請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王根樹 | zh_TW |
| dc.contributor.advisor | Gen-Shuh Wang | en |
| dc.contributor.author | 鄭珮怡 | zh_TW |
| dc.contributor.author | Pei-Yi Cheng | en |
| dc.date.accessioned | 2025-09-19T16:16:17Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | Adeleye, A. S., Xue, J., Zhao, Y., Taylor, A. A., Zenobio, J. E., Sun, Y., Han, Z., Salawu, O. A., & Zhu, Y. (2022). Abundance, fate, and effects of pharmaceuticals and personal care products in aquatic environments. J Hazard Mater, 424(Pt B), 127284. https://doi.org/10.1016/j.jhazmat.2021.127284
Aghdam, E., Xiang, Y., Sun, J., Shang, C., Yang, X., & Fang, J. (2017). DBP formation from degradation of DEET and ibuprofen by UV/chlorine process and subsequent post-chlorination. Journal of Environmental Sciences, 58, 146-154. https://doi.org/https://doi.org/10.1016/j.jes.2017.06.014 Ahn, Y., Lee, D., Kwon, M., Choi, I.-h., Nam, S.-N., & Kang, J.-W. (2017). Characteristics and fate of natural organic matter during UV oxidation processes. Chemosphere, 184, 960-968. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.06.079 Altamura, A. C., Moliterno, D., Paletta, S., Maffini, M., Mauri, M. C., & Bareggi, S. (2013). Understanding the pharmacokinetics of anxiolytic drugs. Expert Opinion on Drug Metabolism & Toxicology, 9(4), 423-440. https://doi.org/10.1517/17425255.2013.759209 Ao, X., Zhang, X., Li, S., Yang, Y., Sun, W., & Li, Z. (2023). Comprehensive understanding of fluoroquinolone degradation via MPUV/PAA process: Radical chemistry, matrix effects, degradation pathways, and toxicity. Journal of Hazardous Materials, 445, 130480. https://doi.org/https://doi.org/10.1016/j.jhazmat.2022.130480 Ao, X. W., Eloranta, J., Huang, C. H., Santoro, D., Sun, W. J., Lu, Z. D., & Li, C. (2021). Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. Water Res, 188, 116479. https://doi.org/10.1016/j.watres.2020.116479 Baalbaki, Z., Sultana, T., Metcalfe, C., & Yargeau, V. (2017). Estimating removals of contaminants of emerging concern from wastewater treatment plants: The critical role of wastewater hydrodynamics. Chemosphere, 178, 439-448. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.03.070 Babu Ponnusami, A., Sinha, S., Ashokan, H., V Paul, M., Hariharan, S. P., Arun, J., Gopinath, K. P., Hoang Le, Q., & Pugazhendhi, A. (2023). Advanced oxidation process (AOP) combined biological process for wastewater treatment: A review on advancements, feasibility and practicability of combined techniques. Environmental Research, 237, 116944. https://doi.org/https://doi.org/10.1016/j.envres.2023.116944 Badiger, S. M., & Nidheesh, P. V. (2023). Applications of biochar in sulfate radical-based advanced oxidation processes for the removal of pharmaceuticals and personal care products. Water Science and Technology, 87(6), 1329-1348. https://doi.org/10.2166/wst.2023.069 Beber de Souza, J., Queiroz Valdez, F., Jeranoski, R. F., Vidal, C. M. d. S., & Cavallini, G. S. (2015). Water and Wastewater Disinfection with Peracetic Acid and UV Radiation and Using Advanced Oxidative Process PAA/UV. International Journal of Photoenergy, 2015, 860845. https://doi.org/10.1155/2015/860845 Behera, S. K., Kim, H. W., Oh, J.-E., & Park, H.-S. (2011). Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Science of The Total Environment, 409(20), 4351-4360. https://doi.org/https://doi.org/10.1016/j.scitotenv.2011.07.015 Bertolotti, S., Dogra, R., Sabatino, R., Di Cesare, A., Fenoglio, S., Adesina, A. O., Carena, L., Berto, S., Marafante, M., Minella, M., & Vione, D. (2024). Two birds with one stone: Degradation of pharmaceuticals and elimination of bacteria upon treatment of urban wastewater with a Fenton-like process, based on zero-valent iron at pH 4. Chemosphere, 368, 143774. https://doi.org/https://doi.org/10.1016/j.chemosphere.2024.143774 Bond, T., Templeton, M. R., & Graham, N. (2012). Precursors of nitrogenous disinfection by-products in drinking water––A critical review and analysis. Journal of Hazardous Materials, 235-236, 1-16. https://doi.org/https://doi.org/10.1016/j.jhazmat.2012.07.017 Bonetta, S., Pignata, C., Bonetta, S., Amagliani, G., Brandi, G., Gilli, G., & Carraro, E. (2021). Comparison of UV, Peracetic Acid and Sodium Hypochlorite Treatment in the Disinfection of Urban Wastewater. Pathogens, 10(2). Borba, F. H., Hahn, C. L., Mayer, I., Seibert, D., Guimarães, R. E., Inticher, J. J., Zorzo, C. F., & Kreutz, G. K. (2022). New hybrid strategy of the photo-Fered-Fenton process assisted by O3 for the degradation of wastewater from the pretreatment of biodiesel production. Chemosphere, 306, 135470. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.135470 Bosio, M., Satyro, S., Bassin, J. P., Saggioro, E., & Dezotti, M. (2019). Removal of pharmaceutically active compounds from synthetic and real aqueous mixtures and simultaneous disinfection by supported TiO2/UV-A, H2O2/UV-A, and TiO2/H2O2/UV-A processes. Environmental Science and Pollution Research, 26(5), 4288-4299. https://doi.org/10.1007/s11356-018-2108-x Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570-6631. https://doi.org/10.1021/cr900136g Cai, M., Sun, P., Zhang, L., & Huang, C.-H. (2017). UV/Peracetic Acid for Degradation of Pharmaceuticals and Reactive Species Evaluation. Environmental Science & Technology, 51(24), 14217-14224. https://doi.org/10.1021/acs.est.7b04694 Caretti, C., & Lubello, C. (2003). Wastewater disinfection with PAA and UV combined treatment: a pilot plant study. Water Research, 37(10), 2365-2371. https://doi.org/https://doi.org/10.1016/S0043-1354(03)00025-3 Carpinteiro, I., Rodil, R., Quintana, J. B., & Cela, R. (2017). Reaction of diazepam and related benzodiazepines with chlorine. Kinetics, transformation products and in-silico toxicological assessment. Water Research, 120, 280-289. https://doi.org/https://doi.org/10.1016/j.watres.2017.04.063 Čelić, M., Gros, M., Farré, M., Barceló, D., & Petrović, M. (2019). Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). Science of The Total Environment, 652, 952-963. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.10.290 Chen, H., & Wang, J. (2021). Degradation and mineralization of ofloxacin by ozonation and peroxone (O3/H2O2) process. Chemosphere, 269, 128775. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128775 Chen, S., Cai, M., Liu, Y., Zhang, L., & Feng, L. (2019). Effects of water matrices on the degradation of naproxen by reactive radicals in the UV/peracetic acid process. Water Research, 150, 153-161. https://doi.org/https://doi.org/10.1016/j.watres.2018.11.044 Cibati, A., Gonzalez-Olmos, R., Rodriguez-Mozaz, S., & Buttiglieri, G. (2022). Unravelling the performance of UV/H2O2 on the removal of pharmaceuticals in real industrial, hospital, grey and urban wastewaters. Chemosphere, 290, 133315. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.133315 da Luz, V. C., Bazoti, S. F., Behling, L., Dalla Rosa, C., & Pasquali, G. D. L. (2022). Enhanced UV Direct Photolysis and UV/H(2)O(2) for Oxidation of Triclosan and Ibuprofen in Synthetic Effluent: an Experimental Study. Water Air Soil Pollut, 233(4), 126. https://doi.org/10.1007/s11270-022-05583-z Dai, C., Tian, X., Nie, Y., Fu, W., & Wang, J. (2023). Effect of the interaction mode of H2O2 over CuMnO2 surface on •OH generation for efficient degradation of ofloxacin: Activity and mechanism. Chemical Engineering Journal, 451, 138749. https://doi.org/https://doi.org/10.1016/j.cej.2022.138749 Daughton, C. G., & Ternes, T. A. (1999). Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ Health Perspect, 107 Suppl 6(Suppl 6), 907-938. https://doi.org/10.1289/ehp.99107s6907 Deborde, M., & von Gunten, U. (2008). Reactions of chlorine with inorganic and organic compounds during water treatment—Kinetics and mechanisms: A critical review. Water Research, 42(1), 13-51. https://doi.org/https://doi.org/10.1016/j.watres.2007.07.025 Ding, S., Wang, F., Chu, W., Fang, C., Pan, Y., Lu, S., & Gao, N. (2019). Using UV/H2O2 pre-oxidation combined with an optimised disinfection scenario to control CX3R-type disinfection by-product formation. Water Research, 167, 115096. https://doi.org/https://doi.org/10.1016/j.watres.2019.115096 Domínguez Henao, L., Turolla, A., & Antonelli, M. (2018). Disinfection by-products formation and ecotoxicological effects of effluents treated with peracetic acid: A review. Chemosphere, 213, 25-40. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.09.005 Dotson, A. D., Keen, V. S., Metz, D., & Linden, K. G. (2010). UV/H2O2 treatment of drinking water increases post-chlorination DBP formation. Water Research, 44(12), 3703-3713. https://doi.org/https://doi.org/10.1016/j.watres.2010.04.006 Drugs for anxiety disorders. (2023). Med Lett Drugs Ther, 65(1682), 121-128. https://doi.org/10.58347/tml.2023.1682a Du, P., Liu, W., Cao, H., Zhao, H., & Huang, C.-H. (2018). Oxidation of amino acids by peracetic acid: Reaction kinetics, pathways and theoretical calculations. Water Research X, 1, 100002. https://doi.org/https://doi.org/10.1016/j.wroa.2018.09.002 EPA, U. S. (1979). Comprehensive Disinfectants and Disinfection Byproducts Rules (Stage 1 and Stage 2): Quick Reference Guide. Retrieved from https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100C8XW.txt EPA, U. S. (2006). ULTRAVIOLET DISINFECTION GUIDANCE MANUAL FOR THE FINAL LONG TERM 2 ENHANCED SURFACE WATER TREATMENT RULE Retrieved from https://www.epa.gov/system/files/documents/2022-10/ultraviolet-disinfection-guidance-manual-2006.pdf EPA, U. S. (2012). Alternative Disinfection Methods Fact Sheet: Peracetic Acid. Retrieved from https://www.epa.gov/sites/default/files/2019-08/documents/disinfection_-_paa_fact_sheet_-_2012.pdf EPA, U. S. (2013). Contaminants of emerging concern (CECs) in fish: Pharmaceuticals and personal care products (PPCPs). Washington Retrieved from https://www.epa.gov/sites/default/files/2018-11/documents/cecs-ppcps-factsheet.pdf Eramo, A., Morales Medina, W. R., & Fahrenfeld, N. L. (2017). Peracetic acid disinfection kinetics for combined sewer overflows: indicator organisms, antibiotic resistance genes, and microbial community [10.1039/C7EW00184C]. Environmental Science: Water Research & Technology, 3(6), 1061-1072. https://doi.org/10.1039/C7EW00184C Fabris, R., Chow, C. W. K., Drikas, M., & Eikebrokk, B. (2008). Comparison of NOM character in selected Australian and Norwegian drinking waters. Water Research, 42(15), 4188-4196. https://doi.org/https://doi.org/10.1016/j.watres.2008.06.023 Fan, G., Li, Y., Du, B., Yao, L., Cai, C., Li, H., Chen, S., Zou, J., Hong, Z., & Xu, K.-Q. (2023). Peracetic acid combined with ultraviolet for ibuprofen degradation: Activation mechanism and reactive species contribution. Process Safety and Environmental Protection, 179, 157-167. https://doi.org/https://doi.org/10.1016/j.psep.2023.09.012 Fang, J., Fu, Y., & Shang, C. (2014). The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environmental Science & Technology, 48(3), 1859-1868. https://doi.org/10.1021/es4036094 Farzanehsa, M., Vaughan, L. C., Zamyadi, A., & Khan, S. J. (2023). Comparison of UV-Cl and UV-H2O2 advanced oxidation processes in the degradation of contaminants from water and wastewater: A review. Water and Environment Journal, 37(4), 633-643. https://doi.org/https://doi.org/10.1111/wej.12868 Gao, Y.-q., Zhang, J., Li, C., Tian, F.-x., & Gao, N.-y. (2020). Comparative evaluation of metoprolol degradation by UV/chlorine and UV/H2O2 processes. Chemosphere, 243, 125325. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125325 Gewurtz, S. B., Auyeung, A. S., Teslic, S., & Smyth, S. A. (2025). Pharmaceuticals and personal care products in Canadian municipal wastewater and biosolids: occurrence, fate, and time trends 2010-2013 to 2022. Environ Sci Pollut Res Int, 32(9), 5022-5039. https://doi.org/10.1007/s11356-025-36007-0 Ghanbari, F., Yaghoot-Nezhad, A., Wacławek, S., Lin, K.-Y. A., Rodríguez-Chueca, J., & Mehdipour, F. (2021). Comparative investigation of acetaminophen degradation in aqueous solution by UV/Chlorine and UV/H2O2 processes: Kinetics and toxicity assessment, process feasibility and products identification. Chemosphere, 285, 131455. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.131455 Glaze, W. H., Kang, J.-W., & Chapin, D. H. (1987). The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering, 9(4), 335-352. https://doi.org/10.1080/01919518708552148 Gogoi, A., Mazumder, P., Tyagi, V. K., Tushara Chaminda, G. G., An, A. K., & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: A review. Groundwater for Sustainable Development, 6, 169-180. https://doi.org/https://doi.org/10.1016/j.gsd.2017.12.009 Guo, K., Wu, Z., Yan, S., Yao, B., Song, W., Hua, Z., Zhang, X., Kong, X., Li, X., & Fang, J. (2018). Comparison of the UV/chlorine and UV/H2O2 processes in the degradation of PPCPs in simulated drinking water and wastewater: Kinetics, radical mechanism and energy requirements. Water Research, 147, 184-194. https://doi.org/https://doi.org/10.1016/j.watres.2018.08.048 Hey, G., A., L., Cour, J. J. l., & and Andersen, H. R. (2012). Removal of pharmaceuticals in biologically treated wastewater by chlorine dioxide or peracetic acid. Environmental Technology, 33(9), 1041-1047. https://doi.org/10.1080/09593330.2011.606282 Hollman, J., Dominic, J. A., & Achari, G. (2020). Degradation of pharmaceutical mixtures in aqueous solutions using UV/peracetic acid process: Kinetics, degradation pathways and comparison with UV/H2O2. Chemosphere, 248, 125911. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.125911 Huber, S., Remberger, M., Kaj, L., Schlabach, M., Jörundsdóttir, H. Ó., Vester, J., Arnórsson, M., Mortensen, I., Schwartson, R., & Dam, M. (2016). A first screening and risk assessment of pharmaceuticals and additives in personal care products in waste water, sludge, recipient water and sediment from Faroe Islands, Iceland and Greenland. Science of The Total Environment, 562, 13-25. https://doi.org/https://doi.org/10.1016/j.scitotenv.2016.03.063 Hübner, U., Spahr, S., Lutze, H., Wieland, A., Rüting, S., Gernjak, W., & Wenk, J. (2024). Advanced oxidation processes for water and wastewater treatment – Guidance for systematic future research. Heliyon, 10(9), e30402. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e30402 Jóźwiak-Bebenista, M., & Nowak, J. Z. (2014). Paracetamol: mechanism of action, applications and safety concern. Acta Pol Pharm, 71(1), 11-23. Kali, S., Khan, M., Ghaffar, M. S., Rasheed, S., Waseem, A., Iqbal, M. M., Bilal khan Niazi, M., & Zafar, M. I. (2021). Occurrence, influencing factors, toxicity, regulations, and abatement approaches for disinfection by-products in chlorinated drinking water: A comprehensive review. Environmental Pollution, 281, 116950. https://doi.org/https://doi.org/10.1016/j.envpol.2021.116950 Katsoyiannis, A., & Samara, C. (2007). The fate of dissolved organic carbon (DOC) in the wastewater treatment process and its importance in the removal of wastewater contaminants. Environmental Science and Pollution Research - International, 14(5), 284-292. https://doi.org/10.1065/espr2006.05.302 Khan, A. H., Khan, N. A., Ahmed, S., Dhingra, A., Singh, C. P., Khan, S. U., Mohammadi, A. A., Changani, F., Yousefi, M., Alam, S., Vambol, S., Vambol, V., Khursheed, A., & Ali, I. (2020). Application of advanced oxidation processes followed by different treatment technologies for hospital wastewater treatment. Journal of Cleaner Production, 269, 122411. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122411 Kitis, M. (2004). Disinfection of wastewater with peracetic acid: A review [Article]. Environment International, 30(1), 47-55. https://doi.org/10.1016/S0160-4120(03)00147-8 Koch, N., Islam, N. F., Sonowal, S., Prasad, R., & Sarma, H. (2021). Environmental antibiotics and resistance genes as emerging contaminants: Methods of detection and bioremediation. Current Research in Microbial Sciences, 2, 100027. https://doi.org/https://doi.org/10.1016/j.crmicr.2021.100027 Koivunen, J., & Heinonen-Tanski, H. (2005). Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments. Water Research, 39(8), 1519-1526. https://doi.org/https://doi.org/10.1016/j.watres.2005.01.021 Kong, Q., Ye, L., Pan, Y., Zhou, Y., Lei, Y., Zeng, Z., Chen, S., Yao, L., Zhang, X., Westerhoff, P., & Yang, X. (2023). Photochemical Transformation of Free Chlorine Induced by Triplet State Dissolved Organic Matter. Environmental Science & Technology, 57(29), 10849-10859. https://doi.org/10.1021/acs.est.3c02458 Kostich, M. S., Batt, A. L., & Lazorchak, J. M. (2014). Concentrations of prioritized pharmaceuticals in effluents from 50 large wastewater treatment plants in the US and implications for risk estimation. Environmental Pollution, 184, 354-359. https://doi.org/https://doi.org/10.1016/j.envpol.2013.09.013 Krýsa, J., Mantzavinos, D., Pichat, P., & Poulios, I. (2018). Advanced oxidation processes for water/wastewater treatment. Environmental Science and Pollution Research, 25(35), 34799-34800. https://doi.org/10.1007/s11356-018-3411-2 Kumar, M., Sridharan, S., Sawarkar, A. D., Shakeel, A., Anerao, P., Mannina, G., Sharma, P., & Pandey, A. (2023). Current research trends on emerging contaminants pharmaceutical and personal care products (PPCPs): A comprehensive review. Sci Total Environ, 859(Pt 1), 160031. https://doi.org/10.1016/j.scitotenv.2022.160031 Kumar, R., Tscharke, B., O'Brien, J., Mueller, J. F., Wilkins, C., & Padhye, L. P. (2019). Assessment of drugs of abuse in a wastewater treatment plant with parallel secondary wastewater treatment train. Science of The Total Environment, 658, 947-957. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.12.167 Kunigk, L., Galizia, S. P., Shikishima, R. T. K., Gedraite, R., & Jurkiewicz, C. H. (2014). Influence of temperature and pH on the decomposition kinetics of peracetic acid in aqueous solutions [Article]. Latin American Applied Research, 44(3), 195-201. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047209796&partnerID=40&md5=78e4564e9e6b9958874715955a001140 Lacorte, S., Luis, S., Gómez-Canela, C., Sala-Comorera, T., Courtier, A., Roig, B., Oliveira-Brett, A. M., Joannis-Cassan, C., Aragonés, J. I., Poggio, L., Noguer, T., Lima, L., Barata, C., & Calas-Blanchard, C. (2018). Pharmaceuticals released from senior residences: occurrence and risk evaluation. Environmental Science and Pollution Research, 25(7), 6095-6106. https://doi.org/10.1007/s11356-017-9755-1 Lee, W., Lee, Y., Allard, S., Ra, J., Han, S., & Lee, Y. (2020). Mechanistic and Kinetic Understanding of the UV254 Photolysis of Chlorine and Bromine Species in Water and Formation of Oxyhalides. Environmental Science & Technology, 54(18), 11546-11555. https://doi.org/10.1021/acs.est.0c02698 Li, W., Han, J., Zhang, X., Chen, G., & Yang, Y. (2023). Contributions of Pharmaceuticals to DBP Formation and Developmental Toxicity in Chlorination of NOM-containing Source Water. Environmental Science & Technology, 57(47), 18775-18787. https://doi.org/10.1021/acs.est.3c00742 Liang, L., & Singer, P. C. (2003). Factors Influencing the Formation and Relative Distribution of Haloacetic Acids and Trihalomethanes in Drinking Water. Environmental Science & Technology, 37(13), 2920-2928. https://doi.org/10.1021/es026230q Liao, P., Zhang, T., Fang, L., Jiang, R., & Wu, G. (2022). Chlorine decay and disinfection by-products transformation under booster chlorination conditions: A pilot-scale study. Science of The Total Environment, 851, 158115. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.158115 Littlejohn, C., Renaud, J. B., Sabourin, L., Lapen, D. R., Pappas, J. J., Tuteja, B., Hughes, D., Ussery, E., Yeung, K. K., & Sumarah, M. W. (2023). Environmental Concentrations of the Type 2 Diabetes Medication Metformin and Its Transformation Product Guanylurea in Surface Water and Sediment in Ontario and Quebec, Canada. Environ Toxicol Chem, 42(8), 1709-1720. https://doi.org/10.1002/etc.5684 Liu, N., Jin, X., Feng, C., Wang, Z., Wu, F., Johnson, A. C., Xiao, H., Hollert, H., & Giesy, J. P. (2020). Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system. Environment International, 136, 105454. https://doi.org/https://doi.org/10.1016/j.envint.2019.105454 Liu, W., Cheung, L.-M., Yang, X., & Shang, C. (2006). THM, HAA and CNCl formation from UV irradiation and chlor(am)ination of selected organic waters. Water Research, 40(10), 2033-2043. https://doi.org/https://doi.org/10.1016/j.watres.2006.03.019 Luukkonen, T., Prokkola, H., & Pehkonen, S. O. (2020). Peracetic acid for conditioning of municipal wastewater sludge: Hygienization, odor control, and fertilizing properties. Waste Manag, 102, 371-379. https://doi.org/10.1016/j.wasman.2019.11.004 Manna, M., & Sen, S. (2023). Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environmental Science and Pollution Research, 30(10), 25477-25505. https://doi.org/10.1007/s11356-022-19435-0 Manoli, K., Sarathy, S., Maffettone, R., & Santoro, D. (2019). Detailed modeling and advanced control for chemical disinfection of secondary effluent wastewater by peracetic acid. Water Res, 153, 251-262. https://doi.org/10.1016/j.watres.2019.01.022 Mansoori, S., Davarnejad, R., Ozumchelouei, E. J., & Ismail, A. F. (2021). Activated biochar supported iron-copper oxide bimetallic catalyst for degradation of ciprofloxacin via photo-assisted electro-Fenton process: A mild pH condition. Journal of Water Process Engineering, 39, 101888. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101888 Markiewicz, M., Jungnickel, C., Stolte, S., Białk-Bielińska, A., Kumirska, J., & Mrozik, W. (2017). Primary degradation of antidiabetic drugs. Journal of Hazardous Materials, 324, 428-435. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.11.008 McFadden, M., Loconsole, J., Schockling, A. J., Nerenberg, R., & Pavissich, J. P. (2017). Comparing peracetic acid and hypochlorite for disinfection of combined sewer overflows: Effects of suspended-solids and pH. Science of The Total Environment, 599-600, 533-539. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.04.179 Menard, K., Brostow, W., & Menard, N. (2011). Photodegradation of Pharmaceuticals Studied with UV Irradiation and Differential Scanning Calorimetry. Chemistry & Chemical Technology, 5, 385-388. https://doi.org/10.23939/chcht05.04.385 Miklos, D. B., Remy, C., Jekel, M., Linden, K. G., Drewes, J. E., & Hübner, U. (2018). Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review. Water Research, 139, 118-131. https://doi.org/https://doi.org/10.1016/j.watres.2018.03.042 Mitsika, E. E., Christophoridis, C., Kouinoglou, N., Lazaridis, N., Zacharis, C. K., & Fytianos, K. (2021). Optimized Photo-Fenton degradation of psychoactive pharmaceuticals alprazolam and diazepam using a chemometric approach—Structure and toxicity of transformation products. Journal of Hazardous Materials, 403, 123819. https://doi.org/https://doi.org/10.1016/j.jhazmat.2020.123819 Monarca, S., Richardso, S. D., Feretti, D., Grottolo, M., Thruston Jr, A. D., Zani, C., Navazio, G., Ragazzo, P., Zerbini, I., & Alberti, A. (2002). Mutagenicity and disinfection by-products in surface drinking water disinfected with peracetic acid. Environmental Toxicology and Chemistry, 21(2), 309-318. https://doi.org/https://doi.org/10.1002/etc.5620210212 Morini, L., Pozzi, F., & Groppi, A. (2017). Stability of benzodiazepines in hair after prolonged exposure to chlorinated water. Forensic Science International, 278, 217-220. https://doi.org/https://doi.org/10.1016/j.forsciint.2017.07.003 Nguyen, P. M., Afzal, M., Ullah, I., Shahid, N., Baqar, M., & Arslan, M. (2019). Removal of pharmaceuticals and personal care products using constructed wetlands: effective plant-bacteria synergism may enhance degradation efficiency. Environmental Science and Pollution Research, 26(21), 21109-21126. https://doi.org/10.1007/s11356-019-05320-w Ohashi, N., & Kohno, T. (2020). Analgesic Effect of Acetaminophen: A Review of Known and Novel Mechanisms of Action. Front Pharmacol, 11, 580289. https://doi.org/10.3389/fphar.2020.580289 Ortiz de García, S., Pinto Pinto, G., García Encina, P., & Irusta Mata, R. (2013). Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Science of The Total Environment, 444, 451-465. https://doi.org/https://doi.org/10.1016/j.scitotenv.2012.11.057 Padhi, R. K., Subramanian, S., & Satpathy, K. K. (2019). Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO2−,andClO3−) during treatment of different source water with chlorine and chlorine dioxide. Chemosphere, 218, 540-550. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.11.100 Pai, C.-W., Leong, D., Chen, C.-Y., & Wang, G.-S. (2020). Occurrences of pharmaceuticals and personal care products in the drinking water of Taiwan and their removal in conventional water treatment processes. Chemosphere, 256, 127002. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.127002 Pai, C.-W., & Wang, G.-S. (2022). Treatment of PPCPs and disinfection by-product formation in drinking water through advanced oxidation processes: Comparison of UV, UV/Chlorine, and UV/H2O2. Chemosphere, 287, 132171. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132171 Phillips, W. J., & Currier, B. L. (2004). Analgesic Pharmacology: II. Specific Analgesics. JAAOS - Journal of the American Academy of Orthopaedic Surgeons, 12(4), 221-233. https://journals.lww.com/jaaos/fulltext/2004/07000/analgesic_pharmacology__ii__specific_analgesics.3.aspx Pivetta, R. C., Rodrigues-Silva, C., Ribeiro, A. R., & Rath, S. (2020). Tracking the occurrence of psychotropic pharmaceuticals in Brazilian wastewater treatment plants and surface water, with assessment of environmental risks. Science of The Total Environment, 727, 138661. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.138661 Priya, A. K., Gnanasekaran, L., Rajendran, S., Qin, J., & Vasseghian, Y. (2022). Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment- A review. Environmental Research, 204, 112298. https://doi.org/https://doi.org/10.1016/j.envres.2021.112298 Rao, P., & Knaus, E. E. (2008). Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci, 11(2), 81s-110s. https://doi.org/10.18433/j3t886 Rendell, M. (2004). The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 64(12), 1339-1358. https://doi.org/10.2165/00003495-200464120-00006 Reyes, N. J. D. G., Geronimo, F. K. F., Yano, K. A. V., Guerra, H. B., & Kim, L.-H. (2021). Pharmaceutical and Personal Care Products in Different Matrices: Occurrence, Pathways, and Treatment Processes. Water, 13(9). Riss, J., Cloyd, J., Gates, J., & Collins, S. (2008). Benzodiazepines in epilepsy: pharmacology and pharmacokinetics. Acta Neurologica Scandinavica, 118(2), 69-86. https://doi.org/https://doi.org/10.1111/j.1600-0404.2008.01004.x Rodrigues Pires da Silva, J., Alves Monteiro, M., de Mendonça Ochs, S., da Silva Moura, C., da Fonseca, F. V., & Piacsek Borges, C. (2021). Study of effects of pharmaceuticals on the activated sludge process combining advanced oxidation using ultraviolet/hydrogen peroxide to increase their removal and mineralization of wastewater. Journal of Environmental Chemical Engineering, 9(1), 104576. https://doi.org/https://doi.org/10.1016/j.jece.2020.104576 Rokhina, E. V., Makarova, K., Golovina, E. A., Van As, H., & Virkutyte, J. (2010). Free Radical Reaction Pathway, Thermochemistry of Peracetic Acid Homolysis, and Its Application for Phenol Degradation: Spectroscopic Study and Quantum Chemistry Calculations. Environmental Science & Technology, 44(17), 6815-6821. https://doi.org/10.1021/es1009136 Rosario-Ortiz, F. L., Wert, E. C., & Snyder, S. A. (2010). Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Research, 44(5), 1440-1448. https://doi.org/https://doi.org/10.1016/j.watres.2009.10.031 Rossi, S., Antonelli, M., Mezzanotte, V., & Nurizzo, C. (2007). Peracetic Acid Disinfection: A Feasible Alternative to Wastewater Chlorination. Water Environment Research, 79(4), 341-350. https://doi.org/https://doi.org/10.2175/106143006X101953 Rott, E., Kuch, B., Lange, C., Richter, P., Kugele, A., & Minke, R. (2018). Removal of Emerging Contaminants and Estrogenic Activity from Wastewater Treatment Plant Effluent with UV/Chlorine and UV/H₂O₂ Advanced Oxidation Treatment at Pilot Scale. Int J Environ Res Public Health, 15(5). https://doi.org/10.3390/ijerph15050935 Sgroi, M., Anumol, T., Vagliasindi, F. G. A., Snyder, S. A., & Roccaro, P. (2021). Comparison of the new Cl2/O3/UV process with different ozone- and UV-based AOPs for wastewater treatment at pilot scale: Removal of pharmaceuticals and changes in fluorescing organic matter. Science of The Total Environment, 765, 142720. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.142720 Shao, Y., Li, S., Li, T., Wei, X., Tian, Y., Yang, Z., & Li, X. (2024). Degradation of emerging contaminants in synthetic hydrolyzed urine by UV/peracetic acid: Free radical chemistry, and toxicity analysis. Environmental Pollution, 359, 124557. https://doi.org/https://doi.org/10.1016/j.envpol.2024.124557 Shi, B., Jiang, Y., Yang, J., Zhao, R., Wang, T., Su, G., Ding, Y., Li, Q., Meng, J., & Hu, M. (2023). Ecological risks induced by consumption and emission of Pharmaceutical and personal care products in Qinghai-Tibet Plateau: Insights from the polar regions. Environment International, 178, 108125. https://doi.org/https://doi.org/10.1016/j.envint.2023.108125 Sun, P., Zhang, T., Mejia-Tickner, B., Zhang, R., Cai, M., & Huang, C.-H. (2018). Rapid Disinfection by Peracetic Acid Combined with UV Irradiation. Environmental Science & Technology Letters, 5(6), 400-404. https://doi.org/10.1021/acs.estlett.8b00249 Sunil Paul, M. M., Aravind, U. K., Pramod, G., & Aravindakumar, C. T. (2013). Oxidative degradation of fensulfothion by hydroxyl radical in aqueous medium. Chemosphere, 91(3), 295-301. https://doi.org/https://doi.org/10.1016/j.chemosphere.2012.11.033 Thomaidi, V. S., Stasinakis, A. S., Borova, V. L., & Thomaidis, N. S. (2016). Assessing the risk associated with the presence of emerging organic contaminants in sludge-amended soil: A country-level analysis [Article]. Science of The Total Environment, 548-549, 280-288. https://doi.org/10.1016/j.scitotenv.2016.01.043 Toyama, T., Kobayashi, M., Rubiy‵atno, Morikawa, M., & Mori, K. (2024). Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture. Chemosphere, 361, 142592. https://doi.org/https://doi.org/10.1016/j.chemosphere.2024.142592 Tulková, T., Fučík, J., Kozáková, Z., Procházková, P., Krčma, F., Gargošová, H. Z., Mravcová, L., & Sovová, K. (2023). Impact of various oxidation processes used for removal of sulfamethoxazole on the quality of treated wastewater. Emerging Contaminants, 9(3), 100231. https://doi.org/https://doi.org/10.1016/j.emcon.2023.100231 Velo-Gala, I., Farré, M. J., Radjenovic, J., & Gernjak, W. (2023). Influence of water matrix components on the UV/chlorine process and its reactions mechanism. Environmental Research, 218, 114945. https://doi.org/https://doi.org/10.1016/j.envres.2022.114945 Wang, D., Bolton, J. R., Andrews, S. A., & Hofmann, R. (2015). Formation of disinfection by-products in the ultraviolet/chlorine advanced oxidation process. Science of The Total Environment, 518-519, 49-57. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.02.094 Wols, B. A., Hofman-Caris, C. H. M., Harmsen, D. J. H., & Beerendonk, E. F. (2013). Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Research, 47(15), 5876-5888. https://doi.org/https://doi.org/10.1016/j.watres.2013.07.008 Wu, Z., Fang, J., Xiang, Y., Shang, C., Li, X., Meng, F., & Yang, X. (2016). Roles of reactive chlorine species in trimethoprim degradation in the UV/chlorine process: Kinetics and transformation pathways. Water Research, 104, 272-282. https://doi.org/https://doi.org/10.1016/j.watres.2016.08.011 Xiang, Y., Fang, J., & Shang, C. (2016). Kinetics and pathways of ibuprofen degradation by the UV/chlorine advanced oxidation process. Water Research, 90, 301-308. https://doi.org/https://doi.org/10.1016/j.watres.2015.11.069 Xue, R., Shi, H., Ma, Y., Yang, J., Hua, B., Inniss, E. C., Adams, C. D., & Eichholz, T. (2017). Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection. Chemosphere, 189, 349-356. https://doi.org/https://doi.org/10.1016/j.chemosphere.2017.09.059 Yang, B., Peng, T., Cai, W.-W., & Ying, G.-G. (2020). Transformation of diazepam in water during UV/chlorine and simulated sunlight/chlorine advanced oxidation processes. Science of The Total Environment, 746, 141332. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.141332 Yang, X., Zou, R., Tang, K., Andersen, H. R., Angelidaki, I., & Zhang, Y. (2021). Degradation of metoprolol from wastewater in a bio-electro-Fenton system. Science of The Total Environment, 771, 145385. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145385 Yang, Y., Wu, R. S. S., & Tsang, Y. F. (2024). Revealing removal mechanisms of target personal care products in secondary wastewater treatment plants. Journal of Water Process Engineering, 67, 106074. https://doi.org/https://doi.org/10.1016/j.jwpe.2024.106074 Yao, L., Hu, Y., Yang, J.-H., Wu, R., Chen, F.-L., & Zhou, X. (2025). Wastewater surveillance for chronic disease drugs in wastewater treatment plants: Mass load, removal, and sewage epidemiology. Journal of Hazardous Materials, 489, 137661. https://doi.org/https://doi.org/10.1016/j.jhazmat.2025.137661 Zeghioud, H., Nguyen-Tri, P., Khezami, L., Amrane, A., & Assadi, A. A. (2020). Review on discharge Plasma for water treatment: mechanism, reactor geometries, active species and combined processes. Journal of Water Process Engineering, 38, 101664. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101664 Zhang, S., Jiang, L., Li, H., Zhang, J., Sun, T., Dong, Y., & Ding, N. (2022). Disinfection kinetics of peracetic acid inactivation of pathogenic bacteria in water. Water Cycle, 3, 79-85. https://doi.org/https://doi.org/10.1016/j.watcyc.2022.05.002 Zhang, T., & Huang, C.-H. (2020). Modeling the Kinetics of UV/Peracetic Acid Advanced Oxidation Process. Environmental Science & Technology, 54(12), 7579-7590. https://doi.org/10.1021/acs.est.9b06826 Zhang, X., Xu, B., Wang, S., Li, X., Liu, B., Xu, Y., Yu, P., & Sun, Y. (2022). High-density dispersion of CuNx sites for H2O2 activation toward enhanced Photo-Fenton performance in antibiotic contaminant degradation. Journal of Hazardous Materials, 423, 127039. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127039 Zhao, W., Yu, G., Blaney, L., & Wang, B. (2021). Development of emission factors to estimate discharge of typical pharmaceuticals and personal care products from wastewater treatment plants. Science of The Total Environment, 769, 144556. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144556 Zhao, X., Zhang, T., Zhou, Y., & Liu, D. (2007). Preparation of peracetic acid from hydrogen peroxide: Part I: Kinetics for peracetic acid synthesis and hydrolysis. Journal of Molecular Catalysis A: Chemical, 271(1), 246-252. https://doi.org/https://doi.org/10.1016/j.molcata.2007.03.012 Zhu, B., Chen, Y., Chang, S., Qiu, H., & You, L. (2023). Degradation kinetic models and mechanism of isomaltooligosaccharides by hydroxyl radicals in UV/H2O2 system. Carbohydrate Polymers, 300, 120240. https://doi.org/https://doi.org/10.1016/j.carbpol.2022.120240 Zyara, A. M., Torvinen, E., Veijalainen, A.-M., & Heinonen-Tanski, H. (2016). The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection. Journal of Water and Health, 14(4), 640-649. https://doi.org/10.2166/wh.2016.144 余姿蓉(2023)。醫院廢水中三高用藥調查及以UV/Chlorine程序移除之研究。﹝碩士論文。國立臺灣大學﹞臺灣博碩士論文知識加值系統。https://hdl.handle.net/11296/va65b7 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99910 | - |
| dc.description.abstract | 藥物與個人照護產品(PPCPs)由於使用量大、排放廣泛且具化學穩定性,近年來已成為水環境中重要的微量污染物之一。這些化合物常見於家庭、醫療及農牧業廢水中,最終進入污水處理系統及自然環境。然而,傳統污水處理廠主要用於去除有機物、懸浮固體及病菌,對PPCPs等新興污染物的去除效果有限。導致PPCPs可能長期累積於環境中,造成潛在的生態及健康風險。
高級氧化程序(AOPs)透過產生高反應性自由基,可用於難降解有機污染物的處理。其中,過氧乙酸(PAA)因其強氧化能力、良好殺菌效果、及產生較少有害副產物,可被當作氯的替代品。PAA為一種有機過氧酸,可透過醋酸與過氧化氫反應生成。美國環保署(USEPA)已於2012年核准其用於污水消毒。此外,PAA在水中穩定,較不受污水基質影響,但單獨使用時難以有效降解如PPCPs等化合物,需藉由紫外線(UV)活化進一步產生羥基自由基(•OH)及過氧自由基(CH₃C(O)O•)等高反應性自由基以提升降解效能。 本研究以七種代表性PPCPs(止痛藥 Acetaminophen、Ibuprofen,抗糖尿病藥 Gliclazide、Glimepiride,精神科藥物 Diazepam、Alprazolam、Clonazepam)為目標污染物,評估UV/PAA程序在Milli-Q純水及二級出流水中之降解效果,並與UV/H₂O₂與UV/Cl₂等常見AOP系統進行比較。 結果顯示,PAA單獨使用對PPCPs去除效果不佳(去除率皆<10%),UV單獨照射可提升部份降解效率,而UV/PAA於10分鐘內可將Glimepiride與Gliclazide去除率分別達到79%與77%。Ibuprofen與Acetaminophen也有中等去除效果(35%與43%)。UV/Cl₂雖然降解效率最高,但相較於其他兩者處理程序,其可能生成消毒副產物(如THMs濃度>30 μg/L),而UV/PAA則顯著降低副產物產生風險。 本研究結果表明,UV/PAA為一種兼具效能與環保性的AOP,對於去除污水中的PPCPs具有良好的穩定性及效率,可作為氯處理的替代方案,實現更安全與永續的水資源管理。 | zh_TW |
| dc.description.abstract | Pharmaceuticals and personal care products (PPCPs) have been increasingly detected in the aquatic environment due to their widespread use and persistent chemical properties. However, conventional wastewater treatment plants (WWTPs), primarily designed to remove organic pollutants, pathogens, and suspended solids, lack the capability to effectively degrade PPCPs. As a result, advanced oxidation processes (AOPs) have been proposed for their ability to generate highly reactive radicals to mineralize those contaminants. Peracetic acid (PAA) is a promising alternative oxidant of chlorine due to its strong oxidative potential, disinfection ability, and minimal formation of toxic disinfection by-products (DBPs). However, PAA alone is insufficient for PPCP removal and requires activation, such as ultraviolet (UV) irradiation.
This study evaluates the degradation of seven PPCPs using UV/PAA, UV/H₂O₂, and UV/chlorine in both Milli-Q water and secondary-treated effluent. The results showed that PAA alone was ineffective in degrading PPCPs, with <10% removal. Under UV/PAA treatment, GMP and GCZ were removed by 79% and 77%, respectively, while IBU and ACE reached 35% and 43% removal. UV/chlorine had the highest removal efficiencies for most chemicals, but also generated high concentrations of DBPs (e.g., THMs >30 µg/L). In field wastewater, the removal efficiency of UV/PAA was observed similarly to UV/chlorine, which was significantly affected by the matrix in wastewater. These results suggest UV/PAA is an effective and safer alternative to chlorine-based AOPs for PPCP removal in wastewater treatment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:16:17Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:16:17Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 謝辭 i
中文摘要 ii Abstract iii Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 3 Chapter 2 Literature Review 4 2.1 Overview of PPCPs 4 2.1.1 Occurrence of PPCPs in the water environment 4 2.1.2 Target PPCPs 8 2.2 Overview of AOPs in wastewater treatment 11 2.2.1 Comparison of oxidants used in AOPs 11 2.2.2 UV/PAA system 16 Chapter 3 Materials and Methods 23 3.1 Research Framework 23 3.2 Sample collection 25 3.3 Target PPCPs 26 3.4 Advanced Oxidation Processes (AOPs) 28 3.4.1 Equipment of AOPs 28 3.4.2 Procedures of AOPs 29 3.5 Sample Analysis 31 3.5.1 Pretreatment and Determination of PPCPs 31 3.5.2 Residual Oxidant Analysis 36 3.5.3 NPDOC Analysis 38 3.5.4 DBP Analysis 40 Chapter 4 Results and Discussion 45 4.1 Water quality parameters of wastewater samples 45 4.2 PPCP determinations 46 4.2.1 SPE recoveries in different matrices 46 4.2.2 Method validation 48 4.3 Consumption of oxidants in AOPs 50 4.3.1 Chlorine consumption 50 4.3.2 PAA consumption 51 4.3.3 H2O2 consumption 52 4.4 Removal of PPCPs in Milli-Q water 56 4.5 Removal of PPCPs in wastewater 63 4.6 Changes of NPDOC in wastewater after AOP treatment 69 4.7 Formation of DBPs in wastewater after AOP treatment 71 Chapter 5 Conclusions and Suggestions 75 List of Abbreviations 77 Reference 78 Appendices 94 | - |
| dc.language.iso | en | - |
| dc.subject | 高級氧化程序 | zh_TW |
| dc.subject | 藥物與個人照護產品 | zh_TW |
| dc.subject | 污水處理 | zh_TW |
| dc.subject | UV/PAA | zh_TW |
| dc.subject | 過氧乙酸 | zh_TW |
| dc.subject | Peracetic acid | en |
| dc.subject | UV/PAA | en |
| dc.subject | Wastewater | en |
| dc.subject | Advanced oxidation process | en |
| dc.subject | Pharmaceutical and personal care products | en |
| dc.title | UV/PAA光催化程序去除廢水中PPCPs效能之研究 | zh_TW |
| dc.title | UV/PAA process for the removal of PPCPs in wastewater | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林財富;童心欣 | zh_TW |
| dc.contributor.oralexamcommittee | Tsair-Fuh Lin;Hsin-Hsin Tung | en |
| dc.subject.keyword | 藥物與個人照護產品,高級氧化程序,過氧乙酸,UV/PAA,污水處理, | zh_TW |
| dc.subject.keyword | Pharmaceutical and personal care products,Advanced oxidation process,Peracetic acid,UV/PAA,Wastewater, | en |
| dc.relation.page | 98 | - |
| dc.identifier.doi | 10.6342/NTU202503114 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2025-09-20 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
