Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 食品安全與健康研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor魏嘉徵zh_TW
dc.contributor.advisorChia-Cheng Weien
dc.contributor.author王歆語zh_TW
dc.contributor.authorHsin-Yu Wangen
dc.date.accessioned2025-09-19T16:18:06Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationAase, B., Sundheim, G., Langsrud, S., & Rørvik, L. M. (2000). Occurrence of and a possible mechanism for resistance to a quaternary ammonium compound in Listeria monocytogenes. International Journal of Food Microbiology, 62, 57–63.
Aballay, A., Yorgey, P., & Ausubel, F. M. (2000). Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Current Biology, 10, 1539–1542.
Addis, M., & Sisay, D. (2015). A review on major food borne bacterial illnesses. Journal of Tropical Diseases, 3, 1–7.
Adkin, P., Hitchcock, A., Smith, L. J., & Walsh, S. E. (2022). Priming with biocides: A pathway to antibiotic resistance? Journal of Applied Microbiology, 133, 830–841.
Agata, N., Mori, M., Ohta, M., Suwan, S., Ohtani, I., & Isobe, M. (1994). A novel dodecadepsipeptide, cereulide, isolated from Bacillus cereus causes vacuole formation in HEp-2 cells. FEMS Microbiology Letters, 121, 31–34.
Akinduti, P., Motayo, B., Idowu, O., Isibor, P., Olasehinde, G., Obafemi, Y., Ugboko, H., Oyewale, J., Oluwadun, A., & Adeyemi, G. (2019). Suitability of spectrophotometric assay for determination of honey microbial inhibition. Journal of Physics: Conference Series, 1299, 012131
Al-Hawadi, J. S., Ahmad, K. S., Gul, M. M., Ashraf, G. A., & Altaf, M. (2024). Environmental detoxification of benzimidazole fungicide fuberidazole via microbial action in liquid cultures. Mycobiology, 52, 324–334.
Aladhadh, M. (2023). A review of modern methods for the detection of foodborne pathogens. Microorganisms, 11, 1111.
Ali, S., Ullah, M. I., Sajjad, A., Shakeel, Q., & Hussain, A. (2021). Environmental and health effects of pesticide residues. Sustainable Agriculture Reviews 48: Pesticide Occurrence, Analysis and Remediation vol. 2 Analysis, 48, 311–336.
Amangelsin, Y., Semenova, Y., Dadar, M., Aljofan, M., & Bjørklund, G. (2023). The impact of tetracycline pollution on the aquatic environment and removal strategies. Antibiotics, 12, 440.
Anas, M., Sami, M. A., Siddiqui, Z., Khatoon, K., Zeyad, M. T., & Malik, A. (2021). Impact of climate change on the incidence and transfer of food-and water-borne diseases. Microbiomes and the Global Climate Change, 123–144.
Andersson, D. I., Nicoloff, H., & Hjort, K. (2019). Mechanisms and clinical relevance of bacterial heteroresistance. Nature Reviews Microbiology, 17, 479–496.
Archer, D. L. (1996). Preservation microbiology and safety: evidence that stress enhances virulence and triggers adaptive mutations. Trends in Food Science & Technology, 7, 91–95.
Arsene, M. M., Viktorovna, P. I., Grigorievna, V. E., Davares, A. K., Sergeevna, D. M., & Nikolaevna, S. I. (2021). Prolonged exposure to antimicrobials induces changes in susceptibility to antibiotics, biofilm formation and pathogenicity in Staphylococcus aureus. Journal of Pharmaceutical Research International, 33, 140–151.
Assoni, L., Milani, B., Carvalho, M. R., Nepomuceno, L. N., Waz, N. T., Guerra, M. E. S., Converso, T. R., & Darrieux, M. (2020). Resistance mechanisms to antimicrobial peptides in gram-positive bacteria. Frontiers in Microbiology, 11, 593215.
Bakkeren, E., Diard, M., & Hardt, W.-D. (2020). Evolutionary causes and consequences of bacterial antibiotic persistence. Nature Reviews Microbiology, 18, 479–490.
Balaban, N. Q., Helaine, S., Lewis, K., Ackermann, M., Aldridge, B., Andersson, D. I., Brynildsen, M. P., Bumann, D., Camilli, A., & Collins, J. J. (2019). Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology, 17, 441–448.
Balla, K. M., & Troemel, E. R. (2013). Caenorhabditis elegans as a model for intracellular pathogen infection. Cellular Microbiology, 15, 1313–1322.
Bartlett, D. W., Clough, J. M., Godwin, J. R., Hall, A. A., Hamer, M., & Parr‐Dobrzanski, B. (2002). The strobilurin fungicides. Pest Management Science: Formerly Pesticide Science, 58, 649–662.
Battaglin, W. A., Sandstrom, M. W., Kuivila, K. M., Kolpin, D. W., & Meyer, M. T. (2011). Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water, Air, & Soil Pollution, 218, 307–322.
Begley, M., & Hill, C. (2015). Stress adaptation in foodborne pathogens. Annual Review of Food Science and Technology, 6, 191–210.
Bennett, S. D., Walsh, K. A., & Gould, L. H. (2013). Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus—United States, 1998–2008. Clinical Infectious Diseases, 57, 425–433.
Bhunia, A. K., & Bhunia, A. K. (2018). Molds and mycotoxins. Foodborne Microbial Pathogens: Mechanisms and Pathogenesis, 167–174.
Bhushan, C., Bhardwaj, A., & Misra, S. S. (2013). State of pesticide regulations in India. Centre for Science and Environment, New Delhi, 1–72.
Bintsis, T. (2017). Foodborne pathogens. AIMS Microbiology, 3, 529.
Blair, J. M., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. (2015). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13, 42–51.
Boeck, L. (2023). Antibiotic tolerance: targeting bacterial survival. Current Opinion in Microbiology, 74, 102328.
Borcherding, J., Baltrusaitis, J., Chen, H., Stebounova, L., Wu, C.-M., Rubasinghege, G., Mudunkotuwa, I. A., Caraballo, J. C., Zabner, J., & Grassian, V. H. (2014). Iron oxide nanoparticles induce Pseudomonas aeruginosa growth, induce biofilm formation, and inhibit antimicrobial peptide function. Environmental Science: Nano, 1, 123–132.
Bottone, E. J. (2010). Bacillus cereus, a volatile human pathogen. Clinical Microbiology Reviews, 23, 382–398.
Brenner, S. (1974). The genetics of Caenorhabditis elegans. Genetics, 77, 71–94.
Buchenauer, H., & Röhner, E. (1981). Effect of triadimefon and triadimenol on growth of various plant species as well as on gibberellin content and sterol metabolism in shoots of barley seedlings. Pesticide Biochemistry and Physiology, 15, 58–70.
Cabot, C., Martos, S., Llugany, M., Gallego, B., Tolrà, R., & Poschenrieder, C. (2019). A role for zinc in plant defense against pathogens and herbivores. Frontiers in Plant Science, 10, 1171.
Candela, T., Fagerlund, A., Buisson, C., Gilois, N., Kolstø, A. b., Økstad, O. A., Aymerich, S., Nielsen‐Leroux, C., Lereclus, D., & Gohar, M. (2019). CalY is a major virulence factor and a biofilm matrix protein. Molecular Microbiology, 111, 1416–1429.
Cavaillon, J.-M. (2018). Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon, 149, 45–53.
Chen, C., Chen, Y., Wu, P., & Chen, B. (2014). Update on new medicinal applications of gentamicin: evidence-based review. Journal of the Formosan Medical Association, 113, 72–82.
Chmielewski, R., & Frank, J. (2003). Biofilm formation and control in food processing facilities. Comprehensive Reviews in Food Science and Food Safety, 2, 22–32.
Chung, Y. J., & Saier Jr, M. (2001). SMR-type multidrug resistance pumps. Current Opinion in Drug Discovery & Development, 4, 237–245.
CLSI. (2015). Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. 3rd ed. CLSI guideline M45. https://goums.ac.ir/files/deputy_treat/md_labs_ef39a/files/CLSI-M45ed3e-2018(1).pdf
Corkley, I., Fraaije, B., & Hawkins, N. (2022). Fungicide resistance management: maximizing the effective life of plant protection products. Plant Pathology, 71, 150–169.
Cui, N., Xu, H., Yao, S., He, Y., Zhang, H., & Yu, Y. (2018). Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils. Environmental Science and Pollution Research, 25, 25468–25475.
Cuppen, J. G., Van den Brink, P. J., Camps, E., Uil, K. F., & Brock, T. C. (2000). Impact of the fungicide carbendazim in freshwater microcosms. I. Water quality, breakdown of particulate organic matter and responses of macroinvertebrates. Aquatic toxicology, 48, 233–250.
Dawan, J., & Ahn, J. (2022). Bacterial stress responses as potential targets in overcoming antibiotic resistance. Microorganisms, 10, 1385.
Deb, P. (2018). Environmental pollution and the burden of Food-Borne diseases. Foodborne Diseases, 15, 473–500.
Delcour, A. H. (2009). Outer membrane permeability and antibiotic resistance. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794, 808–816.
Dimov, I., & Maduro, M. F. (2019). The C. elegans intestine: organogenesis, digestion, and physiology. Cell and Tissue Research, 377, 383–396.
Dobhal, S., Zhang, G., Royer, T., Damicone, J., & Ma, L. M. (2014). Survival and growth of foodborne pathogens in pesticide solutions routinely used in leafy green vegetables and tomato production. Journal of the Science of Food and Agriculture, 94, 2958–2964.
Dong, B. (2024). A comprehensive review on toxicological mechanisms and transformation products of tebuconazole: Insights on pesticide management. Science of The Total Environment, 908, 168264.
Dorak, M. T. (2007). Real-time PCR. Garland Science.
EFSA. (2005). Opinion of the Scientific Panel on biological hazards (BIOHAZ) on Bacillus cereus and other Bacillus spp in foodstuffs. EFSA Journal, 3, 175.
EFSA. (2008). Conclusion regarding the peer review of the pesticide risk assessment of the active substance triadimenol. EFSA Journal, 6, 177r.
EFSA. (2010). Conclusion on the peer review of the pesticide risk assessment of the active substance carbendazim. EFSA Journal, 8, 1598.
EFSA. (2011a). Modification of the existing MRL for dithiocarbamates (mancozeb) in radishes. EFSA Journal, 9, 2108.
EFSA. (2011b). Review of the existing maximum residue levels (MRLs) for tebuconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 9, 96.
EFSA. (2012). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for chlorothalonil according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 10, 2940.
EFSA. (2013). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for azoxystrobin according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 11, 3497.
EFSA. (2014). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for thiophanate‐methyl and carbendazim according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 12, 3919.
EFSA. (2015). Reasoned opinion on the review of the existing maximum residue levels (MRLs) for propiconazole according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 13, 3975.
EFSA. (2016a). Peer review of the pesticide risk assessment of the active substance propineb. EFSA Journal, 14, e04605.
EFSA. (2016b). Review of the existing maximum residue levels for triadimenol according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 14, 4377.
EFSA. (2018a). Modification of the existing maximum residue levels for tebuconazole in olives, rice, herbs and herbal infusions (dried). EFSA Journal, 16, e05257.
EFSA. (2018b). Peer review of the pesticide risk assessment of the active substance chlorothalonil. EFSA Journal, 16, e05126.
EFSA. (2019). The 2017 European Union report on pesticide residues in food. EFSA Journal, 17, e05743.
EFSA. (2020). Review of the existing maximum residue levels for propineb according to Article 12 of Regulation (EC) No 396/2005. EFSA Journal, 18, e06233.
EFSA, Abdourahime, H., Anastassiadou, M., Arena, M., Auteri, D., Barmaz, S., Brancato, A., Bura, L., Carrasco Cabrera, L., & Chaideftou, E. (2020). Peer review of the pesticide risk assessment of the active substance mancozeb. EFSA Journal, 18, e05755.
EFSA, Arena, M., Auteri, D., Barmaz, S., Bellisai, G., Brancato, A., Brocca, D., Bura, L., Byers, H., & Chiusolo, A. (2017). Peer review of the pesticide risk assessment of the active substance propiconazole. EFSA Journal, 15, e04887.
EFSA, Bellisai, G., Bernasconi, G., Carrasco Cabrera, L., Castellan, I., del Aguila, M., Ferreira, L., Santonja, G. G., Greco, L., & Jarrah, S. (2023). Modification of the existing maximum residue level for azoxystrobin in hops. EFSA Journal, 21, e08124.
Elbehiry, A., Abalkhail, A., Marzouk, E., Elmanssury, A. E., Almuzaini, A. M., Alfheeaid, H., Alshahrani, M. T., Huraysh, N., Ibrahem, M., & Alzaben, F. (2023). An overview of the public health challenges in diagnosing and controlling human foodborne pathogens. Vaccines, 11, 725.
Eligibility, R. (2006). Triadimefon And Tolerance Reassessment for Triadimenol. In: Citeseer.
Eng, S.-K., Pusparajah, P., Ab Mutalib, N.-S., Ser, H.-L., Chan, K.-G., & Lee, L.-H. (2015). Salmonella: a review on pathogenesis, epidemiology and antibiotic resistance. Frontiers in Life Science, 8, 284–293.
EPA, U. (2006). Reregistration eligibility decision (RED) for propiconazole.
Erb, A., Stürmer, T., Marre, R., & Brenner, H. (2007). Prevalence of antibiotic resistance in Escherichia coli: overview of geographical, temporal, and methodological variations. European Journal of Clinical Microbiology & Infectious Diseases, 26, 83–90.
Eurostat. (2025). Sales of pesticides in the EU down another 9% in 2023. https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20250513-1
FAO. (2024). Pesticides use and trade – 1990–2022 (FAOSTAT Analytical Briefs, Issue. FAO. https://doi.org/10.4060/cd1486en
Fiedler, G., Schneider, C., Igbinosa, E. O., Kabisch, J., Brinks, E., Becker, B., Stoll, D. A., Cho, G.-S., Huch, M., & Franz, C. M. (2019). Antibiotics resistance and toxin profiles of Bacillus cereus-group isolates from fresh vegetables from German retail markets. BMC Microbiology, 19, 250.
Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanisms of resistance to aminoglycoside antibiotics: overview and perspectives. Medchemcomm, 7, 11–27.
Garsin, D. A., Sifri, C. D., Mylonakis, E., Qin, X., Singh, K. V., Murray, B. E., Calderwood, S. B., & Ausubel, F. M. (2001). A simple model host for identifying Gram-positive virulence factors. Proceedings of the National Academy of Sciences, 98, 10892–10897.
Ghosh, R. K., & Singh, N. (2009). Effect of organic manure on sorption and degradation of azoxystrobin in soil. Journal of Agricultural and Food Chemistry, 57, 632–636.
Gianessi, L. P., & Reigner, N. (2005). The value of fungicides in US crop production. CropLife Foundation Washington, DC.
Giuliodori, A. M., Gualerzi, C. O., Soto, S., Vila, J., & Tavío, M. M. (2007). Review on bacterial stress topics. Annals of the New York Academy of Sciences, 1113, 95–104.
Gopinath, K., Radhakrishnan, N., & Jayaraj, J. (2006). Effect of propiconazole and difenoconazole on the control of anthracnose of chilli fruits caused by Colletotrichum capsici. Crop Protection, 25, 1024–1031.
Gourama, H. (2020). Foodborne pathogens. In Food safety engineering (pp. 25–49). Springer.
Granum, P. E., & Lund, T. (1997). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157, 223–228.
Grutsch, A. A., Nimmer, P. S., Pittsley, R. H., Kornilow, K. G., & McKillip, J. L. (2018). Molecular pathogenesis of Bacillus spp., with emphasis on the dairy industry. Fine Focus, 4, 203–222.
Gullino, M. L., Tinivella, F., Garibaldi, A., Kemmitt, G. M., Bacci, L., & Sheppard, B. (2010). Mancozeb: past, present, and future. Plant Disease, 94, 1076–1087.
Gupta, A. K., Katoch, V. M., Chauhan, D. S., Sharma, R., Singh, M., Venkatesan, K., & Sharma, V. D. (2010). Microarray analysis of efflux pump genes in multidrug-resistant Mycobacterium tuberculosis during stress induced by common anti-tuberculous drugs. Microbial Drug Resistance, 16, 21–28.
Hengge, R., Gründling, A., Jenal, U., Ryan, R., & Yildiz, F. (2016). Bacterial signal transduction by cyclic di-GMP and other nucleotide second messengers. Journal of Bacteriology, 198, 15–26.
Henly, E., Dowling, J., Maingay, J., Lacey, M., Smith, T., & Forbes, S. (2019). Biocide exposure induces changes in susceptibility, pathogenicity, and biofilm formation in uropathogenic Escherichia coli. Antimicrobial Agents and Chemotherapy, 63, 10.1128/aac. 01892–01818.
Hodgkin, J., & Doniach, T. (1997). Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics, 146, 149–164.
Hodgkin, J., Kuwabara, P. E., & Corneliussen, B. (2000). A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Current Biology, 10, 1615–1618.
Hou, L., Jin, X., Liu, N., Luo, Y., Yan, Z., Chen, M., Liu, Y., Xie, H., Giesy, J. P., & Wu, F. (2022). Triadimefon in aquatic environments: occurrence, fate, toxicity, and ecological risk. Environmental Sciences Europe, 34, 12.
Huber, D., Römheld, V., & Weinmann, M. (2012). Relationship between nutrition, plant diseases and pests. In Marschner's Mineral Nutrition of Higher Plants (pp. 283–298). Elsevier.
Hwang, D., Oh, T. Y., Baek, S.-Y., Kang, M. S., Hong, S.-I., & Kim, H. J. (2022). Enterotoxin genes, biofilm formation, and antimicrobial and disinfectant resistance of Bacillus cereus isolates from primary producing stages. Food Control, 141, 109196.
Imran, M., Das, K. R., & Naik, M. M. (2019). Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere, 215, 846–857.
Irazoqui, J. E., Urbach, J. M., & Ausubel, F. M. (2010). Evolution of host innate defence: insights from Caenorhabditis elegans and primitive invertebrates. Nature Reviews Immunology, 10, 47–58.
Jiang, H., & Wang, D. (2018). The microbial zoo in the C. elegans intestine: bacteria, fungi and viruses. Viruses, 10, 85.
Jiang, X., Jiang, C., Yu, T., Jiang, X., Ren, S., Kang, R., & Qiu, S. (2022). Benzalkonium chloride adaptation increases expression of the Agr System, biofilm formation, and virulence in Listeria monocytogenes. Frontiers in Microbiology, 13, 856274.
Jovanovic, J., Ornelis, V. F., Madder, A., & Rajkovic, A. (2021). Bacillus cereus food intoxication and toxicoinfection. Comprehensive Reviews in Food Science and Food Safety, 20, 3719–3761.
K Bhardwaj, A., Vinothkumar, K., & Rajpara, N. (2013). Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Patents on Anti-infective Drug Discovery, 8, 68–83.
Keith, R., Renée, G., Rachael, S., Ploy, K., & Bruna, B. (2015). Preventing Foodborne Illness: Bacillus cereus. Florida Cooperative Extension Service. University of Florida: Institute of Food and Agricultural Sciences, 1–5.
Kim, D. H., Feinbaum, R., Alloing, G., Emerson, F. E., Garsin, D. A., Inoue, H., Tanaka-Hino, M., Hisamoto, N., Matsumoto, K., & Tan, M.-W. (2002). A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science, 297, 623–626.
Kim, M.-J., Han, J.-K., Park, J.-S., Lee, J.-S., Lee, S.-H., Cho, J.-I., & Kim, K.-S. (2015). Various enterotoxin and other virulence factor genes widespread among Bacillus cereus and Bacillus thuringiensis strains. Journal of Microbiology and Biotechnology, 25, 872–879.
Kim, M., Weigand, M. R., Oh, S., Hatt, J. K., Krishnan, R., Tezel, U., Pavlostathis, S. G., & Konstantinidis, K. T. (2018). Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Applied and Environmental Microbiology, 84, e01201–01218.
Kling, M., & Jakobsen, I. (1997). Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungi species: effect on 32 P transport and succinate dehydrogenase activity. Mycorrhiza, 7, 33–37.
Kocabay, S., & Çetinkaya, S. (2020). Probiotic properties of a Lactobacillus fermentum isolated from new-born faeces. Journal of Oleo Science, 69, 1579–1584.
Kotiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Epidemiology and pathogenesis of Bacillus cereus infections. Microbes and infection, 2, 189–198.
Kovats, R., Edwards, S., Hajat, S., Armstrong, B., Ebi, K., & Menne, B. (2004). The effect of temperature on food poisoning: a time-series analysis of salmonellosis in ten European countries. Epidemiology & Infection, 132, 443–453.
Kuroda, T., & Tsuchiya, T. (2009). Multidrug efflux transporters in the MATE family. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1794, 763–768.
Kurz, C. L., & Tan, M. W. (2004). Regulation of aging and innate immunity in C. elegans. Aging Cell, 3, 185–193.
Lai, C.-H., Chou, C.-Y., Ch'ang, L.-Y., Liu, C.-S., & Lin, W.-c. (2000). Identification of novel human genes evolutionarily conserved in Caenorhabditis elegans by comparative proteomics. Genome Research, 10, 703–713.
Larsen, K., Black, P., Rydz, E., Nicol, A.-M., & Peters, C. E. (2020). Using geographic information systems to estimate potential pesticide exposure at the population level in Canada. Environmental Research, 191, 110100.
Latgé, J.-P. (1999). Aspergillus fumigatus and aspergillosis. Clinical Microbiology Reviews, 12, 310–350.
Leadbeater, A. (2015). Recent developments and challenges in chemical disease control. Plant Protection Science, 51.
Lebelo, K., Malebo, N., Mochane, M. J., & Masinde, M. (2021). Chemical contamination pathways and the food safety implications along the various stages of food production: a review. International Journal of Environmental Research and Public Health, 18, 5795.
Lee, H., & Yoon, Y. (2021). Etiological agents implicated in foodborne illness world wide. Food Science of Animal Resources, 41, 1.
Lee, S., Choi, K.-H., & Yoon, Y. (2014). Effect of NaCl on biofilm formation of the isolate from Staphylococcus aureus outbreak linked to ham. Korean Journal for Food Science of Animal Resources, 34, 257.
Levin-Reisman, I., Brauner, A., Ronin, I., & Balaban, N. Q. (2019). Epistasis between antibiotic tolerance, persistence, and resistance mutations. Proceedings of the National Academy of Sciences, 116, 14734–14739.
Li, N., Siddique, A., Liu, N., Teng, L., Ed-Dra, A., Yue, M., & Li, Y. (2025). Global epidemiology and health risks of Bacillus cereus infections: special focus on infant foods. Food Research International, 201, 115650.
Li, X., Yu, Z., Ye, J., Wang, X., Lin, H., Lei, L., Hu, W., & Luo, Y. (2025). Dual disinfectants synergistically drive adaptation and evolution toward higher antimicrobial resistance and pathogenicity in Escherichia coli. Environmental Science & Technology.
Liao, X., Ma, Y., Daliri, E. B.-M., Koseki, S., Wei, S., Liu, D., Ye, X., Chen, S., & Ding, T. (2020). Interplay of antibiotic resistance and food-associated stress tolerance in foodborne pathogens. Trends in Food Science & Technology, 95, 97–106.
Lin, Y., Briandet, R., & Kovács, Á. T. (2022). Bacillus cereus sensu lato biofilm formation and its ecological importance. Biofilm, 4, 100070.
Lindbäck, T., Mols, M., Basset, C., Granum, P. E., Kuipers, O. P., & Kovács, Á. T. (2012). CodY, a pleiotropic regulator, influences multicellular behaviour and efficient production of virulence factors in Bacillus cereus. Environmental Microbiology, 14, 2233–2246.
List, F. (2024). FRAC code list©* 2024: fungal control agents sorted by cross-resistance pattern and mode of action (Including coding for FRAC groups on product labels). In.
Litoriya, N. S., Patel, J. H., Thakor, P. M., Chauhan, N. R., Chawla, S., & Shah, P. G. (2023). Behavior of trifloxystrobin and propineb as combination product in tomato (Solanum lycopersicum) and their risk assessment for human health. Biomedical Chromatography, 37, e5660.
Liu, C., Li, B., Wu, B., Lin, H., Jiang, L., & Qiu, Y. (2022). How heavy metal stress promotes dissemination of antibiotic resistance genes in the activated sludge process. Journal of Hazardous Materials, 437, 129279.
Luangtongkum, T., Jeon, B., Han, J., Plummer, P., Logue, C. M., & Zhang, Q. (2009). Antibiotic resistance in Campylobacter: emergence, transmission and persistence. Future Microbiology, 4, 189–200.
Lubelski, J., Konings, W. N., & Driessen, A. J. (2007). Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiology and Molecular Biology Reviews, 71, 463–476.
Luna, V. A., King, D. S., Gulledge, J., Cannons, A. C., Amuso, P. T., & Cattani, J. (2007). Susceptibility of Bacillus anthracis, Bacillus cereus, Bacillus mycoides, Bacillus pseudomycoides and Bacillus thuringiensis to 24 antimicrobials using Sensititre® automated microbroth dilution and Etest® agar gradient diffusion methods. Journal of Antimicrobial Chemotherapy, 60, 555–567.
Luong, T. T., Nguyen, T. H. T., Nguyen, T. D., Le, V. T., Pham, T. H. T., Ho, T.-T., & Nguyen, N.-L. (2023). Degradation of triazole fungicides by plant growth-promoting bacteria from contaminated agricultural soil. Journal of Microbiology and Biotechnology, 34, 56.
Madgwick, J. W., West, J. S., White, R. P., Semenov, M. A., Townsend, J. A., Turner, J. A., & Fitt, B. D. (2011). Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. European Journal of Plant Pathology, 130, 117–131.
Mangu, J. C. K., Stylianou, M., Olsson, P.-E., & Jass, J. (2022). Per-and polyfluoroalkyl substances enhance Staphylococcus aureus pathogenicity and impair host immune response. Environmental Pollution, 314, 120294.
McGhee, J. D. (2013). The Caenorhabditis elegans intestine. Wiley Interdisciplinary Reviews: Developmental Biology, 2, 347–367.
McKillip, J. L. (2000). Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie Van Leeuwenhoek, 77, 393–399.
Merchel Piovesan Pereira, B., Wang, X., & Tagkopoulos, I. (2021). Biocide-induced emergence of antibiotic resistance in Escherichia coli. Frontiers in Microbiology, 12, 640923.
Mi, L., Gao, Z., Liu, Y., Li, B., Huang, Q., Zhao, L., Qin, X., & Sun, Y. (2024). Inhibition of cadmium accumulation in wheat shoots by propineb fungicide application. Environmental Engineering Science, 41, 288–295.
Mokhtar, J. A., McBain, A. J., Ledder, R. G., Binsuwaidan, R., Rimmer, V., & Humphreys, G. J. (2020). Exposure to a manuka honey wound gel is associated with changes in bacterial virulence and antimicrobial susceptibility. Frontiers in Microbiology, 11, 2036.
Neuhaus, K., Satorhelyi, P., Schauer, K., Scherer, S., & Fuchs, T. M. (2013). Acid shock of Listeria monocytogenes at low environmental temperatures induces prfA, epithelial cell invasion, and lethality towards Caenorhabditis elegans. BMC Genomics, 14, 1–15.
Niaz, W., Iqbal, S. Z., Ahmad, K., Majid, A., Haider, W., & Xianguo, L. (2025). Mycotoxins: A comprehensive review of its global trends in major cereals, advancements in chromatographic detections and future prospectives. Food Chemistry: X, 102350.
Nicholas, H. R., & Hodgkin, J. (2004). Responses to infection and possible recognition strategies in the innate immune system of Caenorhabditis elegans. Molecular Immunology, 41, 479–493.
Nikaido, H., & Rosenberg, E. Y. (1981). Effect on solute size on diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli. The Journal of General Physiology, 77, 121–135.
Noor, R. (2019). Insight to foodborne diseases: Proposed models for infections and intoxications. Biomedical and Biotechnology Research Journal (BBRJ), 3, 135–139.
Nuss, E. T., & Tanumihardjo, S. A. (2010). Maize: a paramount staple crop in the context of global nutrition. Comprehensive Reviews in Food Science and Food Safety, 9, 417–436.
O'neill, J. (2014). Antimicrobial resistance: tackling a crisis for the health and wealth of nations. Rev. Antimicrob. Resist.
Pao, S. S., Paulsen, I. T., & Saier Jr, M. H. (1998). Major facilitator superfamily. Microbiology and Molecular Biology Reviews, 62, 1–34.
Parihar, N., & Sharma, B. (2011). Persistence of propineb (polymeric zinc 1, 2-propylene bisdithiocarbamate) fungicide in onion and cropped soil. Bulletin of Environmental Contamination and Toxicology, 86, 545–547.
Parte, S. G., Mohekar, A. D., & Kharat, A. S. (2017). Microbial degradation of pesticide: a review. African Journal of Microbiology Research, 11, 992–1012.
Peay, K. G., Kennedy, P. G., & Talbot, J. M. (2016). Dimensions of biodiversity in the earth mycobiome. Nature Reviews Microbiology, 14, 434–447.
Peng, Z., Liu, Y., Qi, J., Gao, H., Li, X., Tian, Q., Qian, X., Wei, G., & Jiao, S. (2023). The climate‐driven distribution and response to global change of soil‐borne pathogens in agroecosystems. Global Ecology and Biogeography, 32, 766–779.
Percival, S. L., Malic, S., Cruz, H., & Williams, D. W. (2011). Introduction to biofilms. Biofilms and Veterinary Medicine, 41–68.
Pimentão, A. R., Cuco, A. P., Pascoal, C., Cássio, F., & Castro, B. B. (2024). Current trends and mismatches on fungicide use and assessment of the ecological effects in freshwater ecosystems. Environmental Pollution, 347, 123678.
Pukkila-Worley, R., & Ausubel, F. M. (2012). Immune defense mechanisms in the Caenorhabditis elegans intestinal epithelium. Current Opinion in Immunology, 24, 3–9.
Rae, R., Iatsenko, I., Witte, H., & Sommer, R. J. (2010). A subset of naturally isolated Bacillus strains show extreme virulence to the free‐living nematodes Caenorhabditis elegans and Pristionchus pacificus. Environmental Microbiology, 12, 3007–3021.
Rather, M. A., Gupta, K., & Mandal, M. (2021). Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazilian Journal of Microbiology, 52, 1–18.
Resendiz-Sharpe, A., Dewaele, K., Merckx, R., Bustamante, B., Vega-Gomez, M. C., Rolon, M., Jacobs, J., Verweij, P. E., Maertens, J., & Lagrou, K. (2021). Triazole-resistance in environmental Aspergillus fumigatus in Latin American and African countries. Journal of Fungi, 7, 292.
Riddle, D. L., Blumenthal, T., Meyer, B. J., & Priess, J. R. (1997). C. elegans ii.
Rodrigo, D., Rosell, C. M., & Martinez, A. (2021). Risk of Bacillus cereus in relation to rice and derivatives. Foods, 10, 302.
Rodrigues, E. T., Lopes, I., & Pardal, M. Â. (2013). Occurrence, fate and effects of azoxystrobin in aquatic ecosystems: a review. Environment International, 53, 18–28.
Sánchez-Chica, J., Correa, M. M., Aceves-Diez, A. E., & Castañeda-Sandoval, L. M. (2021). Enterotoxin gene distribution and genotypes of Bacillus cereus sensu lato isolated from cassava starch. Toxins, 13, 131.
Santi, I., Manfredi, P., Maffei, E., Egli, A., & Jenal, U. (2021). Evolution of antibiotic tolerance shapes resistance development in chronic Pseudomonas aeruginosa infections. MBio, 12, 10-1128.
Sauer, K., Camper, A. K., Ehrlich, G. D., Costerton, J. W., & Davies, D. G. (2002). Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. American Society for Microbiology, 184, 1140–1154.
Sauter, H., Steglich, W., & Anke, T. (1999). Strobilurins: evolution of a new class of active substances. Angewandte Chemie International Edition, 38, 1328–1349.
Savage-Dunn, C. (2005). TGF-beta signaling. WormBook, 1.
Savage-Dunn, C., & Padgett, R. W. (2017). The TGF-β Family in Caenorhabditis elegans. Cold Spring Harbor perspectives in Biology, 9, a022178.
Sawhney, R., & Berry, V. (2009). Bacterial biofilm formation, pathogenicity, diagnostics and control: An overview. Indian Journal of Medical Sciences, 63, 313–321.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3, 1101–1108.
Schnappinger, D., & Hillen, W. (1996). Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Archives of Microbiology, 165, 359–369.
Schulenburg, H., Léopold Kurz, C., & Ewbank, J. J. (2004). Evolution of the innate immune system: the worm perspective. Immunological Reviews, 198, 36–58.
Sharan, M., Dhaka, P., Bedi, J. S., Mehta, N., & Singh, R. (2024). Assessment of biofilm-forming capacity and multidrug resistance in Staphylococcus aureus isolates from animal-source foods: implications for lactic acid bacteria intervention. Annals of Microbiology, 74, 22.
Sharma, D., Misba, L., & Khan, A. U. (2019). Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrobial Resistance & Infection Control, 8, 1–10.
Shemesh, M., Kolter, R., & Losick, R. (2010). The biocide chlorine dioxide stimulates biofilm formation in Bacillus subtilis by activation of the histidine kinase KinC. Journal of Bacteriology, 192, 6352–6356.
Shi, L.-P., Jiang, K.-M., Jiang, J.-J., Jin, Y., Tao, Y.-H., Li, K., Wang, X.-H., & Lin, J. (2013). Synthesis and antimicrobial activity of polyhalobenzonitrile quinazolin-4 (3H)-one derivatives. Bioorganic & Medicinal Chemistry Letters, 23, 5958–5963.
Shi, X., & Zhu, X. (2009). Biofilm formation and food safety in food industries. Trends in Food Science & Technology, 20, 407–413.
Shivers, R. P., Kooistra, T., Chu, S. W., Pagano, D. J., & Kim, D. H. (2009). Tissue-specific activities of an immune signaling module regulate physiological responses to pathogenic and nutritional bacteria in C. elegans. Cell Host & Microbe, 6, 321–330.
Shutter MC, A. H. (2025). Tetracycline. https://www.ncbi.nlm.nih.gov/books/NBK549905/
Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.
Snyder, A. B., Martin, N., & Wiedmann, M. (2024). Microbial food spoilage: impact, causative agents and control strategies. Nature Reviews Microbiology, 22, 528–542.
Sofos, J. N., & Geornaras, I. (2010). Overview of current meat hygiene and safety risks and summary of recent studies on biofilms, and control of Escherichia coli O157: H7 in nonintact, and Listeria monocytogenes in ready-to-eat, meat products. Meat Science, 86, 2–14.
Sonenshein, A. L. (2005). CodY, a global regulator of stationary phase and virulence in Gram-positive bacteria. Current Opinion in Microbiology, 8, 203–207.
Song, S., Wei, J., Chen, Z., Lei, Y., Zhang, Y., Deng, C., Tan, H., & Li, X. (2018). Determination of propineb and its metabolites propylenethiourea and propylenediamine in banana and soil using gas chromatography with flame photometric detection and LC–MS/MS analysis. Journal of Environmental Science and Health, Part B, 53, 153–160.
Srey, S., Jahid, I. K., & Ha, S.-D. (2013). Biofilm formation in food industries: a food safety concern. Food Control, 31, 572–585.
Stenfors Arnesen, L. P., Fagerlund, A., & Granum, P. E. (2008). From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiology Reviews, 32, 579–606.
Stepanović, S., Ćirković, I., Ranin, L., & S✓ vabić‐Vlahović, M. (2004). Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology, 38, 428–432.
Stiernagle, T. (2006). Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology, 1–11.
Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Reviews in Microbiology, 56, 187–209.
Strange, R. N., & Scott, P. R. (2005). Plant disease: a threat to global food security. Annu. Rev. Phytopathol, 43, 83–116.
Sulaiman, J. E., & Lam, H. (2020). Proteomic investigation of tolerant Escherichia coli populations from cyclic antibiotic treatment. Journal of Proteome Research, 19, 900–913.
Sun, S., Selmer, M., & Andersson, D. I. (2014). Resistance to β-lactam antibiotics conferred by point mutations in penicillin-binding proteins PBP3, PBP4 and PBP6 in Salmonella enterica. PLoS One, 9, e97202.
Suzuki, Y., Yandell, M. D., Roy, P. J., Krishna, S., Savage-Dunn, C., Ross, R. M., Padgett, R. W., & Wood, W. B. (1999). A BMP homolog acts as a dose-dependent regulator of body size and male tail patterning in Caenorhabditis elegans. Development, 126, 241–250.
Święciło, A., & Zych-Wężyk, I. (2013). Bacterial stress response as an adaptation to life in a soil environment. Polish Journal of Environmental Studies, 22, 1577–1587.
Tagele, S. B., & Gachomo, E. W. (2025). A comparative study: impact of chemical and biological fungicides on soil bacterial communities. Environmental Microbiome, 20, 44.
Taglialegna, A., Navarro, S., Ventura, S., Garnett, J. A., Matthews, S., Penades, J. R., Lasa, I., & Valle, J. (2016). Staphylococcal Bap proteins build amyloid scaffold biofilm matrices in response to environmental signals. PLoS Pathogens, 12, e1005711.
Talbot, N. J. (2003). On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annual Reviews in Microbiology, 57, 177–202.
Tan, M.-W., Mahajan-Miklos, S., & Ausubel, F. M. (1999). Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Proceedings of the National Academy of Sciences, 96, 715–720.
Tan, M.-W., Rahme, L. G., Sternberg, J. A., Tompkins, R. G., & Ausubel, F. M. (1999). Pseudomonas aeruginosa killing of Caenorhabditis elegans used to identify P. aeruginosa virulence factors. Proceedings of the National Academy of Sciences, 96, 2408–2413.
Tang, Y., Liu, Y., Jin, Y., Zhang, F., Zhang, W., Luo, S., Zang, J., Yang, W., & Chen, Y. (2024). Toxicological risk assessment of triadimenol for human exposure, broiler health, and food safety. Food and Chemical Toxicology, 194, 115071.
Tarrant, C., & Krockow, E. M. (2022). Antibiotic overuse: managing uncertainty and mitigating against overtreatment. BMJ Quality & Safety, 31, 163-167.
Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Applied and Environmental Microbiology, 69, 2313–2320.
Thakali, A., & MacRae, J. D. (2021). A review of chemical and microbial contamination in food: what are the threats to a circular food system? Environmental Research, 194, 110635.
Thind, T. (2017). Role of fungicides in crop health management: prospects and challenges. Developments in Fungal Biology and Applied Mycology, 433–447.
Tirado, M. C., Clarke, R., Jaykus, L.-A., McQuatters-Gollop, A., & Frank, J. M. (2010). Climate change and food safety: a review. Food Research International, 43, 1745–1765.
Tleuova, A. B., Wielogorska, E., Talluri, V. P., Štěpánek, F., Elliott, C. T., & Grigoriev, D. O. (2020). Recent advances and remaining barriers to producing novel formulations of fungicides for safe and sustainable agriculture. Journal of Controlled Release, 326, 468–481.
Tseng, T.-T., Gratwick, K. S., Kollman, J., Park, D., Nies, D. H., Goffeau, A., & Saier Jr, M. H. (1999). The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. Journal of Molecular Microbiology and Biotechnology, 1, 107–125.
Tuipulotu, D. E., Mathur, A., Ngo, C., & Man, S. M. (2021). Bacillus cereus: epidemiology, virulence factors, and host–pathogen interactions. Trends in Microbiology, 29, 458–471.
Urban-Chmiel, R., Marek, A., Stępień-Pyśniak, D., Wieczorek, K., Dec, M., Nowaczek, A., & Osek, J. (2022). Antibiotic resistance in bacteria—a review. Antibiotics, 11, 1079.
USDA. (2022). Food security: how do crop plants combat pathogens? https://www.ars.usda.gov/oc/dof/food-security-how-do-crop-plants-combat-pathogens/
Vakulenko, S. B., & Mobashery, S. (2003). Versatility of aminoglycosides and prospects for their future. Clinical Microbiology Reviews, 16, 430–450.
Valone, S., Chikami, G., & Miller, V. (1993). Stress induction of the virulence proteins (SpvA,-B, and-C) from native plasmid pSDL2 of Salmonella dublin. Infection and Immunity, 61, 705–713.
Vargas-Cuebas, G. G., Sanchez, C. A., Bezold, E. L., Walker, G. M., Siddiqui, S., Minbiole, K. P., & Wuest, W. M. (2024). Adaptations to cationic biocide exposure differentially influence virulence factors and pathogenicity in Pseudomonas aeruginosa. Virulence, 15, 2397503.
Vialaton, D., Pilichowski, J.-F., Baglio, D., Paya-Perez, A., Larsen, B., & Richard, C. (2001). Phototransformation of propiconazole in aqueous media. Journal of Agricultural and Food Chemistry, 49, 5377–5382.
Vilain, S., Pretorius, J. M., Theron, J., & Brözel, V. S. (2009). DNA as an adhesin: Bacillus cereus requires extracellular DNA to form biofilms. Applied and Environmental Microbiology, 75, 2861–2868.
Wan, N.-F., Fu, L., Dainese, M., Kiær, L. P., Hu, Y.-Q., Xin, F., Goulson, D., Woodcock, B. A., Vanbergen, A. J., & Spurgeon, D. J. (2025). Pesticides have negative effects on non-target organisms. Nature Communications, 16, 1360.
Wang, Y.-F., Liu, Y.-J., Fu, Y.-M., Xu, J.-Y., Zhang, T.-L., Cui, H.-L., Qiao, M., Rillig, M. C., Zhu, Y.-G., & Zhu, D. (2024). Microplastic diversity increases the abundance of antibiotic resistance genes in soil. Nature Communications, 15, 9788.
Waters, A. E., Contente-Cuomo, T., Buchhagen, J., Liu, C. M., Watson, L., Pearce, K., Foster, J. T., Bowers, J., Driebe, E. M., & Engelthaler, D. M. (2011). Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clinical Infectious Diseases, 52, 1227–1230.
Webb, M. D., Barker, G. C., Goodburn, K. E., & Peck, M. W. (2019). Risk presented to minimally processed chilled foods by psychrotrophic Bacillus cereus. Trends in Food Science & Technology, 93, 94–105.
Webber, M. A., & Piddock, L. J. (2003). The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy, 51, 9–11.
Wesche, A. M., Gurtler, J. B., Marks, B. P., & Ryser, E. T. (2009). Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. Journal of Food Protection, 72, 1121–1138.
Wesche, J., & Schnabel, G. (2025). Impact of DMI fungicides on Bacillus subtilis cell growth and consequences for disease control. Plant Disease.
WHO. (2015). Foodborne disease burden epidemiology reference group 2007–2015.
WHO. (2024a). Foodborne diseases. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1
WHO. (2024b). Foodborne diseases estimates. https://www.who.int/health-topics/foodborne-diseases#tab=tab_1
Woh, P., & Ng, C. (2024). Bacillus cereus in rice: a review on food poisoning, antimicrobial resistance, and control measures. Tropical Biomedicine, 41, 298–309.
Wolkow, C. A., Kimura, K. D., Lee, M.-S., & Ruvkun, G. (2000). Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science, 290, 147–150.
Wright, G. D. (2005). Bacterial resistance to antibiotics: enzymatic degradation and modification. Advanced Drug Delivery Reviews, 57, 1451–1470.
Wu-Chen, R. A., Feng, J., Elhadidy, M., Nambiar, R. B., Liao, X., Yue, M., & Ding, T. (2023). Long-term exposure to food-grade disinfectants causes cross-resistance to antibiotics in Salmonella enterica serovar typhimurium strains with different antibiograms and sequence types. Antimicrobial Resistance & Infection Control, 12, 145.
Xing, Y., Wu, S., & Men, Y. (2020). Exposure to environmental levels of pesticides stimulates and diversifies evolution in Escherichia coli toward higher antibiotic resistance. Environmental Science & Technology, 54, 8770–8778.
Xu, L., Mo, X., Zhang, H., Wan, F., Luo, Q., & Xiao, Y. (2025). Epidemiology, mechanisms, and clinical impact of bacterial heteroresistance. Npj Antimicrobials and Resistance, 3, 7.
Xu, S. (2000). Environmental fate of mancozeb. Environmental Monitoring and Pest Management. Sacramento, United States.
Yazid, S. N. E., Ng, W. J., Selamat, J., Ismail, S. I., & Samsudin, N. I. P. (2021). Diversity and toxigenicity of mycobiota in grain corn: A case study at pioneer grain corn plantations in Terengganu, Malaysia. Agriculture, 11, 237.
Yu, K., Chen, F., Yue, L., Luo, Y., Wang, Z., & Xing, B. (2020). CeO2 nanoparticles regulate the propagation of antibiotic resistance genes by altering cellular contact and plasmid transfer. Environmental Science & Technology, 54, 10012–10021.
Yu, S., Yu, P., Wang, J., Li, C., Guo, H., Liu, C., Kong, L., Yu, L., Wu, S., & Lei, T. (2020). A study on prevalence and characterization of Bacillus cereus in ready-to-eat foods in China. Frontiers in Microbiology, 10, 3043.
Yuan, H., Ge, T., Zou, S., Wu, X., Liu, S., Zhou, P., Chen, X., Brookes, P., & Wu, J. (2013). Effect of land use on the abundance and diversity of autotrophic bacteria as measured by ribulose-1, 5-biphosphate carboxylase/oxygenase (RubisCO) large subunit gene abundance in soils. Biology and Fertility of Soils, 49, 609–616.
Yunlong, Y., Xiaoqiang, C., Guohui, P., & Hua, F. (2009). Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil. Journal of Environmental Sciences, 21, 179–185.
Zhang, D., Wang, X., Si, Z., Zhao, X., Yan, H., Xu, B., Chen, Y., & Cui, L. (2024). Deposition, dissipation, metabolism, and dietary risk assessment of chlorothalonil on pakchoi. Journal of Food Composition and Analysis, 134, 106521.
Zhang, G. (2023). The distribution of antibiotics resistance in Champaign County University of Illinois at Urbana-Champaign.
Zhang, H., Chen, S., Zhang, Q., Long, Z., Yu, Y., & Fang, H. (2020). Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Environmental Pollution, 259, 113877.
Zhang, H., Song, J., Zheng, Z., Li, T., Shi, N., Han, Y., Zhang, L., Yu, Y., & Fang, H. (2023). Fungicide exposure accelerated horizontal transfer of antibiotic resistance genes via plasmid-mediated conjugation. Water Research, 233, 119789.
Zhang, M., Teng, Y., Xu, Z., Wang, J., Christie, P., & Luo, Y. (2016). Cumulative effects of repeated chlorothalonil application on soil microbial activity and community in contrasting soils. Journal of Soils and Sediments, 16, 1754–1763.
Zhang, Y., Lu, H., & Bargmann, C. I. (2005). Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature, 438, 179–184.
Zhang, Y., Lu, J., Wu, J., Wang, J., & Luo, Y. (2020). Potential risks of microplastics combined with superbugs: enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicology and Environmental Safety, 187, 109852.
Zhao, L., Duan, F., Gong, M., Tian, X., Guo, Y., Jia, L., & Deng, S. (2021). (+)-Terpinen-4-ol inhibits Bacillus cereus biofilm formation by upregulating the interspecies quorum sensing signals diketopiperazines and diffusing signaling factors. Journal of Agricultural and Food Chemistry, 69, 3496–3510.
Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: food safety perspectives. RSC Advances, 7, 36670–36683.
Zubrod, J. P., Bundschuh, M., Arts, G., Brühl, C. A., Imfeld, G., Knäbel, A., Payraudeau, S., Rasmussen, J. J., Rohr, J., & Scharmüller, A. (2019). Fungicides: an overlooked pesticide class? Environmental Science & Technology, 53, 3347–3365.
許如君 (2022)。農用藥劑分類及作用機制檢索第四版。國立臺灣大學昆蟲學。
王喻其 (2017)。植保手冊-果樹篇。行政院農業委員會農業藥物試驗所。
衛生福利部食品藥物管理署 (2025)。114年1-2月份市售不合格農產品之檢出情形及抽樣地點。https://www.fda.gov.tw/Tc/siteContent.aspx?sid=13341
衛生福利部食品藥物管理署 (2025)。歷年食品中毒資料。https://www.fda.gov.tw/TC/sitecontent.aspx?sid=323
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99920-
dc.description.abstract食源性病原菌所導致的食源性疾病為重大的食品安全與公共衛生議題,其中 仙人掌桿菌 (Bacillus cereus) 為全球常見的食源性病原菌,容易污染乳製品、肉類、蔬菜、穀物及澱粉類食品;而近年來隨全球人口迅速增長,為穩定糧食供應與維持食品品質,農藥使用日益頻繁,其中殺真菌劑為常用的農藥類別之一,而這些農業化學品大部分進入土壤、水及食品中,增加食源性病原菌與殺真菌劑在環境與食品中共存的機會。研究指出環境壓力如外來化學物質的暴露可促使細菌產生適應性與抗藥性,然而,殺真菌劑與病原菌間之交互作用仍鮮少受到重視。因此,本研究針對市面上常用之8種殺真菌劑 (Chlorothalonil、Propineb、Tebuconazole、Azoxystrobin、Propiconazole、Mancozeb、Carbendazim及 Triadimefon),探討其對B. cereus生長之影響,以及長期暴露對生物膜形成、抗生素抗藥性之潛在影響,並使用秀麗隱桿線蟲 (Caenorhabditis elegans) 評估其感染致病力之變化。研究結果顯示Chlorothalonil、Propineb及Tebuconazole可顯著抑制病原菌B. cereus之生長,且30天長期重複暴露Chlorothalonil 8 µM、Propineb 175 µM及Tebuconazole 500 µM可提升其對殺真菌劑之適應力,並顯著提升其生物膜形成能力、對Gentamycin與Tetracycline之抗藥性,以及對C. elegans之感染致死率。進一步探討殺真菌劑 (Tebuconazole 500 µM) 所誘導的生物膜形成與抗生素抗藥性改變之相關機制,由qRT-PCR結果顯示長期暴露Tebuconazole會影響生物膜形成相關基因purC、purL、calY、抗生素抗藥性相關之多重藥物外排幫浦蛋白編碼基因smr及mate,與毒力相關基因nheA、nheB、nheC、hblA、hblC、hblD之表達,進而提升B. cereus生物膜形成、抗生素抗藥性與致病力。
總結上述,本研究指出長期暴露殺真菌劑會提升病原菌生物膜形成能力、抗生素抗藥性與感染致病力,並揭示其相關機制,突顯殺真菌劑在使用與管理上控管的重要性,同時,本研究也提供相關學理資訊,可供後續殺真菌劑與病原菌間交互作用相關研究之參考。
zh_TW
dc.description.abstractFoodborne illnesses caused by foodborne pathogens are a major global concern in food safety and public health. Among them, Bacillus cereus is one of the most common foodborne pathogens worldwide and is prone to contaminating dairy products, meats, vegetables, grains, and starchy foods. In recent years, in response to growing global demands for stable food supply and maintain product quality, the use of pesticides has increased significantly. Fungicides, in particular, are among the most commonly used pesticide categories. As a large proportion of these agrochemicals eventually enter the soil, water, and food, the potential for fungicides and foodborne pathogens to co-exist in environmental and food systems increases. Previous studies have shown that environmental stressors, such as exposure to xenobiotic compounds, can promote bacterial adaptation and antibiotic resistance. However, the interactions between fungicides and bacterial pathogens remain largely underexplored. Therefore, this study investigated the effects of eight commonly used fungicides (Chlorothalonil, Propineb, Tebuconazole, Azoxystrobin, Propiconazole, Mancozeb, Carbendazim, and Triadimefon) on the growth of B. cereus, as well as the potential impacts of long-term exposure on biofilm formation, antibiotic resistance, and pathogenicity using the nematode Caenorhabditis elegans as a model host. Results indicated that Chlorothalonil, Propineb, and Tebuconazole significantly inhibited the growth of B. cereus. Moreover, 30-day repeated long-term exposure to Chlorothalonil 8 µM, Propineb 175 µM, and Tebuconazole 500 µM promoted bacterial adaptation to these fungicides and significantly increased biofilm formation, resistance to Gentamycin and Tetracycline, and infection-induced mortality in C. elegans. To further explore the mechanisms underlying the fungicide Tebuconazole-induced enhancement of biofilm formation and antibiotic resistance, qRT-PCR analysis revealed that long-term exposure to Tebuconazole affected the expression of biofilm-related genes (purC, purl, and calY), the antibiotic resistance-related multidrug efflux pump genes (smr and mate), and virulence-associated genes (nheA, nheB, nheC, hblA, hblC, and hblD), thereby promoting increased biofilm formation, antibiotic resistance, and pathogenicity in B. cereus.
In conclusion, this study demonstrates that long-term exposure to fungicides can enhance the biofilm-forming ability, antibiotic resistance, and pathogenicity of foodborne pathogens, and elucidates the underlying mechanisms. These findings highlight the importance of careful use and management of fungicides. Moreover, this study provides fundamental insights that may serve as a reference for future investigations into the fungicide–pathogen interactions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:18:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:18:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iv
Graphic abstract vi
Highlights vii
目次 viii
圖次 x
表次 xi
1. 研究動機 1
2. 文獻探討 2
2.1. 殺真菌劑 (Fungicides) 2
2.1.1. 真菌及黴菌毒素污染 2
2.1.2. 殺真菌劑之作用機制與分類 3
2.1.3. 市面上常用之殺真菌劑 3
2.1.4. 殺真菌劑之相關標準與污染 7
2.2. 食源性病原菌 9
2.2.1. 食源性病原菌之基本介紹與氣候變遷之潛在影響 9
2.2.2. 病原菌之生物膜形成 9
2.2.3. 病原菌之抗生素抗藥性 11
2.2.4. 病原菌Bacillus cereus (B. cereus) 13
2.3. 殺真菌劑誘導之抗藥性 15
2.4. 以秀麗隱桿線蟲 (Caenorhabditis elegans) 進行細菌感染相關之研究 16
3. 研究目的 19
4. 材料與方法 20
4.1. 實驗架構 20
4.2. 實驗藥品 21
4.3. 細菌品系與培養 21
4.4. C. elegans品系與培養 21
4.5. 病原菌暴露殺真菌劑生長試驗 21
4.6. 病原菌長期暴露殺真菌劑馴化試驗 24
4.7. 病原菌生物膜形成能力試驗 25
4.8. 病原菌抗生素抗藥性試驗 25
4.9. 病原菌感染宿主試驗 25
4.10. 即時聚合酶連鎖反應分析 (quantitative real time polymerase chain reaction, qRT-PCR) 26
4.11. 統計分析 29
5. 結果與討論 30
5.1. 暴露殺真菌劑對病原菌B. cereus生長之影響 30
5.2. 長期暴露殺真菌劑對病原菌B. cereus之影響 35
5.3. 殺真菌劑馴化後對病原菌B. cereus生物膜形成能力之影響 39
5.4. 殺真菌劑馴化後對病原菌B. cereus抗生素抗藥性之影響 45
5.5. 殺真菌劑馴化後對病原菌B. cereus致病力之影響 52
6. 結論 56
7. 建議 58
8. 參考文獻 59
9. 附錄 78
-
dc.language.isozh_TW-
dc.subject秀麗隱桿線蟲zh_TW
dc.subject致病力zh_TW
dc.subject食源性疾病zh_TW
dc.subject抗生素抗藥性zh_TW
dc.subject生物膜zh_TW
dc.subject殺真菌劑zh_TW
dc.subject仙人掌桿菌zh_TW
dc.subjectBiofilmen
dc.subjectFungicidesen
dc.subjectBacillus cereusen
dc.subjectFoodborne diseaseen
dc.subjectAntibiotic resistanceen
dc.subjectPathogenicityen
dc.subjectCaenorhabditis elegansen
dc.title探討長期暴露殺真菌劑對食品中常見病原菌仙人掌桿菌之生物膜形成、抗生素抗藥性與致病力之影響及其調控機制zh_TW
dc.titleThe influence of long-term exposure to fungicides on the modulation of biofilm formation, antibiotic resistance, and pathogenicity in foodborne pathogen Bacillus cereus and the underlying regulatory mechanismen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee童心欣;李月嘉;陳俊豪zh_TW
dc.contributor.oralexamcommitteeHsin-Hsin Tung;Yue-Jia Lee;Chun-Hao Chenen
dc.subject.keyword食源性疾病,仙人掌桿菌,殺真菌劑,生物膜,抗生素抗藥性,秀麗隱桿線蟲,致病力,zh_TW
dc.subject.keywordFoodborne disease,Bacillus cereus,Fungicides,Biofilm,Antibiotic resistance,Caenorhabditis elegans,Pathogenicity,en
dc.relation.page81-
dc.identifier.doi10.6342/NTU202504059-
dc.rights.note未授權-
dc.date.accepted2025-08-06-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept食品安全與健康研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:食品安全與健康研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
2.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved