. V. (2024). Efflux pumps: gatekeepers of antibiotic resistance in Staphylococcus aureus biofilms. Microbial Cell, 11, 368.
Solano, C., Echeverz, M., & Lasa, I. (2014). Biofilm dispersion and quorum sensing. Current Opinion in Microbiology, 18, 96-104.
Song, M., Tang, Q., Ding, Y., Tan, P., Zhang, Y., Wang, T., Zhou, C., Xu, S., Lyu, M., & Bai, Y. (2024). Staphylococcus aureus and biofilms: transmission, threats, and promising strategies in animal husbandry. Journal of Animal Science and Biotechnology, 15, 44.
Stoev, S. D. (2024). Food security, underestimated hazard of joint mycotoxin exposure and management of the risk of mycotoxin contamination. Food Control, 159, 110235.
Streit, E., Naehrer, K., Rodrigues, I., & Schatzmayr, G. (2013). Mycotoxin occurrence in feed and feed raw materials worldwide: long‐term analysis with special focus on Europe and Asia. Journal of the Science of Food and Agriculture, 93, 2892-2899.
Sundararaj, N., Kalagatur, N. K., Mudili, V., Krishna, K., & Antonysamy, M. (2019). Isolation and identification of enterotoxigenic Staphylococcus aureus isolates from Indian food samples: evaluation of in-house developed aptamer linked sandwich ELISA (ALISA) method. Journal of Food Science and Technology, 56, 1016-1026.
Tam, K., & Torres, V. J. (2019). Staphylococcus aureus secreted toxins and extracellular enzymes. Microbiology Spectrum, 7, 10-1128
Tan, M.-W., & Ausubel, F. M. (2000). Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Current Opinion in Microbiology, 3, 29-34.
Thakali, A., & MacRae, J. D. (2021). A review of chemical and microbial contamination in food: what are the threats to a circular food system? Environmental Research, 194, 110635.
Thiroux, A., Berjeaud, J.-M., Villéger, R., & Crépin, A. (2023). Effect of endocrine disruptors on bacterial virulence. Frontiers in Cellular and Infection Microbiology, 13, 1292233.
Thiroux, A., Labanowski, J., Venisse, N., Crapart, S., Boisgrollier, C., Linares, C., Berjeaud, J. M., Villéger, R., & Crépin, A. (2023). Exposure to endocrine disruptors promotes biofilm formation and contributes to increased virulence of Pseudomonas aeruginosa. Environmental Microbiology Reports, 15, 740-756.
Thoendel, M., Kavanaugh, J. S., Flack, C. E., & Horswill, A. R. (2011). Peptide signaling in the staphylococci. Chemical reviews, 111, 117-151.
Tuchscherr, L., Bischoff, M., Lattar, S. M., Noto Llana, M., Pförtner, H., Niemann, S., Geraci, J., Van de Vyver, H., Fraunholz, M. J., & Cheung, A. L. (2015). Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections. PLoS Pathogens, 11, e1004870.
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—a review. Antibiotics, 11, 1079.
Van Hal, S. J., Jensen, S. O., Vaska, V. L., Espedido, B. A., Paterson, D. L., & Gosbell, I. B. (2012). Predictors of mortality in Staphylococcus aureus bacteremia. Clinical Microbiology Reviews, 25, 362-386.
Vardon, P., McLaughlin, C., & Nardinelli, C. (2003). Potential economic costs of mycotoxins in the United States. Council for Agricultural Science and Technology Task Force Report, 139.
Venkatesh, N., & Keller, N. P. (2019). Mycotoxins in conversation with bacteria and fungi. Frontiers in Microbiology, 10, 435647.
Wang, D., Wang, L., Liu, Q., & Zhao, Y. (2024). Virulence factors in biofilm formation and therapeutic strategies for Staphylococcus aureus: a review. Animals and Zoonoses, 1, 188-202
Wang, H., Hou, X., Shen, J., Wang, W., Ye, Y., Yu, J., & Xue, T. (2022). Alternative sigma factor B reduces biofilm formation and stress response in milk-derived Staphylococcus aureus. LWT, 162, 113515.
Wang, M., Buist, G., & van Dijl, J. M. (2022). Staphylococcus aureus cell wall maintenance–the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiology Reviews, 46, fuac025.
Wang, X., Li, G., Xia, X., Yang, B., Xi, M., & Meng, J. (2014). Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathogens and Disease, 11, 281-286.
Wang, X., Meng, J., Zhang, J., Zhou, T., Zhang, Y., Yang, B., Xi, M., & Xia, X. (2012). Characterization of Staphylococcus aureus isolated from powdered infant formula milk and infant rice cereal in China. International Journal of Food Microbiology, 153, 142-147.
Wertheim, H. F., Melles, D. C., Vos, M. C., Van Leeuwen, W., Van Belkum, A., Verbrugh, H. A., & Nouwen, J. L. (2005). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5, 751-762.
WHO. (2014). Antimicrobial resistance: global report on surveillance. Available online: https://www.who.int/publications/i/item/9789241564748
WHO. (2015). WHO estimates of the global burden of foodborne diseases.
WHO. (2024). Foodborne illnesses. Available online: https://www.who.int/data/gho/data/themes/who-estimates-of-the-global-burden-of-foodborne-diseases
Wu, S., Huang, J., Wu, Q., Zhang, F., Zhang, J., Lei, T., Chen, M., Ding, Y., & Xue, L. (2018). Prevalence and characterization of Staphylococcus aureus isolated from retail vegetables in China. Frontiers in Microbiology, 9, 1263.
Wu, X., Wang, H., Xiong, J., Yang, G.-X., Hu, J.-F., Zhu, Q., & Chen, Z. (2024). Staphylococcus aureus biofilm: formulation, regulatory, and emerging natural products-derived therapeutics. Biofilm, 7, 100175.
Yang, C.-K., Cheng, Y.-H., Tsai, W.-T., Liao, R.-W., Chang, C.-S., Chien, W.-C., Jhang, J.-C., & Yu, Y.-H. (2019). Prevalence of mycotoxins in feed and feed ingredients between 2015 and 2017 in Taiwan. Environmental Science and Pollution Research, 26, 23798-23806.
Yoshizawa, T. (1997). Geographic difference in trichothecene occurrence in Japanese wheat and barley. CABI Databases, 5, 23-30
Yoshizawa, T., & Jin, Y. Z. (1995). Natural occurrence of acetylated derivatives of deoxynivalenol and nivalenol in wheat and barley in Japan. Food Additives & Contaminants, 12, 689-694.
Yu, L., Hisatsune, J., Hayashi, I., Tatsukawa, N., Sato’o, Y., Mizumachi, E., Kato, F., Hirakawa, H., Pier, G. B., & Sugai, M. (2017). A novel repressor of the ica locus discovered in clinically isolated super-biofilm-elaborating Staphylococcus aureus. MBio, 8, 02282-02216.
Zapun, A., Contreras-Martel, C., & Vernet, T. (2008). Penicillin-binding proteins and β-lactam resistance. FEMS Microbiology Reviews, 32, 361-385.
Zhang, G. (2023). The distribution of antibiotics resistance in Champaign County. University of Illinois at Urbana-Champaign.
Zhang, Y., Ouyang, B., Zhang, W., Guang, C., Xu, W., & Mu, W. (2023). An overview of chemical, physical and biological methods for zearalenone elimination: recent advances and future prospective. Food Control, 154, 110011.
Zhao, L., Zhang, L., Xu, Z., Liu, X., Chen, L., Dai, J., Karrow, N. A., & Sun, L. (2021). Occurrence of Aflatoxin B 1, deoxynivalenol and zearalenone in feeds in China during 2018–2020. Journal of Animal Science and Biotechnology, 12, 1-12.
Zinedine, A., Soriano, J. M., Moltó, J. C., & Manes, J. (2007). Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: an oestrogenic mycotoxin. Food and chemical toxicology, 45, 1-18.
中國食品安全國家標準食品中真菌毒素限量 (2017)。中華人民共和國國家衛生和計畫生育委員會,國家食品藥物監督管理總局。
中國飼料衛生標準 (2017)。中華人民共和國國家質量監督檢驗檢疫總局,中國國家標準化管理委員會。
食品中污染物質及毒素衛生標準 (2018)。衛生福利部衛授食字第1071300778號令訂定發布,衛生福利部。
陳銘在, 王慈穗, 吳宗熹, 林旭陽, 劉芳銘 (2021)。109年度食品中真菌毒素污染監測。食品藥物研究年報, 12, 97-107。
陳銘在, 王慈穗, 吳宗熹, 林旭陽, 劉芳銘 (2022)。110年度食品中真菌毒素污染監測。食品藥物研究年報, 13, 60-78。
陳銘在, 王慈穗, 吳宗熹, 林旭陽, 劉芳銘 (2023)。111年食品中真菌毒素污染監測。食品藥物研究年報, 14, 419-423。
陳銘在, 王慈穗, 董靜馨, 林旭陽, 劉芳銘 (2024)。112年市售食品中真菌毒素含量之監測分析。食品藥物研究年報, 15, 147-157。
陳銘在, 王慈穗, 蕭惠文, 林旭陽, 劉芳銘 (2020)。108年度食品中真菌毒素污染監測結果分析。食品藥物研究年報, 11, 116-126。
歷年食品中毒資料 (2025)。衛生福利部食品藥物管理署。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99921-
dc.description.abstract全球約60-80%的穀物和飼料受到黴菌毒素污染,對人類健康造成重大風險,並導致可觀的經濟損失。玉米赤黴烯酮 (Zearalenone, ZEN) 是一種由鐮刀菌屬黴菌產生的黴菌毒素,廣泛存在於農業環境以及穀類製品與飼料中。同時,金黃色葡萄球菌 (Staphylococcus aureus, S. aureus) 為一種常見的食源性病原菌,能引起食物中毒與多種臨床感染。研究指出,長期暴露環境壓力可促使細菌產生演化適應,而S. aureus亦可能長期暴露於農業或食品環境中污染物如ZEN,進而誘導其壓力反應並促進適應,對全球食品安全與公共衛生造成潛在風險,然而,長期暴露ZEN對S. aureus生理與毒力調控之影響仍尚未明瞭。本研究旨在評估長期重複暴露ZEN對S. aureus生物膜形成、抗生素抗性之影響,以及以秀麗隱桿線蟲 (Caenorhabditis elegans, C. elegans) 為模式生物,評估其感染宿主致病力之影響,並進一步探討其分子調控機制。實驗結果顯示,24小時暴露下,ZEN 10-150 µM顯著促進S. aureus生長,而160-250 µM則抑制其生長,呈現非單一劑量反應。而將S. aureus連續重複暴露於ZEN (0.1、10與50 µM) 45天的長期暴露馴化下,ZEN 0.1與10 µM對菌體生長無明顯影響,但50 µM則逐漸抑制其生長。進一步針對ZEN 10 μM馴化30天之S. aureus進行分析,發現長期暴露於ZEN顯著提升生物膜形成能力 (0.1、10與50 µM ZEN)、對tetracycline與gentamicin之抗藥性 (10 µM ZEN)、以及對C. elegans之感染致死率 (0.1與10 µM ZEN);並顯著提升相關調控基因之表達,包括壓力反應因子sigB、雙分子調控系統saeR、生物膜相關基因icaACBD、抗藥性相關基因tet(38),以及致病相關基因sak、coa、lukD與hly。上述顯示長期暴露ZEN會誘導S. aureus提升其環境適應力與致病力。本研究結果有助於釐清黴菌毒素誘發之病原體壓力適應機制,對於食品安全、環境與公共衛生具有重要參考價值。zh_TW
dc.description.abstractApproximately 60-80% of global grains and feed are contaminated with mycotoxins, posing significant risks to human health and causing substantial economic losses. Zearalenone (ZEN), a mycotoxin produced by Fusarium fungi, is widely detected in agricultural environments as well as in cereal-based foods and feeds. Meanwhile, Staphylococcus aureus (S. aureus), a common foodborne pathogen, is capable of causing food poisoning and a wide range of clinical infections. Studies have indicated that prolonged exposure to environmental stress can drive adaptive evolution in bacteria. S. aureus may also be long-term exposed to environmental contaminants such as ZEN in agricultural or food-related settings, potentially triggering bacterial stress responses and facilitating evolutionary adaptations, thereby posing a potential threat to global food safety and public health. However, the effects of long-term ZEN exposure on microbial physiology and virulence regulation of S. aureus remain poorly understood. This study aimed to evaluate the effects of prolonged ZEN exposure on S. aureus biofilm formation and antibiotic resistance, and to further evaluate its pathogenicity using Caenorhabditis elegans (C. elegans) as an infection model. Additionally, the study sought to clarify the underlying molecular regulatory mechanisms. The results showed that, under 24-hour treatment, ZEN 10-150 µM significantly promoted S. aureus growth, whereas 160-250 µM inhibited it, revealing a non-monotonic dose-response. Under 45-day repeated exposure to ZEN (0.1, 10, and 50 µM), ZEN 0.1 and 10 µM had no significant effect on bacterial growth, while 50 µM gradually suppressed growth. Further analysis of S. aureus following repeated exposure to 10 µM ZEN for 30 days demonstrated that long-term exposure to ZEN significantly enhanced biofilm formation (0.1, 10 and 50 µM ZEN), resistance to tetracycline and gentamicin (10 µM ZEN), and the lethality rate in infected C. elegans (0.1 and 10 µM ZEN). It also significantly upregulated key regulatory genes, including the stress response regulator sigB, the two-component system regulator saeR, biofilm-associated genes icaACBD, antibiotic resistance-related genes tet(38), and virulence-related genes sak, coa, lukD, and hly. These findings suggest that long-term exposure to ZEN can induce adaptive responses in S. aureus, enhancing its environmental fitness and pathogenic potential. This study provides valuable insights into the mechanisms of mycotoxin-induced stress responses in pathogens, with implications for food safety, as well as environmental and public health.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:18:17Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:18:17Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
Graphic Abstract v
Highlights vi
目次 vii
圖次 x
表次 xi
1. 研究動機 1
2. 文獻回顧 3
2.1 玉米赤黴烯酮 (Zearalenone, ZEN) 3
2.1.1 黴菌毒素之介紹 3
2.1.2 ZEN之介紹 4
2.1.3 ZEN之相關限量標準 5
2.1.4 食品、飼料與環境中之ZEN污染 6
2.2 金黃色葡萄球菌 (Staphylococcus aureus, S. aureus) 10
2.2.1 食源性疾病之介紹 10
2.2.2 S. aureus之介紹 10
2.2.3 S. aureus之盛行率與污染 11
2.2.4 食品中之S. aureus 12
2.2.5 S. aureus之毒力因子與疾病 15
2.2.6 S. aureus之生物膜形成與功能 17
2.2.7 S. aureus之抗藥性與機轉 18
2.3 環境壓力對病原菌之影響與誘導之適應性 20
2.4 模式生物秀麗隱桿線蟲 (Caenorhabditis elegans, C. elegans) 22
2.4.1 C. elegans之介紹 22
2.4.2 以C. elegans作為模式生物探討宿主與病原體感染 23
3. 研究目的 27
4. 材料與方法 28
4.1 實驗架構 28
4.2 藥品、細菌品系與培養條件 29
4.3 ZEN對S. aureus生長影響之試驗 29
4.4 S. aureus長期暴露ZEN馴化試驗 30
4.5 S. aureus生物膜生成試驗 30
4.6 S. aureus抗藥性試驗 31
4.7 S. aureus感染試驗 32
4.8 即時定量反轉錄聚合酶鏈鎖反應 (qRT-PCR) 33
4.9 統計分析 35
5. 結果與討論 36
5.1 ZEN對S. aureus生長之影響 36
5.2 長期暴露ZEN馴化S. aureus生長之影響 39
5.3 ZEN馴化後對S. aureus生物膜生成之影響 42
5.4 ZEN馴化後對S. aureus抗藥性之影響 45
5.5 ZEN馴化後對S. aureus致病力之影響 49
5.6 ZEN馴化後對S. aureus毒力因子之影響 53
6. 結論 59
7. 建議 61
8. 參考文獻 62
9. 附錄 81
-
dc.language.isozh_TW-
dc.subject玉米赤黴烯酮zh_TW
dc.subject食源性病原菌zh_TW
dc.subject金黃色葡萄球菌zh_TW
dc.subject壓力適應zh_TW
dc.subject生物膜zh_TW
dc.subject致病力zh_TW
dc.subject抗生素抗藥性zh_TW
dc.subject食品安全zh_TW
dc.subject公共衛生zh_TW
dc.subjectantibiotic resistanceen
dc.subjectpathogenicityen
dc.subjectzearalenoneen
dc.subjectfoodborne pathogensen
dc.subjectStaphylococcus aureusen
dc.subjectstress adaptationen
dc.subjectbiofilmen
dc.subjectpublic healthen
dc.subjectfood safetyen
dc.title探討長期暴露玉米赤黴烯酮對金黃色葡萄球菌生物膜形成、致病力、抗藥性之影響與其調控機制zh_TW
dc.titleEvaluation of the impact of long-term exposure to zearalenone on the modulation of Staphylococcus aureus biofilm formation, pathogenicity, antibiotic resistance, and the underlying mechanismsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童心欣;李月嘉;陳俊豪zh_TW
dc.contributor.oralexamcommitteeHsin-Hsin Tung;Yue-Jia Lee;Chun-Hao Chenen
dc.subject.keyword玉米赤黴烯酮,食源性病原菌,金黃色葡萄球菌,壓力適應,生物膜,致病力,抗生素抗藥性,食品安全,公共衛生,zh_TW
dc.subject.keywordzearalenone,foodborne pathogens,Staphylococcus aureus,stress adaptation,biofilm,pathogenicity,antibiotic resistance,food safety,public health,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202503409-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept食品安全與健康研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
1.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved