Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99912
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭育良zh_TW
dc.contributor.advisorYUE-LIANG GUOen
dc.contributor.author謝佳珩zh_TW
dc.contributor.authorChia-Heng Hsiehen
dc.date.accessioned2025-09-19T16:16:39Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation(1). 勞動部職業安全衛生署. (2023). 112年職業災害重點統計數據. 勞動部職業安全衛生署 Retrieved from https://www.osha.gov.tw/media/estjkcjt/112%E5%B9%B4%E8%81%B7%E6%A5%AD%E7%81%BD%E5%AE%B3%E9%87%8D%E9%BB%9E%E7%B5%B1%E8%A8%88-%E4%B8%AD%E6%96%87.pdf
(2). Blank, L., Peters, J., Pickvance, S., Wilford, J., & Macdonald, E. (2008). A systematic review of the factors which predict return to work for people suffering episodes of poor mental health. J Occup Rehabil, 18(1), 27-34. https://doi.org/10.1007/s10926-008-9121-8
(3). Buist-Bouwman, M. A., de Graaf, R., Vollebergh, W. A., & Ormel, J. (2005). Comorbidity of physical and mental disorders and the effect on work-loss days. Acta Psychiatr Scand, 111(6), 436-443. https://doi.org/10.1111/j.1600-0447.2005.00513.x
(4). Burcusa, S. L., & Iacono, W. G. (2007). Risk for recurrence in depression. Clinical Psychology Review, 27(8), 959-985. https://doi.org/https://doi.org/10.1016/j.cpr.2007.02.005
(5). Cancelliere, C., Donovan, J., Stochkendahl, M. J., Biscardi, M., Ammendolia, C., Myburgh, C., & Cassidy, J. D. (2016). Factors affecting return to work after injury or illness: best evidence synthesis of systematic reviews. Chiropr Man Therap, 24(1), 32. https://doi.org/10.1186/s12998-016-0113-z
(6). Chekroud, A. M., Zotti, R. J., Shehzad, Z., Gueorguieva, R., Johnson, M. K., Trivedi, M. H., Cannon, T. D., Krystal, J. H., & Corlett, P. R. (2016). Cross-trial prediction of treatment outcome in depression: a machine learning approach. Lancet Psychiatry, 3(3), 243-250. https://doi.org/10.1016/s2215-0366(15)00471-x
(7). Edgelow, M., Legassick, K., Novecosky, J., & Fecica, A. (2023). Return to Work Experiences of Ontario Public Safety Personnel with Work-Related Psychological Injuries. J Occup Rehabil, 33(4), 796-807. https://doi.org/10.1007/s10926-023-10114-6
(8). Elkan, C. (2001). The Foundations of Cost-Sensitive Learning. Proceedings of the Seventeenth International Conference on Artificial Intelligence: 4-10 August 2001; Seattle, 1.
(9). Etuknwa, A., Daniels, K., Nayani, R., & Eib, C. (2023). Sustainable Return to Work for Workers with Mental Health and Musculoskeletal Conditions. Int J Environ Res Public Health, 20(2). https://doi.org/10.3390/ijerph20021057
(10). Gu, J. K., Charles, L. E., Fekedulegn, D., Ma, C. C., Violanti, J. M., & Andrew, M. E. (2020). Occupational injury and psychological distress among U.S. workers: The National Health Interview Survey, 2004-2016. J Safety Res, 74, 207-217. https://doi.org/10.1016/j.jsr.2020.06.002
(11). Hamann, J., Lang, A., Riedl, L., & Brieger, P. (2022). Return-to-work interventions for persons/employees with mental illnesses. Current Opinion in Psychiatry, 35(4), 293-301. https://doi.org/10.1097/yco.0000000000000793
(12). Kuo, C.-Y., Liao, S.-C., Lin, K.-H., Wu, C.-L., Lee, M.-B., Guo, N.-W., & Guo, Y. L. (2012). Predictors for suicidal ideation after occupational injury. Psychiatry Research, 198(3), 430-435. https://doi.org/https://doi.org/10.1016/j.psychres.2012.02.011
(13). Ladegaard, Y., Dalgaard, V. L., Conway, P. M., Eller, N. H., Skakon, J., Maltesen, T., Scheike, T., & Netterstrøm, B. (2023). Notified occupational mental disorders: associations with health and income. Occup Med (Lond), 73(2), 66-72. https://doi.org/10.1093/occmed/kqad007
(14). Ladegaard, Y., Skakon, J., Dalgaard, V. L., Ståhl, C., Slot Thomsen, S. T., & Netterstrøm, B. (2023). Employees with mental disorders seeking support from the workers compensation system - experiences from Denmark. Work, 75(4), 1361-1377. https://doi.org/10.3233/wor-211315
(15). Lee, M. B., Lee, Y. J., Yen, L. L., Lin, M. H., & Lue, B. H. (1990). Reliability and validity of using a Brief Psychiatric Symptom Rating Scale in clinical practice. J Formos Med Assoc, 89(12), 1081-1087.
(16). Lin, K. H., Guo, N. W., Shiao, S. C., Liao, S. C., Hu, P. Y., Hsu, J. H., Hwang, Y. H., & Guo, Y. L. (2013). The impact of psychological symptoms on return to work in workers after occupational injury. J Occup Rehabil, 23(1), 55-62. https://doi.org/10.1007/s10926-012-9381-1
(17). Lin, K. H., Shiao, J. S., Guo, N. W., Liao, S. C., Kuo, C. Y., Hu, P. Y., Hsu, J. H., Hwang, Y. H., & Guo, Y. L. (2014). Long-term psychological outcome of workers after occupational injury: prevalence and risk factors. J Occup Rehabil, 24(1), 1-10. https://doi.org/10.1007/s10926-013-9431-3
(18). Lin, M. H., Yang, Y. L., Sung, F. C., Liu, C. S., Lung, C. H., & Wang, J. Y. (2021). Risk of mental illness after the diagnosis of occupational injury or disease: a retrospective cohort study. Int Arch Occup Environ Health, 94(1), 55-68. https://doi.org/10.1007/s00420-020-01558-x
(19). López Gómez, M. A., Williams, J. A. R., Boden, L., Sorensen, G., Hopcia, K., Hashimoto, D., & Sabbath, E. (2020). The relationship of occupational injury and use of mental health care. J Safety Res, 74, 227-232. https://doi.org/10.1016/j.jsr.2020.06.004
(20). Menardi, G., & Torelli, N. (2014). Training and assessing classification rules with imbalanced data. Data Mining and Knowledge Discovery, 28(1), 92-122. https://doi.org/10.1007/s10618-012-0295-5
(21). Mienye, I. D., & Sun, Y. (2021). Performance analysis of cost-sensitive learning methods with application to imbalanced medical data. Informatics in Medicine Unlocked, 25, 100690. https://doi.org/https://doi.org/10.1016/j.imu.2021.100690
(22). Molnar, C. (2025). Interpretable Machine Learning (Third Edition) https://christophm.github.io/interpretable-ml-book/
(23). Prang, K.-H., Bohensky, M., Smith, P., & Collie, A. (2016). Return to work outcomes for workers with mental health conditions: A retrospective cohort study. Injury, 47(1), 257-265. https://doi.org/https://doi.org/10.1016/j.injury.2015.09.011
(24). Rozek, D. C., Andres, W. C., Smith, N. B., Leifker, F. R., Arne, K., Jennings, G., Dartnell, N., Bryan, C. J., & Rudd, M. D. (2020). Using Machine Learning to Predict Suicide Attempts in Military Personnel. Psychiatry Res, 294, 113515. https://doi.org/10.1016/j.psychres.2020.113515
(25). Tan, M. L., Eu, E., BW, D. A. Y., Er, W. X., Tan, S. X., Lim, J. W., & Gan, W. H. (2023). A hospital-based return-to-work programme in Singapore. Ind Health, 61(4), 269-274. https://doi.org/10.2486/indhealth.2022-0072
(26). von Schroeder, H. P., Xue, C., Yak, A., & Gandhi, R. (2020). Factors associated with unsuccessful return-to-work following work-related upper extremity injury. Occupational Medicine, 70(6), 434-438. https://doi.org/10.1093/occmed/kqaa106
(27). WHO. (2022). Mental health. Retrieved July 06 from https://www.who.int/news-room/fact-sheets/detail/mental-health-strengthening-our-response
(28). Wibowo, P., & Fatichah, C. (2022). Pruning-based oversampling technique with smoothed bootstrap resampling for imbalanced clinical dataset of Covid-19. J King Saud Univ Comput Inf Sci, 34(9), 7830-7839. https://doi.org/10.1016/j.jksuci.2021.09.021
(29). Wightman, A., Gawaziuk, J. P., Spiwak, R., Burton, L., Comaskey, B., Chateau, D., Nantais, J., Turgeon, T., Sareen, J., Bolton, J., Kraut, A., & Logsetty, S. (2025). Workplace Injury and Mental Health Outcomes. JAMA Network Open, 8(2), e2459678-e2459678. https://doi.org/10.1001/jamanetworkopen.2024.59678
(30). Young, A. E., Roessler, R. T., Wasiak, R., McPherson, K. M., van Poppel, M. N. M., & Anema, J. R. (2005). A Developmental Conceptualization of Return to Work. Journal of Occupational Rehabilitation, 15(4), 557-568. https://doi.org/10.1007/s10926-005-8034-z
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99912-
dc.description.abstract研究目的:本研究旨在探討受到職業傷害的勞工在三個月後的心理健康狀態是否能有效預測十二個月時無法復工的情形。並藉由傳統邏輯斯迴歸及機器學習方法,進一步分析各心理情況指標的預測力,期望能應用於高風險個案的早期發現與介入策略。
方法:本研究納入2009年在臺灣因職業傷害住院三天以上並領取職災住院給付之勞工,並追蹤3個月和12個月的資料調查,並以簡式健康量表(BSRS-50)評估心理健康狀態。數據分析採用邏輯斯迴歸分析及機器學習方法(決策樹、隨機森林、XGBoost)等模型,透過上採樣和成本敏感分析,以瞭解心理情況與未復工的相關性因素。
結果:在單變項分析中,人口學資料、心理健康情況與未復工的結果呈現顯著相關,然而在多變項模型中,僅部分人口學資料仍呈現顯著影響復工的情形。在機器學習上採樣的模型策略下,隨機森林表顯最為平衡,而在成本敏感學習下,XGboost與隨機森林模型對於未復工的個案敏感度較佳。而後續進行SHAP分析中亦顯示部分心理症狀(如恐懼、附加症狀、精神病性、憂鬱等)會對預測結果產生影響。
結論:心理健康問題在職業傷害後早期發現能對復工的結果呈現相關,雖然傳統統計分析中在控制其他變項效應不顯著,但在機器學習模型中仍有預測價值。顯著,但在機器學習模型中仍有預測價值。透過模型的預測分析,有助於未來應用於個案早期發展個人化的介入策略,能提供個案更好的介入資源。
zh_TW
dc.description.abstractObjective: This study aimed to examine whether the psychological status of workers three months after an occupational injury could effectively predict non-return-to-work outcomes at twelve months. Using both traditional logistic regression and machine learning approaches, with the goal of informing early identification and intervention strategies for high-risk cases.
Methods: The study included workers in Taiwan who were hospitalized for more than three days due to occupational injuries and received Inpatient Hospitalization Benefit of Occupational Accident Medical Benefits under the Labor Insurance in 2009. Data were collected at three and twelve months after injury. Psychological status was assessed using the Brief Symptom Rating Scale (BSRS-50). Data analysis employed logistic regression as well as machine learning models, including decision tree, random forest, and XGBoost. Up-sampling and cost-sensitive learning techniques were applied to address data imbalance and to explore associations between psychological factors and non-return-to-work outcomes.
Results: In single logistic analysis, demographic and psychological variables were significantly associated with non-return-to-work outcomes. However, in the multiple model, only a subset of demographic factors remained statistically significant predictors. Among the up-sampling models, the random forest model showed the most balanced performance. Under the cost-sensitive learning approach, XGBoost and random forest models showed higher sensitivity in identifying non-return-to-work cases. Moreover, SHAP analysis also revealed that certain psychological symptoms, such as phobic anxiety, additional symptoms, psychoticism, and depression, contributed meaningfully to the prediction outcomes.
Conclusion: Early identification of psychological health symptoms after occupational injury is associated with return-to-work outcomes. Although traditional logistic model did not show significant effects for psychological variables after adjusting for covariates, machine learning models retained predictive value. These predictive models may facilitate the development of personalized early interventions and improve access to appropriate support for injured workers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:16:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:16:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 (I)
Abstracts (II)
Contents (IV)
List of Figures (VI)
List of Tables (VII)
Chapter 1. Introduction 1
1.1 Importance of Return-to-Work 3
1.2 Research Gap 4
Chapter 2. Material and Methods 5
2.1 Sample Methods 5
2.2 BSRS-50 6
2.3 Data Analysis 7
2.4 Data Preparation for Machine Learning 8
2.4.1 Training and Testing Data Spilt 8
2.4.2 Up Sample Technique 9
2.4.3 Cost Sensitive Technique 9
Chapter 3. Results 13
3.1 Descriptive Statistics 13
3.2 Logistic Regression Analysis 17
3.3 Multiple Logistic Regression Model 20
3.4 Machine Learning Model 23
Chapter 4. Discussion 31
4.1 The Association Between Psychological Status and Return to Work 31
4.2 Evaluation of Machine Learning Models 33
4.3 The Importance of Mental Health in Post Occupational Injury Return-to-Work Planning 34
4.4 Limitations 35
4.5 Contributions & Strengths 36
Chapter 5. Conclusion 38
Reference 39
Appendix 1. Statistics Model with PTSC Checklist Score 45
Appendix 2. Questionnaire 49
-
dc.language.isoen-
dc.subjectBSRS-50zh_TW
dc.subject復工zh_TW
dc.subject機器學習模型zh_TW
dc.subject職業傷害zh_TW
dc.subject心理健康zh_TW
dc.subjectreturn to worken
dc.subjectBSRS-50en
dc.subjectmachine learning modelsen
dc.subjectmental healthen
dc.subjectOccupational injuryen
dc.title結合邏輯斯迴歸與機器學習探討職傷後三個月的心理健康對十二個月未復工之預測應用zh_TW
dc.titlePredicting Non-Return-to-Work at 12-Month Using 3-Month Psychological Status After Occupational Injury: Logistic Regression and Machine Learning Approachesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭雅文;秦唯珊;林冠含zh_TW
dc.contributor.oralexamcommitteeYA-WEN CHENG;WEI-SHAN CHIN;Kuan-Han Linen
dc.subject.keyword職業傷害,心理健康,復工,機器學習模型,BSRS-50,zh_TW
dc.subject.keywordOccupational injury,mental health,return to work,machine learning models,BSRS-50,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202502110-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2025-09-20-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
1.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved