Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99909
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佳堃zh_TW
dc.contributor.advisorJia-Kun Chenen
dc.contributor.author楊哲睿zh_TW
dc.contributor.authorJhe-Ruei Yangen
dc.date.accessioned2025-09-19T16:16:07Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation參考文獻
Konkol, D., et al., Recent innovations in various methods of harmful gases conversion and its mechanism in poultry farms. Environmental Research, 2022. 214: p. 113825.
Abdullah, A.H., et al., Calibration of an electronic nose for poultry farm. Vol. 1808. 2017. 020002.
Yang, J., et al. Pollutant Dispersion of Aircraft Exhaust Gas during the Landing and Takeoff Cycle with Improved Gaussian Diffusion Model. Atmosphere, 2024. 15, DOI: 10.3390/atmos15101256.
Guo, G.Z., et al., Air pollutant dispersion around high-rise buildings due to roof emissions. Building and Environment, 2022. 219: p. 109215.
Keshavarzian, E., et al., Effect of pollutant source location on air pollutant dispersion around a high-rise building. Applied Mathematical Modelling, 2020. 81: p. 582–602.
Mohammad Al-Kerwi, M.S., et al., Effects of Harmful Gases Emitted from Poultry Houses on Productive and Health Performance. IOP Conference Series: Earth and Environmental Science, 2022. 1060(1): p. 012082.
Yao, Q., et al., Assessment of particulate matter and ammonia emission concentrations and respective plume profiles from a commercial poultry house. Environmental Pollution, 2018. 238: p. 10–16.
Cambra-López, M., et al., Source analysis of fine and coarse particulate matter from livestock houses. Atmospheric Environment, 2011. 45(3): p. 694–707.
Yang, Z., et al., Effectiveness and diurnal variations of vegetative environmental buffers (VEBs) for mitigating NH3 and PM emissions from poultry houses. Environmental Pollution, 2023. 334: p. 122154.
Donham, K.J., D. Cumro, and S. Reynolds, Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J Agromedicine, 2002. 8(2): p. 57–76.
Sanderson, W.T., W. Angela, and A. and Echt, Case Reports: Epidemic Eye and Upper Respiratory Irritation in Poultry Processing Plants. Applied Occupational and Environmental Hygiene, 1995. 10(1): p. 43–49.
Sousa, F., et al., Gas emission in the poultry production. Journal of Animal Behaviour and Biometeorology, 2017. 5: p. 49–55.
環境部, 空氣汙染防制法. 2020.
Banhazi, T.M., et al., Identification of the risk factors for high airborne particle concentrations in broiler buildings using statistical modelling. Biosystems Engineering, 2008. 101(1): p. 100–110.
Ni, J.-Q., et al., A critical review of advancement in scientific research on food animal welfare-related air pollution. Journal of Hazardous Materials, 2021. 408: p. 124468.
Seo, I.-H., et al., Prediction of the spread of highly pathogenic avian influenza using a multifactor network: Part 1 – Development and application of computational fluid dynamics simulations of airborne dispersion. Biosystems Engineering, 2014. 121: p. 160–176.
雷鵬魁, 黃國定, and 鄭俊男, 開放式蛋雞舍內溫溼度與氨氣濃度之量測分析. 農業機械學刊, 1996. 5(3): p. 41–50.
陳盈豪, et al., 密閉式水簾雞舍統進統出飼養模式對蛋雞產蛋率與死亡率之影響. 畜產研究, 2020. 53(3): p. 134–140.
林彣郁, et al., 蛋雞飼養管理對其健康影響. 農業生技產業季刊, 2021(65): p. 14–24.
農業部, 農業部執行疫後增進畜牧業經濟韌性協助措施作業規範. 2023.
Huang, R.F. and C.M. Hsu, Flow and mixing characteristics of an elevated pulsating transverse jet. Physics of Fluids, 2012. 24(1): p. 015104.
Zhang, Y., et al., Characteristics of air pollutant dispersion around a high-rise building. Environmental Pollution, 2015. 204: p. 280–288.
Yu, Y., et al., Air pollutant dispersion around high-rise buildings under different angles of wind incidence. Journal of Wind Engineering and Industrial Aerodynamics, 2017. 167: p. 51–61.
Blocken, B., Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 2015. 91: p. 219–245.
方富民, et al., 都市地區行人風環境之CFD模擬與風洞實驗比對研究. 建築學報, 2018(103): p. 17–34.
Chen, Z., et al. Numerical Simulation of Atmospheric Boundary Layer Turbulence in a Wind Tunnel Based on a Hybrid Method. Atmosphere, 2022. 13, DOI: 10.3390/atmos13122044.
內政部, 建築物耐風設計規範及解說. 2014.
Shaughnessy, W.J., M.M. Venigalla, and D. Trump, Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmospheric Environment, 2015. 123: p. 102–111.
Cao, J., et al., Association between long-term exposure to outdoor air pollution and mortality in China: A cohort study. Journal of Hazardous Materials, 2011. 186(2): p. 1594–1600.
Deng, Q., et al., Particle deposition in the human lung: Health implications of particulate matter from different sources. Environmental Research, 2019. 169: p. 237–245.
Pan, G., et al., Air pollution and children's respiratory symptoms in six cities of Northern China. Respiratory Medicine, 2010. 104(12): p. 1903–1911.
Rojano, F., et al., Assessment using CFD of the wind direction on the air discharges caused by natural ventilation of a poultry house. Environ Monit Assess, 2018. 190(12): p. 724.
Viegas, S., et al., Occupational exposure to poultry dust and effects on the respiratory system in workers. J Toxicol Environ Health A, 2013. 76(4-5): p. 230–9.
Guillam, M.T., et al., Aérocontaminants et morbidité chez les éleveurs de volailles. Archives des Maladies Professionnelles et de l'Environnement, 2007. 68(2): p. 161–168.
Zhu, C., et al., Role of atmospheric particulate matter exposure in COVID-19 and other health risks in human: A review. Environmental Research, 2021. 198: p. 111281.
Cai, L., et al., Characterization of volatile organic compounds and odorants associated with swine barn particulate matter using solid-phase microextraction and gas chromatography–mass spectrometry–olfactometry. Journal of chromatography A, 2006. 1102(1-2): p. 60–72.
Shammi, M., M.M. Rahman, and S.M. Tareq, Distribution of bioaerosols in association with particulate matter: a review on emerging public health threat in Asian megacities. Frontiers in Environmental Science, 2021. 9: p. 698215.
Sicard, P., et al., Effect of O(3), PM(10) and PM(2.5) on cardiovascular and respiratory diseases in cities of France, Iran and Italy. Environ Sci Pollut Res Int, 2019. 26(31): p. 32645–32665.
Chen, F., et al., Association of fine particulate matter exposure with acute noncardiovascular critical illnesses and in-hospital outcomes in patients receiving intensive cardiac care. BMC Public Health, 2020. 20(1): p. 610.
Younan, D., et al., Particulate matter and episodic memory decline mediated by early neuroanatomic biomarkers of Alzheimer's disease. Brain, 2020. 143(1): p. 289–302.
財團法人獸醫畜產發展基金會, 2023台灣家禽統計手冊. 2024.
南投縣政府, 南投縣新設置畜牧場管理自治條例. 2021.
雲林縣政府, 雲林縣新設置畜牧場管理自治條例. 2023.
Ajami, A., et al., Windbreak Wall-Vegetative Strip System to Reduce Air Emissions from Mechanically Ventilated Livestock Barns—Part 3: Layer House Evaluation. Water, Air, & Soil Pollution, 2019. 230.
Winkel, A., et al., Evaluation of a dry filter and an electrostatic precipitator for exhaust air cleaning at commercial non-cage laying hen houses. Biosystems Engineering, 2015. 129: p. 212–225.
Jaworek, A. and K. Adamiak, Recent progress in research on electrostatic precipitation (invited paper). Journal of Electrostatics, 2025: p. 104064.
黃裕益, 噴霧冷卻法應用於臺灣地區塑膠布溫室內降溫之研究. 農業機械學刊, 1999. 8(4): p. 17–27.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99909-
dc.description.abstract隨著氣候變遷與禽流感的頻繁發生,現行畜牧政策推動將風險較高之傳統開放式雞舍改為水簾密閉式設計,雖有助於提升雞舍內部生物安全,卻可能因外部風場干擾導致污染物回流至雞舍內部,威脅工作者之職業健康與禽隻健康。因此本研究旨在探討密閉式水簾雞舍在環境風向與雞舍排氣方向相反時,污染粒子於雞舍外之流場結構與粒子分布行為,並分析不同排氣改善設計與水簾開啟條件對於粒子再進入(re-entry)風險與職業健康風險之影響。本研究採用計算流體力學模擬技術,建構三種不同排氣設計(水平排氣、水平排氣有擋風牆、向上排氣)與兩種進氣水簾配置(只開啟正面水簾與三面水簾全開),共六組模擬模型。模擬中設定三種粒徑(2.5 μm、10 μm 及 100 μm)進行粒子研究,並觀察粒子之分布熱區評估再進入風險及雞舍外暴露風險。研究結果顯示,粒子受流場影響容易集中沉積於排氣口、水簾表面、建築兩側地面與屋頂等沉積熱區,增加牧場區內之粒子暴露風險,而在綜合評估下最理想之設計改善為水平排氣加擋風牆設計,不僅較符合現行法規,也較達到實際使用情況與污染控制的實務需求間之平衡。此外,針對粒子沉積熱區,應實施定期清消作業,並配合個人防護以降低粒子濃度與健康風險。綜合研究結果顯示,排氣設計、水簾開啟條件與環境風場三者交互影響粒子行為與再進入風險。未來禽舍設計應整合考量污染控制、設施維護與職業健康,以實現更安全、永續之畜禽養殖場域管理策略。zh_TW
dc.description.abstractWith the rising frequency of climate change and avian influenza outbreaks, current livestock policies are promoting the transition from traditional poultry houses to enclosed water-pad poultry houses While improving internal biosecurity, these designs may also increase the risk of pollutant re-entry due to interference from atmospheric wind, posing health risks to both workers and poultry. This study uses Computational Fluid Dynamics simulations to examine particle behavior around enclosed water-pad poultry houses when external wind opposes exhaust flow. Six models were constructed by combining three exhaust configurations (horizontal, horizontal with windbreak wall, and upward) with two water pad setups (front-only and fully open). Particles of 2.5 μm, 10 μm, and 100 μm were analyzed for adhesion hotspots and re-entry risk. Results showed that airflow interference leads to particle accumulation at key locations such as the exhaust outlet, water pad surfaces, building sides, and rooftops, increasing external exposure risks. Among all designs, the horizontal exhaust with windbreak wall offered the most balanced solution. Regular disinfection and use of personal protective measures to reduce health hazards, alongside additional dust control devices. In conclusion, exhaust configuration, inlet conditions, and wind direction collectively influence particle dispersion and re-entry risks. Future poultry house design should integrate pollution control, maintenance, and occupational health strategies to achieve safer and more sustainable livestock operations.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:16:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:16:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 iv
圖次 vii
表次 x
縮寫說明 xi
符號說明 xii
第一章 前言 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 禽舍排出之汙染物 2
1.2.2 粒徑特性 3
1.2.3 不同形式之雞舍 3
1.2.4 橫風噴流 4
1.2.5 再進入 4
第二章 研究方法與材料 5
2.1 現場量測 6
2.1.1 幾何尺寸 6
2.1.2 風扇風速量測 7
2.1.3 水簾風速量測 8
2.1.4 現場環境風速 13
2.2 統御方程式 15
2.2.1 質量守恆定律 15
2.2.2 動量守恆定律 15
2.2.3 粒子軌跡方程式 16
2.3 模型設計 17
2.3.1 排氣設計 17
2.3.2 網格獨立 18
2.3.3 計算域 19
2.4 初始條件與邊界條件 20
2.4.1 環境風速設定 20
2.4.2 風扇排氣速度及水簾進氣速度設定 21
2.4.3 壁面條件 22
2.4.4 各模型邊界條件設置 22
2.4.5 微粒設定 24
第三章 結果 25
3.1 不同瞬間下流場差異 25
3.1.1 Model-SHW流場差異 25
3.1.2 Model-SH流場差異 27
3.1.3 Model-SV流場差異 29
3.2 牧場區內不同條件之粒子分布區域 31
3.2.1 只開啟正面水簾 31
3.2.2 水簾全開 33
3.3 牧場區外不同條件之粒子數比較 36
3.4 主要沉積區域粒子分布與速度分布 37
3.4.1 只開正面水簾之比較 37
3.4.2 水簾全開之比較 51
第四章 討論 65
4.1 環境風與雞舍排氣方向所造成之汙染物分布 65
4.2 不同排氣設計之再進入風險與雞舍外暴露風險 66
4.3 不同模型下排放出牧場區外之粒子 67
4.4 排氣方向、設置擋風牆與水簾開啟條件對結果之影響 68
第五章 結論 70
參考文獻 73
附錄 76
附錄一 現場量測使用儀器 76
附錄二 模擬分析軟體 77
附錄三 網格獨立性 78
附錄四 風扇量測資料 79
-
dc.language.isozh_TW-
dc.subject密閉水簾雞舍zh_TW
dc.subject計算流體力學zh_TW
dc.subject粒子分布zh_TW
dc.subject再進入zh_TW
dc.subject大氣風場zh_TW
dc.subjectatmospheric wind fielden
dc.subjectpollutant re-entryen
dc.subjectparticle distributionen
dc.subjectenclosed water-pad poultry housesen
dc.subjectCFDen
dc.title大氣風向與排氣方向相反條件下密閉水簾式雞舍尾端排氣設計對於汙染物再進入之影響:以雲林某雞舍為例zh_TW
dc.titleImpact of Exhaust Design at the End of an Enclosed Water-Pad Poultry Houses on Pollutant Re-Entry Under Opposing Wind Conditions: A Case Study in Yunlinen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃盛修;曾子彝zh_TW
dc.contributor.oralexamcommitteeSheng-Hsiu Huang;Tzu-I Tsengen
dc.subject.keyword計算流體力學,密閉水簾雞舍,大氣風場,再進入,粒子分布,zh_TW
dc.subject.keywordCFD,enclosed water-pad poultry houses,atmospheric wind field,pollutant re-entry,particle distribution,en
dc.relation.page79-
dc.identifier.doi10.6342/NTU202503646-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-05-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2028-08-01-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
3.2 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved