Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99918
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蕭朱杏zh_TW
dc.contributor.advisorChuhsing Kate Hsiaoen
dc.contributor.author廖振博zh_TW
dc.contributor.authorChen-Po Liaoen
dc.date.accessioned2025-09-19T16:17:43Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-07-31-
dc.identifier.citation1. Li X, Ma S, Liu J, Tang J, Guo F. Inferring gene regulatory network via fusing gene expression image and RNA-seq data. Bioinformatics. 2022;38(6):1716-23.
2. Luo Q, Yu Y, Lan X. SIGNET: single-cell RNA-seq-based gene regulatory network prediction using multiple-layer perceptron bagging. Briefings in Bioinformatics. 2022;23(1):bbab547.
3. Kolaczyk ED, Csárdi G. Statistical analysis of network data with R: Springer; 2014.
4. Hevey D. Network analysis: a brief overview and tutorial. Health psychology and behavioral medicine. 2018;6(1):301-28.
5. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences. 2005;102(43):15545-50.
6. Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218-23.
7. Zitnik M, Li MM, Wells A, Glass K, Morselli Gysi D, Krishnan A, Murali TM, Radivojac P, Roy S, Baudot A. Current and future directions in network biology. Bioinformatics Advances. 2024;4(1):vbae099.
8. Hu JX, Thomas CE, Brunak S. Network biology concepts in complex disease comorbidities. Nature reviews genetics. 2016;17(10):615-29.
9.Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nature reviews Molecular cell biology. 2016;17(7):451-9.
10. Ma X, Li Z, Du Z, Xu Y, Chen Y, Zhuo L, Fu X, Liu R. Advancing cancer driver gene detection via schur complement graph augmentation and independent subspace feature extraction. Computers in Biology and Medicine. 2024;174:108484.
11. Barabási A-L, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nature reviews genetics. 2011;12(1):56-68.
12. Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H. Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nature Communications. 2014;5(1):3231.
13. Ivancevic A, Simpson DM, Joyner OM, Bagby SM, Nguyen LL, Bitler BG, Pitts TM, Chuong EB. Endogenous retroviruses mediate transcriptional rewiring in response to oncogenic signaling in colorectal cancer. Science Advances. 2024;10(29):eado1218.
14. Lauritzen SL. Graphical models vol. 17. Clarendon Press, 1996.
15. Drton M, Maathuis MH. Structure learning in graphical modeling. Annual Review of Statistics and Its Application. 2017;4(1):365-93.
16. Meram ED, Baajour S, Chowdury A, Kopchick J, Thomas P, Rajan U, Khatib D, Zajac-Benitez C, Haddad L, Amirsadri A. The topology, stability, and instability of learning-induced brain network repertoires in schizophrenia. Network Neuroscience. 2023;7(1):184-212.
17. Kotlyar M, Fortney K, Jurisica I. Network-based characterization of drug-regulated genes, drug targets, and toxicity. Methods. 2012;57(4):499-507.
18. De Roeck L, Blommaert J, Dupont P, Sunaert S, Sleurs C, Lambrecht M. Brain network topology and its cognitive impact in adult glioma survivors. Scientific Reports. 2024;14(1):12782.
19. Sharifnia SG, Saghaei A. A statistical approach for social network change detection: an ERGM based framework. Communications in Statistics-Theory and Methods. 2022;51(7):2259-80.
20. Cai Y, Liu L, Li Z. Modelling and monitoring social network change based on exponential random graph models. Journal of Applied Statistics. 2024;51(9):1621-41.
21. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research. 2000;28(1):27-30.
22. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research. 2019;47(D1):D607-D13.
23. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT. Gene ontology: tool for the unification of biology. Nature Genetics. 2000;25(1):25-9.
24. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:1-13.
25. Kuang J, Michel K, Scoglio C. GeCoNet-Tool: a software package for gene co-expression network construction and analysis. BMC Bioinformatics. 2023;24(1):281.
26. Aghdam R, Ganjali M, Zhang X, Eslahchi C. CN: a consensus algorithm for inferring gene regulatory networks using the SORDER algorithm and conditional mutual information test. Molecular Biosystems. 2015;11(3):942-9.
27. Pearl J, Paz A. Graphoids: A graph-based logic for reasoning about relevance relations. University of California (Los Angeles). Computer Science Department. 1985.
28. Besag J. Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological). 1974;36(2):192-225.
29. Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the lasso. The Annals of Statistics. 2006;34(3):1436-62.
30. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9(3):432-41.
31. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychological Methods. 2018;23(4):617.
32. Albert R. Scale-free networks in cell biology. Journal of Cell Science. 2005;118(21):4947-57.
33. Bernardini D, Paterlini S, Taufer E. New estimation approaches for graphical models with elastic net penalty. Econometrics and Statistics. 2022.
34. Shalom G, Treister E, Yavneh I. pISTA: preconditioned iterative soft thresholding algorithm for graphical Lasso. SIAM Journal on Scientific Computing. 2024;46(2):S445-S66.
35. Pourahmadi M. Covariance estimation: The GLM and regularization perspectives. Statistical Science. 2011;26(3):369–87.
36. Peng J, Wang P, Zhou N, Zhu J. Partial correlation estimation by joint sparse regression models. Journal of the American Statistical Association. 2009;104(486):735-46.
37. Lee S, Kim SC, Yu D. An efficient GPU-parallel coordinate descent algorithm for sparse precision matrix estimation via scaled lasso. Computational Statistics. 2023;38(1):217-42.
38. Cho Y, Lee S, Kim J, Yu D. Sparse Partial Correlation Estimation With Scaled Lasso and Its GPU-Parallel Algorithm. IEEE Access. 2023;11:65093-104.
39. Cai T, Liu W, Luo X. A constrained ℓ 1 minimization approach to sparse precision matrix estimation. Journal of the American Statistical Association. 2011;106(494):594-607.
40. Zhang T, Zou H. Sparse precision matrix estimation via lasso penalized D-trace loss. Biometrika. 2014;101(1):103-20.
41. Cai TT, Liu W, Zhou HH. Estimating sparse precision matrix: Optimal rates of convergence and adaptive estimation. The Annals of Statistics. 2016;44(2):455-88.
42. Foygel R, Drton M. Extended Bayesian information criteria for Gaussian graphical models. Advances in Neural Information Processing Systems. 2010;23.
43. Liu H, Roeder K, Wasserman L. Stability approach to regularization selection (stars) for high dimensional graphical models. Advances in Neural Information Processing Systems. 2010;23.
44. Liu H, Lafferty J, Wasserman L. The nonparanormal: Semiparametric estimation of high dimensional undirected graphs. Journal of Machine Learning Research. 2009;10(10):2295−328.
45. Liu H, Han F, Yuan M, Lafferty J, Wasserman L. The nonparanormal skeptic. arXiv preprint arXiv:1206.6488. 2012.
46. Xue L, Zou H. Regularized rank-based estimation of high-dimensional nonparanormal graphical models. The Annals of Statistics. 2012;40(5):2541–71.
47. Yang E, Ravikumar P, Allen GI, Liu Z. Graphical models via univariate exponential family distributions. The Journal of Machine Learning Research. 2015;16(1):3813-47.
48. Ravikumar P, Wainwright MJ, Lafferty JD. High-dimensional Ising model selection using ℓ 1-regularized logistic regression. The Annals of Statistics. 2010;38(3):1287-319.
49. Yang E, Allen G, Liu Z, Ravikumar P. Graphical models via generalized linear models. Advances in Neural Information Processing Systems. 2012;25:1358–66.
50. Van Borkulo CD, Borsboom D, Epskamp S, Blanken TF, Boschloo L, Schoevers RA, Waldorp LJ. A new method for constructing networks from binary data. Scientific Reports. 2014;4(1):5918.
51. Höfling H, Tibshirani R. Estimation of sparse binary pairwise Markov networks using pseudo-likelihoods. Journal of Machine Learning Research. 2009;10(4):883-906.
52. Lin L, Drton M, Shojaie A. Estimation of high-dimensional graphical models using regularized score matching. Electronic journal of statistics. 2016;10(1):806.
53. Yu M, Kolar M, Gupta V. Statistical inference for pairwise graphical models using score matching. Advances in Neural Information Processing Systems. 2016;29.
54. Schwank R, McCormack A, Drton M. Robust Score Matching. arXiv preprint arXiv:2501.05105. 2025.
55. Fan J, Liu H, Ning Y, Zou H. High dimensional semiparametric latent graphical model for mixed data. Journal of the Royal Statistical Society Series B: Statistical Methodology. 2017;79(2):405-21.
56. Liu Y, Darville T, Zheng X, Li Q. Decomposition of variation of mixed variables by a latent mixed Gaussian copula model. Biometrics. 2023;79(2):1187-200.
57. Göbler K, Drton M, Mukherjee S, Miloschewski A. High-dimensional undirected graphical models for arbitrary mixed data. Electronic journal of statistics. 2024;18(1):2339-404.
58. Lauritzen SL, Wermuth N. Graphical models for associations between variables, some of which are qualitative and some quantitative. The Annals of Statistics. 1989:31-57.
59. Cheng J, Li T, Levina E, Zhu J. High-dimensional mixed graphical models. Journal of Computational and Graphical Statistics. 2017;26(2):367-78.
60. Lee JD, Hastie TJ. Learning the structure of mixed graphical models. Journal of Computational and Graphical Statistics. 2015;24(1):230-53.
61. Yang E, Baker Y, Ravikumar P, Allen G, Liu Z, editors. Mixed graphical models via exponential families. Artificial intelligence and statistics; 2014: PMLR.
62. Chen S, Witten DM, Shojaie A. Selection and estimation for mixed graphical models. Biometrika. 2015;102(1):47-64.
63. Yang Z, Ning Y, Liu H. On semiparametric exponential family graphical models. Journal of Machine Learning Research. 2018;19(57):1-59.
64. Haslbeck J, Waldorp LJ. Structure estimation for mixed graphical models in high-dimensional data. arXiv preprint arXiv:1510.05677. 2015.
65. Loh P-L, Wainwright MJ. Structure estimation for discrete graphical models: Generalized covariance matrices and their inverses. Advances in Neural Information Processing Systems. 2012;25.
66. Haslbeck J, Waldorp LJ. mgm: Estimating time-varying mixed graphical models in high-dimensional data. Journal of statistical software. 2020;93(8):1-46.
67. Drton M, Perlman MD. A SINful approach to Gaussian graphical model selection. Journal of Statistical Planning and Inference. 2008;138(4):1179-200.
68. Andersson SA, Madigan D, Perlman MD. Alternative Markov properties for chain graphs. Scandinavian journal of statistics. 2001;28(1):33-85.
69. Rothman AJ, Levina E, Zhu J. Sparse multivariate regression with covariance estimation. Journal of Computational and Graphical Statistics. 2010;19(4):947-62.
70. Friedman J, Hastie T, Höfling H, Tibshirani R. Pathwise coordinate optimization. Annals of Applied Statistics. 2007;1(2):302-32.
71. Richtárik P, Takáč M. Parallel coordinate descent methods for big data optimization. Mathematical Programming. 2016;156(1):433-84.
72. Lin J, Basu S, Banerjee M, Michailidis G. Penalized Maximum Likelihood Estimation of Multi-layered Gaussian Graphical Models. Journal of Machine Learning Research. 2016;17:1-51.
73. Javanmard A, Montanari A. Confidence intervals and hypothesis testing for high-dimensional regression. The Journal of Machine Learning Research. 2014;15(1):2869-909.
74. Chakraborty M, Baladandayuthapani V, Bhadra A, Ha MJ. Bayesian robust learning in chain graph models for integrative pharmacogenomics. The Annals of Applied Statistics. 2024;18(4):3274-96.
75. Yao T-H, Ni Y, Bhadra A, Kang J, Baladandayuthapani V. Robust Bayesian graphical regression models for assessing tumor heterogeneity in proteomic networks. Biometrics. 2025;81(1):ujae160.
76. Liu X, Chang X, Liu R, Yu X, Chen L, Aihara K. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Computational Biology. 2017;13(7):e1005633.
77. Liu X, Wang Y, Ji H, Aihara K, Chen L. Personalized characterization of diseases using sample-specific networks. Nucleic Acids Research. 2016;44(22):e164-e.
78. Zhang Y, Chang X, Xia J, Huang Y, Sun S, Chen L, Liu X. Identifying network biomarkers of cancer by sample-specific differential network. BMC Bioinformatics. 2022;23(1):230.
79. Shojaie A. Differential network analysis: A statistical perspective. Wiley Interdisciplinary Reviews: Computational Statistics. 2021;13(2):e1508.
80. Galindez G, List M, Baumbach J, Völker U, Mäder U, Blumenthal DB, Kacprowski T. Inference of differential gene regulatory networks using boosted differential trees. Bioinformatics Advances. 2024;4(1):vbae034.
81. Huang Y-J, Lai Y-J, Hsiao CK. A Bayesian approach to differential edges with probabilistic interactions: applications in association and classification. Bioinformatics Advances. 2023;3(1):vbad172.
82. Ha MJ, Baladandayuthapani V, Do K-A. DINGO: differential network analysis in genomics. Bioinformatics. 2015;31(21):3413-20.
83. Zhao SD, Cai TT, Li H. Direct estimation of differential networks. Biometrika. 2014;101(2):253-68.
84. Campbell JD, Alexandrov A, Kim J, Wala J, Berger AH, Pedamallu CS, Shukla SA, Guo G, Brooks AN, Murray BA. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nature Genetics. 2016;48(6):607-16.
85. Vanhaesebroeck B, Perry MW, Brown JR, André F, Okkenhaug K. PI3K inhibitors are finally coming of age. Nature Reviews Drug Discovery. 2021;20(10):741-69.
86. Sulaimanov N, Kumar S, Burdet F, Ibberson M, Pagni M, Koeppl H. Inferring gene expression networks with hubs using a degree weighted Lasso approach. Bioinformatics. 2019;35(6):987-94.
87. Serafino M, Cimini G, Maritan A, Rinaldo A, Suweis S, Banavar JR, Caldarelli G. True scale-free networks hidden by finite size effects. Proceedings of the National Academy of Sciences. 2021;118(2):e2013825118.
88. Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD. A global genetic interaction network maps a wiring diagram of cellular function. Science. 2016;353(6306):aaf1420.
89. Chang H-C, Chu C-P, Lin S-J, Hsiao CK. Network hub-node prioritization of gene regulation with intra-network association. BMC Bioinformatics. 2020;21:1-11.
90. Weng C, Faure AJ, Escobedo A, Lehner B. The energetic and allosteric landscape for KRAS inhibition. Nature. 2024;626(7999):643-52.
91. Benedetti E, Pučić-Baković M, Keser T, Wahl A, Hassinen A, Yang J-Y, Liu L, Trbojević-Akmačić I, Razdorov G, Štambuk J. Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications. 2017;8(1):1483.
92. Benedetti E, Pučić-Baković M, Keser T, Gerstner N, Büyüközkan M, Štambuk T, Selman MH, Rudan I, Polašek O, Hayward C. A strategy to incorporate prior knowledge into correlation network cutoff selection. Nature Communications. 2020;11(1):5153.
93. Ho C-H, Huang Y-J, Lai Y-J, Mukherjee R, Hsiao CK. The misuse of distributional assumptions in functional class scoring gene-set and pathway analysis. G3. 2022;12(1):jkab365.
94. Li B, Chun H, Zhao H. On an additive semigraphoid model for statistical networks with application to pathway analysis. Journal of the American Statistical Association. 2014;109(507):1188-204.
95. Chang H-C. Development of a knowledge-based and data-driven network construction method for gene sets [thesis]. Taipei: National Taiwan University; 2019.
96. Wang Z, Xu W, San Lucas FA, Liu Y. Incorporating prior knowledge into gene network study. Bioinformatics. 2013;29(20):2633-40.
97. Li Y, Jackson SA. Gene network reconstruction by integration of prior biological knowledge. G3: Genes, Genomes, Genetics. 2015;5(6):1075-9.
98. Abbaszadeh O, Azarpeyvand A, Khanteymoori A, Bahari A. Data-driven and knowledge-based algorithms for gene network reconstruction on high-dimensional data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2022;19(3):1545-57.
99. Alstott J, Bullmore E, Plenz D. powerlaw: a Python package for analysis of heavy-tailed distributions. PloS One. 2014;9(1):e85777.
100. Kim H, Toroczkai Z, Erdős PL, Miklós I, Székely LA. Degree-based graph construction. Journal of Physics A: Mathematical and Theoretical. 2009;42(39):392001.
101. Cordella LP, Foggia P, Sansone C, Vento M. A (sub) graph isomorphism algorithm for matching large graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004;26(10):1367-72.
102. Jüttner A, Madarasi P. VF2++—An improved subgraph isomorphism algorithm. Discrete Applied Mathematics. 2018;242:69-81.
103. Luce RD, Perry AD. A method of matrix analysis of group structure. Psychometrika. 1949;14(2):95-116.
104. Freeman LC. A set of measures of centrality based on betweenness. Sociometry. 1977:35-41.
105. Borgatti SP, Everett MG. A graph-theoretic perspective on centrality. Social Networks. 2006;28(4):466-84.
106. Wysocki AC, Rhemtulla M. On penalty parameter selection for estimating network models. Multivariate Behavioral Research. 2021;56(2):288-302.
107. Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L. The huge package for high-dimensional undirected graph estimation in R. Journal of Machine Learning Research. 2012;13(1):1059-62.
108. Ravikumar P, Wainwright MJ, Raskutti G, Yu B. High-dimensional covariance estimation by minimizing ℓ 1-penalized log-determinant divergence. 2011.
109. Gotthardt D, Sexl V. STATs in NK-cells: the good, the bad, and the ugly. Frontiers in Immunology. 2017;7:694.
110. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduction and Targeted Therapy. 2021;6(1):402.
111. Li WX. Canonical and non-canonical JAK–STAT signaling. Trends in Cell Biology. 2008;18(11):545-51.
112. Pan F, Wang Q, Li S, Huang R, Wang X, Liao X, Mo H, Zhang L, Zhou X. Prognostic value of key genes of the JAK‑STAT signaling pathway in patients with cutaneous melanoma. Oncology Letters. 2020;19(3):1928-46.
113. Sever R, Brugge JS. Signal transduction in cancer. Cold Spring Harbor Perspectives in Medicine. 2015;5(4):a006098.
114. Zhan T, Rindtorff N, Boutros M. Wnt signaling in cancer. Oncogene. 2017;36(11):1461-73.
115. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, Butti M, Takata Y, Gaddis S, Shen J. A molecular portrait of high-grade ductal carcinoma in situ. Cancer Research. 2015;75(18):3980-90.
116. Anderson EJ, Mollon LE, Dean JL, Warholak TL, Aizer A, Platt EA, Tang DH, Davis LE. A systematic review of the prevalence and diagnostic workup of PIK3CA mutations in HR+/HER2–metastatic breast cancer. International Journal of Breast Cancer. 2020;2020(1):3759179.
117. Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, Linn SC, Gonzalez-Angulo AM, Stemke-Hale K, Hauptmann M. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12(4):395-402.
118. Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK, Hedvat CV, Traina TA, Solit D, Gerald W. PIK3CA mutation associates with improved outcome in breast cancer. Clinical Cancer Research. 2009;15(16):5049-59.
119. Markou A, Farkona S, Schiza C, Efstathiou T, Kounelis S, Malamos N, Georgoulias V, Lianidou E. PIK3CA mutational status in circulating tumor cells can change during disease recurrence or progression in patients with breast cancer. Clinical Cancer Research. 2014;20(22):5823-34.
120. Wang M, Li J, Huang J, Luo M. The Predictive Role of PIK3CA Mutation Status on PI3K Inhibitors in HR+ Breast Cancer Therapy: A Systematic Review and Meta‐Analysis. BioMed Research International. 2020;2020(1):1598037.
121. Mosele F, Stefanovska B, Lusque A, Dien AT, Garberis I, Droin N, Le Tourneau C, Sablin M-P, Lacroix L, Enrico D. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Annals of Oncology. 2020;31(3):377-86.
122. Lian J, Xu E-W, Xi Y-F, Wang H-W, Bu P, Wang J-f, Wang L-X. Clinical-pathologic analysis of breast cancer with PIK3CA mutations in Chinese women. Technology in Cancer Research & Treatment. 2020;19:1533033820950832.
123. Hodges TR, Abbott JR, Little AJ, Sarkar D, Salovich JM, Howes JE, Akan DT, Sai J, Arnold AL, Browning C. Discovery and structure-based optimization of benzimidazole-derived activators of SOS1-mediated nucleotide exchange on RAS. Journal of Medicinal Chemistry. 2018;61(19):8875-94.
124. Xing F, Zhao D, Wu S-Y, Tyagi A, Wu K, Sharma S, Liu Y, Deshpande R, Wang Y, Cleary J. Epigenetic and posttranscriptional modulation of SOS1 can promote breast cancer metastasis through obesity-activated c-met signaling in african-American women. Cancer Research. 2021;81(11):3008-21.
125. Alem D, Yang X, Beato F, Sarcar B, Tassielli AF, Dai R, Hogenson TL, Park MA, Jiang K, Cai J. Translational relevance of SOS1 targeting for KRAS‐mutant colorectal cancer. Molecular Carcinogenesis. 2023;62(7):1025-37.
126. Cai D, Choi PS, Gelbard M, Meyerson M. Identification and characterization of oncogenic SOS1 mutations in lung adenocarcinoma. Molecular Cancer Research. 2019;17(4):1002-12.
127. Shoji K, Oda K, Nakagawa S, Hosokawa S, Nagae G, Uehara Y, Sone K, Miyamoto Y, Hiraike H, Hiraike-Wada O. Reply: Somatic mutations are present in all members of the AKT family in endometrial carcinoma. British Journal of Cancer. 2009;101(7):1220-1.
128. Le X, Antony R, Razavi P, Treacy DJ, Luo F, Ghandi M, Castel P, Scaltriti M, Baselga J, Garraway LA. Systematic functional characterization of resistance to PI3K inhibition in breast cancer. Cancer Discovery. 2016;6(10):1134-47.
129. Wang F, Yuan C, Liu B, Yang Y-F, Wu H-Z. Syringin exerts anti-breast cancer effects through PI3K-AKT and EGFR-RAS-RAF pathways. Journal of Translational Medicine. 2022;20(1):310.
130. Tian X, Guan W, Zhang L, Sun W, Zhou D, Lin Q, Ren W, Nadeem L, Xu G. Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. Journal of Experimental and Clinical Cancer Research. 2018;37:1-16.
131. Nakagawa S, Serada S, Kakubari R, Hiramatsu K, Sugase T, Matsuzaki S, Matsuzaki S, Ueda Y, Yoshino K, Ohkawara T. Intratumoral delivery of an adenoviral vector carrying the SOCS-1 gene enhances T-cell–mediated antitumor immunity by suppressing PD-L1. Molecular Cancer Therapeutics. 2018;17(9):1941-50.
132. Chen H, Wu X, Pan ZK, Huang S. Integrity of SOS1/EPS8/ABI1 tri-complex determines ovarian cancer metastasis. Cancer Research. 2010;70(23):9979-90.
133. Cheng M, Ye X, Dai J, Sun F. SOS1 promotes epithelial-mesenchymal transition of Epithelial Ovarian Cancer (EOC) cells through AKT independent NF-κB signaling pathway. Translational Oncology. 2021;14(9):101160.
134. Wang C, Xu S, Liu Z-P. Evaluating gene regulatory network activity from dynamic expression data by regularized constraint programming. IEEE Journal of Biomedical and Health Informatics. 2022;26(11):5738-49.
135. Wang Y, Liu Z-P. Identifying biomarkers for breast cancer by gene regulatory network rewiring. BMC Bioinformatics. 2022;22(Suppl 12):308.
136. Hou L, Chen M, Zhang CK, Cho J, Zhao H. Guilt by rewiring: gene prioritization through network rewiring in genome wide association studies. Human Molecular Genetics. 2014;23(10):2780-90.
137. Galindez G, Sadegh S, Baumbach J, Kacprowski T, List M. Network-based approaches for modeling disease regulation and progression. Computational and structural biotechnology journal. 2023;21:780-95.
138. Yu M, Sporns O, Saykin AJ. The human connectome in Alzheimer disease—relationship to biomarkers and genetics. Nature Reviews Neurology. 2021;17(9):545-63.
139. Guo J, Levina E, Michailidis G, Zhu J. Joint estimation of multiple graphical models. Biometrika. 2011;98(1):1-15.
140. Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance estimation across multiple classes. Journal of the Royal Statistical Society Series B: Statistical Methodology. 2014;76(2):373-97.
141. Ma J, Michailidis G. Joint structural estimation of multiple graphical models. Journal of Machine Learning Research. 2016;17(166):1-48.
142. Yuan H, Xi R, Chen C, Deng M. Differential network analysis via lasso penalized D-trace loss. Biometrika. 2017;104(4):755-70.
143. Cai T, Liu W, Xia Y. Two-sample covariance matrix testing and support recovery in high-dimensional and sparse settings. Journal of the American Statistical Association. 2013;108(501):265-77.
144. Xia Y, Cai T, Cai TT. Testing differential networks with applications to the detection of gene-gene interactions. Biometrika. 2015;102(2):247-66.
145. Liu W. Structural similarity and difference testing on multiple sparse Gaussian graphical models. The Annals of Statistics. 2017;45(6):2680-707.
146. Chen J, Murabito JM, Lunetta KL. ONDSA: a testing framework based on Gaussian graphical models for differential and similarity analysis of multiple omics networks. Briefings in Bioinformatics. 2025;26(1):bbae610.
147. He H, Cao S, Zhang J-g, Shen H, Wang Y-P, Deng H-w. A statistical test for differential network analysis based on inference of Gaussian graphical model. Scientific Reports. 2019;9(1):10863.
148. Zhao S, Shojaie A. Network differential connectivity analysis. The Annals of Applied Statistics. 2022;16(4):2166.
149. Zhang X-F, Ou-Yang L, Yan H. Incorporating prior information into differential network analysis using non-paranormal graphical models. Bioinformatics. 2017;33(16):2436-45.
150. Tian D, Gu Q, Ma J. Identifying gene regulatory network rewiring using latent differential graphical models. Nucleic Acids Research. 2016;44(17):e140-e.
151. Xu P, Gu Q. Semiparametric differential graph models. Advances in Neural Information Processing Systems. 2016;29:1064-72.
152. Fazayeli F, Banerjee A, editors. Generalized direct change estimation in ising model structure. International Conference on Machine Learning; 2016: PMLR.
153. Kim B, Liu S, Kolar M. Two-sample inference for high-dimensional markov networks. Journal of the Royal Statistical Society Series B: Statistical Methodology. 2021;83(5):939-62.
154. Liu S, Quinn JA, Gutmann MU, Suzuki T, Sugiyama M. Direct learning of sparse changes in Markov networks by density ratio estimation. Neural Computation. 2014;26(6):1169-97.
155. He Y, Ji J, Xie L, Zhang X, Xue F. A new insight into underlying disease mechanism through semi-parametric latent differential network model. BMC Bioinformatics. 2018;19:5-19.
156. Jia B, Liang F. Joint estimation of multiple mixed graphical models for pan‐cancer network analysis. Stat: Bulletin of the Wisconsin Nurses Association. 2020;9(1):e271.
157. Hermes S, van Heerwaarden J, Behrouzi P. Copula graphical models for heterogeneous mixed data. Journal of Computational and Graphical Statistics. 2024;33(3):991-1005.
158. Friedman JH, Hastie T, Tibshirani R. Regularization paths for generalized linear models via coordinate descent. Journal of statistical software. 2010;33(1):1-22.
159. Liu H, Roeder K, Wasserman L. Stability approach to regularization selection (stars) for high dimensional graphical models. Advances in Neural Information Processing Systems. 2010;24(2):1432-40.
160. Gourieroux C, Monfort A. Asymptotic properties of the maximum likelihood estimator in dichotomous logit models. Journal of Econometrics. 1981;17(1):83-97.
161. Fahrmeir L, Kaufmann H. Consistency and asymptotic normality of the maximum likelihood estimator in generalized linear models. The Annals of Statistics. 1985;13(1):342-68.
162. Gao S, Shen J. Asymptotic properties of a double penalized maximum likelihood estimator in logistic regression. Statistics & probability letters. 2007;77(9):925-30.
163. Bakrania K, Yates T, Rowlands AV, Esliger DW, Bunnewell S, Sanders J, Davies M, Khunti K, Edwardson CL. Intensity thresholds on raw acceleration data: Euclidean norm minus one (ENMO) and mean amplitude deviation (MAD) approaches. PloS One. 2016;11(10):e0164045.
164. Van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, Ekelund U, Renström F, Franks PW, Horsch A. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PloS One. 2013;8(4):e61691.
165. Takahashi JS, Hong H-K, Ko CH, McDearmon EL. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature reviews genetics. 2008;9(10):764-75.
166. Allen NE, Sudlow C, Peakman T, Collins R, biobank U. UK biobank data: come and get it. American Association for the Advancement of Science; 2014. p. 224ed4-ed4.
167. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Medicine. 2015;12(3):e1001779.
168. McCarthy S, Das S, Kretzschmar W, Delaneau O, Wood AR, Teumer A, Kang HM, Fuchsberger C, Danecek P, Sharp K, et al. A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics. 2016;48(10):1279-83.
169. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, Motyer A, Vukcevic D, Delaneau O, O’Connell J. Genome-wide genetic data on~ 500,000 UK Biobank participants. BioRxiv. 2017:166298.
170. Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, Jeffries AR, Dashti HS, Hillsdon M, Ruth KS. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nature Communications. 2019;10(1):343.
171. Chipman H. Bayesian variable selection with related predictors. Canadian Journal of Statistics. 1996;24(1):17-36.
172. Bien J, Taylor J, Tibshirani R. A lasso for hierarchical interactions. The Annals of Statistics. 2013;41(3):1111.
173. Chen Y, Geng T, Xu X, Zhang Z, Huang L, Dong H, Yu H, Gao X, Sun L. Misalignment Between Circadian Preference and Accelerometer-Derived Sleep-Wake Cycle With Increased Risk of Cardiometabolic Diseases. JACC: Advances. 2024;3(12_Part_1):101406.
174. Su C-H. An Exploratory Analysis of Sleep and Activity Variables from Wearable Device in UK Biobank Study. Taipei: National Taiwan University; 2022.
175. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R, Winsor GL, Hancock RE, Brinkman FS, Lynn DJ. InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Research. 2013;41(D1):D1228-D33.
176. Lynn DJ, Winsor GL, Chan C, Richard N, Laird MR, Barsky A, Gardy JL, Roche FM, Chan TH, Shah N. InnateDB: facilitating systems‐level analyses of the mammalian innate immune response. Molecular Systems Biology. 2008;4(1):218.
177. Caspi R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, Holland TA, Keseler IM, Kothari A, Kubo A. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of Pathway/Genome Databases. Nucleic Acids Research. 2014;42(D1):D459-D71.
178. Caspi R, Billington R, Keseler IM, Kothari A, Krummenacker M, Midford PE, Ong WK, Paley S, Subhraveti P, Karp PD. The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research. 2020;48(D1):D445-D53.
179. Lu Y, Hui F, Zhou G, Xia J. MicrobiomeNet: exploring microbial associations and metabolic profiles for mechanistic insights. Nucleic Acids Research. 2025;53(D1):D789-D96.
180. Clauset A, Shalizi CR, Newman ME. Power-law distributions in empirical data. SIAM Review. 2009;51(4):661-703.
181. Broido AD, Clauset A. Scale-free networks are rare. Nature Communications. 2019;10(1):1017.
182. Kong Y, Li D, Fan Y, Lv J. Interaction pursuit in high-dimensional multi-response regression via distance correlation. The Annals of Statistics. 2017;45(2):897–922.
183. Cui H, Dai W, Zhu Y, Li X, He L, Yang C. BrainNNExplainer: An interpretable graph neural network framework for brain network based disease analysis. arXiv preprint arXiv:2107.05097. 2021.
184. Li X, Zhou Y, Dvornek N, Zhang M, Gao S, Zhuang J, Scheinost D, Staib LH, Ventola P, Duncan JS. Braingnn: Interpretable brain graph neural network for fmri analysis. Medical Image Analysis. 2021;74:102233.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99918-
dc.description.abstract隨著高通量技術與多組學(multi-omics)研究的快速發展,生物醫學領域累積了大量高維度且高異質性的資料,使研究者得以更深入探討複雜性疾病的機制。這些資料往往是同時包含連續與離散變數的混合資料(mixed data),並且通常明顯偏離多維度常態分佈或其他指數族分佈的假設。由於複雜性疾病通常由多基因與生物分子共同調控,研究者經常藉由網路模型與差異網路模型分析多個變數之間的關聯性。然而,這些傳統網路模型多假設資料服從多維度常態分佈,或僅適用於單一資料型態;當真實資料偏離這些條件時,其適用性與解釋力便會受到限制。基於上述背景,本研究的研究目的可分為三大部分。
第一,本研究首先根據資料型態進行網路模型的系統性文獻回顧,彙整現有針對單一資料型態與混合資料型態之無向圖模型、其參數估計方法及適用情境,藉此釐清不同資料型態下所面臨的挑戰與限制,例如適用於常態資料的高斯圖形模型(Gaussian graphical model)以及二元資料的易辛模型(Ising model)。
第二,在非常態或高維度資料下,僅憑傳統資料驅動(data-driven)的網路建構方法容易受限於資料品質、估計方法以及資料分佈的假設,也往往忽略已經被驗證的生物先驗知識。為了納入先驗知識與放寬資料分佈的限制,本研究提出無母數知識導向與資料驅動的基因集成網路建構演算法(nonparametric ensemble knowledge-based and data-driven algorithm, NEKBDD),結合知識導向與資料驅動兩種網路建構方法的優點。此方法首先由公開知識資料庫收集參考網路來推估網路的節點度分佈,再生成樣本節點度序列建立潛在網路結構;接著透過由實驗資料計算之信心矩陣進行節點標記,並藉由集成(ensemble)方法與閾值化(thresholding)整合多個潛在網路。統計模擬研究顯示,在不同相關性強度及資料分佈的資料下,NEKBDD於多項指標皆優於傳統網路估計方法,並且結果更穩健(robust)。此方法應用於癌症相關研究時,也成功重建JAK-STAT生物路徑,並辨識出已被證實的樞紐基因以及基因之間的關係,例如 PIK3CA、SOS1與IL22RA2等。
第三,本研究提出估計混合資料之差異網路方法,透過將混合圖形模型(mixed graphical model)之聯合密度函數結合後驗勝算(posterior odds),證明邏輯斯迴歸模型之交互作用項係數等價於不同條件下網路連線參數之差,使得差異網路連線估計可以適用邏輯斯迴歸模型係數估計的一致性與漸近常態性質,進而使參數估計更有效率並且可以進行統計檢定。同時,此推導結果也將二次判別分析(quadratic discriminant analysis, QDA)由原來的多維度常態假設,推廣至更複雜的混合資料。此外,為了進一步考量混合資料下,差異網路裡存在不同類型連線的特性,本研究在模型中納入權重向量(penalty factor)使不同連線有不同的正則化程度,並以集成方法整合不同權重向量的結果能作為衡量差異網路連線不確定性的指標。最後,整合英國生物資料庫(UK Biobank, Application ID: 134902)中的基因與穿戴式裝置資料,將此研究方法應用於晝夜節律的研究,辨識出差異網路中的樞紐節點以及重要的基因與身體活動量的差異交互作用。
zh_TW
dc.description.abstractWith the rapid advancement of high-throughput technologies and multi-omics research, the biomedical field has accumulated a vast amount of high-dimensional and highly heterogeneous data, enabling deeper investigation into the mechanisms of complex diseases. This data is often of a mixed type, comprising continuous and discrete variables, and frequently deviates significantly from the assumptions of multivariate normality or other exponential family distributions. As complex diseases are typically regulated by multiple genes and biomolecules, researchers often utilize network and differential network models to analyze the relationships among variables of interest. However, traditional network construction approaches often rely on the assumption of multivariate normality or can only apply to a single data type, limiting their applicability and interpretability when real-world data do not meet these assumptions. Based on this background, the study is structured around three primary objectives.
First, a systematic literature review of network models is conducted and categorized by data type. This review synthesizes existing undirected graphical models for single and mixed data types and their parameter estimation methods and application contexts. It clarifies the challenges and limitations associated with different data structures, such as the Gaussian graphical model (GGM) for Gaussian data and the Ising model for binary data.
Second, to address the limitations of conventional data-driven network construction methods in the context of non-Gaussian or high-dimensional data, which are susceptible to data quality, estimation approaches, and distributional assumptions, and often ignore validated prior biological knowledge. This study proposes a nonparametric ensemble knowledge-based and data-driven (NEKBDD) algorithm for gene network construction. This algorithm combines the strengths of both knowledge-guided and data-driven approaches. It begins by inferring the node degree distribution from reference networks in public knowledge databases, then generates sample degree sequences to construct potential network structures. Subsequently, a confidence matrix derived from experimental data is used for node labeling. Finally, an ensemble method combined with thresholding aggregates multiple potential networks. Statistical simulations demonstrate that NEKBDD outperforms traditional network estimation methods across various performance metrics under different association strengths and data distributions, exhibiting greater robustness. In an application to cancer research, the algorithm successfully reconstructed the JAK-STAT pathway and identified previously validated hub genes and their interactions, such as those involving PIK3CA, SOS1, and IL22RA2.
Third, this research introduces a novel method for constructing differential networks with mixed data. By linking the joint density functions of a mixed graphical model to posterior odds, we demonstrate that the interaction coefficient in a logistic regression model is equivalent to the difference in edge parameters between networks under different conditions. This equivalence allows the estimation of differential network edges to leverage the consistency and asymptotic normality properties of logistic regression coefficient estimation, thereby enhancing parameter efficiency and enabling statistical testing. This derivation also extends quadratic discriminant analysis (QDA) from the Gaussian assumption to more complex mixed data. Furthermore, to account for the heterogeneous nature of edges within a differential network of mixed data, we introduce edge-specific penalty factors that impose tailored regularization and then ensemble the results across penalty factor configurations, thereby providing an uncertainty metric for each edge in the differential network. This method was applied to a chronotype study using integrated genetic and wearable device data from the UK Biobank (Application ID: 134902), successfully identifying hub nodes and critical gene–activity interaction differences within the resulting differential network.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:17:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:17:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
口試委員會審定書 I
致謝 II
中文摘要 III
英文摘要 V
目次 VII
圖次 IX
表次 X
第一章 緒論 11
第一節 網路模型發展概述 11
第 1.1 節 網路的組成與性質 12
第 1.2 節 知識導向與資料驅動的網路模型 13
第二節 無向圖模型與聯合機率分佈 14
第三節 單一資料型態的網路模型 17
第 3.1 節 高斯圖形模型 18
第 3.2 節 指數族圖形模型 22
第四節 混合資料型態的網路模型 24
第 4.1 節 單層網路模型 24
第 4.2 節 多層網路模型 28
第 4.3 節 混合資料下的網路模型選擇 30
第五節 差異網路的分析 31
第六節 研究動機與目的 32
第二章 以知識導向與資料驅動的基因集成網路建構方法 NEKBDD 40
第一節 研究背景及動機 40
第二節 研究方法 42
第 2.1 節 生成節點度序列與建立潛在網路結構 43
第 2.2 節 辨識同構網路與改良網路建構演算法 46
第 2.3 節 潛在網路結構排序與節點標記 48
第 2.4 節 潛在網路的集成學習 49
第三節 統計模擬 49
第四節 兩項癌症研究應用 51
第 4.1 節 前置作業 52
第 4.2 節 乳癌研究:次世代定序基因表現量(RNA-seq)資料 52
第 4.3 節 卵巢癌研究:DNA 微陣列基因表現量(microarray RNA)資料 53
第五節 討論 53
第三章 混合資料的差異網路建構方法 69
第一節 研究背景及動機 69
第二節 研究方法 72
第 2.1 節 混合圖形模型 72
第 2.2 節 後驗勝算與邏輯斯迴歸模型 73
第 2.3 節 參數估計與稀疏性限制 76
第 2.4 節 差異網路參數估計之定理與性質 77
第三節 晝夜節律時型研究應用 79
第四節 討論 81
第四章 討論 88
第一節 NEKBDD 限制與未來方向 88
第二節 差異網路估計限制與未來方向 89
第三節 結論與未來展望 90
參考文獻 92
附 錄一 、 Review of multi-omics network analysis: mixed graphical model and multi-layered Gaussian graphical model 109
附 錄 二 、 A Nonparametric Ensemble Knowledge-based and Data-driven Method for Genetic Network Construction 115
附錄三、Integrative Network Modeling of Digital and Genetic Data 122
-
dc.language.isozh_TW-
dc.subject基因網路zh_TW
dc.subject差異網路zh_TW
dc.subject混合資料zh_TW
dc.subject無母數集成網路建構zh_TW
dc.subject邏輯斯迴歸模型zh_TW
dc.subject英國生物資料庫zh_TW
dc.subject穿戴式裝置zh_TW
dc.subjectlogistic regressionen
dc.subjectgene networken
dc.subjectdifferential networken
dc.subjectmixed dataen
dc.subjectnonparametric ensemble network constructionen
dc.subjectwearable deviceen
dc.subjectUK biobanken
dc.title建構混合資料的基因網路與差異網路:知識導向與資料驅動的集成方法zh_TW
dc.titleGenetic Network and Differential Network Construction with Mixed Data: Knowledge-based and Data-driven Ensemble Approachen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee曾仲瑩;盧子彬;郭柏秀;王彥雯;張升懋zh_TW
dc.contributor.oralexamcommitteeJung-Ying Tzeng;Tzu-Pin Lu;Po-Hsiu Kuo ;Charlotte Wang;Sheng-Mao Changen
dc.subject.keyword基因網路,差異網路,混合資料,無母數集成網路建構,邏輯斯迴歸模型,英國生物資料庫,穿戴式裝置,zh_TW
dc.subject.keywordgene network,differential network,mixed data,nonparametric ensemble network construction,logistic regression,UK biobank,wearable device,en
dc.relation.page128-
dc.identifier.doi10.6342/NTU202502974-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-31-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2029-07-30
14.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved