請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99908完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳保中 | zh_TW |
| dc.contributor.advisor | Pau-Chung Chen | en |
| dc.contributor.author | 陳宗延 | zh_TW |
| dc.contributor.author | Chung-Yen Chen | en |
| dc.date.accessioned | 2025-09-19T16:15:55Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-05-19 | - |
| dc.identifier.citation | Acer, P. T., Kelly, L. M., Lover, A. A., & Butler, C. S. (2022a). Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach. International Journal of Environmental Research and Public Health, 19(18). https://doi.org/10.3390/IJERPH191811245
Acer, P. T., Kelly, L. M., Lover, A. A., & Butler, C. S. (2022b). Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach. International Journal of Environmental Research and Public Health 2022, Vol. 19, Page 11245, 19(18), 11245. https://doi.org/10.3390/IJERPH191811245 Achak, M., Alaoui Bakri, S., Chhiti, Y., M’hamdi Alaoui, F. E., Barka, N., & Boumya, W. (2021). SARS-CoV-2 in hospital wastewater during outbreak of COVID-19: A review on detection, survival and disinfection technologies. The Science of the Total Environment, 761, 143192. https://doi.org/10.1016/J.SCITOTENV.2020.143192 Acosta, N., Bautista, M. A., Hollman, J., McCalder, J., Beaudet, A. B., Man, L., Waddell, B. J., Chen, J., Li, C., Kuzma, D., Bhatnagar, S., Leal, J., Meddings, J., Hu, J., Cabaj, J. L., Ruecker, N. J., Naugler, C., Pillai, D. R., Achari, G., … Parkins, M. D. (2021a). Wastewater Monitoring of SARS-CoV-2 from Acute Care Hospitals Identifies Nosocomial Transmission and Outbreaks. MedRxiv, 2021.02.20.21251520. https://doi.org/10.1101/2021.02.20.21251520 Acosta, N., Bautista, M. A., Hollman, J., McCalder, J., Beaudet, A. B., Man, L., Waddell, B. J., Chen, J., Li, C., Kuzma, D., Bhatnagar, S., Leal, J., Meddings, J., Hu, J., Cabaj, J. L., Ruecker, N. J., Naugler, C., Pillai, D. R., Achari, G., … Parkins, M. D. (2021b). A multicenter study investigating SARS-CoV-2 in tertiary-care hospital wastewater. viral burden correlates with increasing hospitalized cases as well as hospital-associated transmissions and outbreaks. Water Research, 201. https://doi.org/10.1016/J.WATRES.2021.117369 Acosta, N., Bautista, M. A., Waddell, B. J., Du, K., McCalder, J., Pradhan, P., Sedaghat, N., Papparis, C., Beaudet, A. B., Chen, J., Van Doorn, J., Xiang, K., Chan, L., Vivas, L., Low, K., Lu, X., Lee, J., Westlund, P., Chekouo, T., … Parkins, M. D. (2023). Surveillance for SARS-CoV-2 and its variants in wastewater of tertiary care hospitals correlates with increasing case burden and outbreaks. Journal of Medical Virology, 95(2). https://doi.org/10.1002/JMV.28442 Acosta, N., Bautista, M. A., Waddell, B. J., McCalder, J., Beaudet, A. B., Man, L., Pradhan, P., Sedaghat, N., Papparis, C., Bacanu, A., Hollman, J., Krusina, A., Southern, D. A., Williamson, T., Li, C., Bhatnagar, S., Murphy, S., Chen, J., Kuzma, D., … Parkins, M. D. (2022). Longitudinal SARS-CoV-2 RNA wastewater monitoring across a range of scales correlates with total and regional COVID-19 burden in a well-defined urban population. Water Research, 220, 118611. https://doi.org/10.1016/J.WATRES.2022.118611 Ahmed, W., Bivins, A., Metcalfe, S., Smith, W. J. M., Ziels, R., Korajkic, A., McMinn, B., Graber, T. E., & Simpson, S. L. (2022). RT-qPCR and ATOPlex sequencing for the sensitive detection of SARS-CoV-2 RNA for wastewater surveillance. Water Research, 220. https://doi.org/10.1016/J.WATRES.2022.118621 Amirian, E. S. (2020). Potential fecal transmission of SARS-CoV-2: Current evidence and implications for public health. International Journal of Infectious Diseases : IJID : Official Publication of the International Society for Infectious Diseases, 95, 363–370. https://doi.org/10.1016/J.IJID.2020.04.057 Ando, H., Iwamoto, R., Kobayashi, H., Okabe, S., & Kitajima, M. (2022). The Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids (EPISENS-S): A rapid and cost-effective SARS-CoV-2 RNA detection method for routine wastewater surveillance. Science of the Total Environment, 843. https://doi.org/10.1016/J.SCITOTENV.2022.157101 Arora, S., Nag, A., Kalra, A., Sinha, V., Meena, E., Saxena, S., Sutaria, D., Kaur, M., Pamnani, T., Sharma, K., Saxena, S., Shrivastava, S. K., Gupta, A. B., Li, X., & Jiang, G. (2022). Successful application of wastewater-based epidemiology in prediction and monitoring of the second wave of COVID-19 with fragmented sewerage systems–a case study of Jaipur (India). Environmental Monitoring and Assessment, 194(5). https://doi.org/10.1007/S10661-022-09942-5 ASHRAE. (2023). ASHRAE Standard 241-2023 Control of Infectious Aerosols. Augusto, M. R., Claro, I. C. M., Siqueira, A. K., Sousa, G. S., Caldereiro, C. R., Duran, A. F. A., de Miranda, T. B., Bomediano Camillo, L. de M., Cabral, A. D., & de Freitas Bueno, R. (2022). Sampling strategies for wastewater surveillance: Evaluating the variability of SARS-COV-2 RNA concentration in composite and grab samples. Journal of Environmental Chemical Engineering, 10(3), 107478. https://doi.org/https://doi.org/10.1016/j.jece.2022.107478 Barrios, R. E., Lim, C., Kelley, M. S., & Li, X. (2021). SARS-CoV-2 concentrations in a wastewater collection system indicated potential COVID-19 hotspots at the zip code level. Science of The Total Environment, 800, 149480. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149480 Batterman, S. (2017). Review and Extension of CO2-Based Methods to Determine Ventilation Rates with Application to School Classrooms. International Journal of Environmental Research and Public Health, 14(2). https://doi.org/10.3390/IJERPH14020145 Bayati, M., Hsieh, H.-Y., Hsu, S.-Y., Li, C., Rogers, E., Belenchia, A., Zemmer, S. A., Blanc, T., Lepage, C., Klutts, J., Reynolds, M., Semkiw, E., Johnson, H.-Y., Foley, T., Wieberg, C. G., Wenzel, J., Lyddon, T., Lepique, M., Rushford, C., … Lin, C.-H. (2022). Identification and quantification of bioactive compounds suppressing SARS-CoV-2 signals in wastewater-based epidemiology surveillance. https://doi.org/10.1016/j.watres.2022.118824 Bazant, M. Z., & Bush, J. W. M. (2021). A guideline to limit indoor airborne transmission of COVID-19. Proceedings of the National Academy of Sciences of the United States of America, 118(17). https://doi.org/10.1073/PNAS.2018995118/-/DCSUPPLEMENTAL Beattie, R. E., Blackwood, A. D., Clerkin, T., Dinga, C., & Noble, R. T. (2022). Evaluating the impact of sample storage, handling, and technical ability on the decay and recovery of SARS-CoV-2 in wastewater. https://doi.org/10.1371/journal.pone.0270659 Bertels, X., Hanoteaux, S., Janssens, R., Maloux, H., Verhaegen, B., Delputte, P., Boogaerts, T., van Nuijs, A. L. N., Brogna, D., Linard, C., Marescaux, J., Didy, C., Pype, R., Roosens, N. H. C., Van Hoorde, K., Lesenfants, M., & Lahousse, L. (2023). Time series modelling for wastewater-based epidemiology of COVID-19: A nationwide study in 40 wastewater treatment plants of Belgium, February 2021 to June 2022. Science of The Total Environment, 899, 165603. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.165603 Betancourt, W. Q., Schmitz, B. W., Innes, G. K., Prasek, S. M., Pogreba Brown, K. M., Stark, E. R., Foster, A. R., Sprissler, R. S., Harris, D. T., Sherchan, S. P., Gerba, C. P., & Pepper, I. L. (2021). COVID-19 containment on a college campus via wastewater-based epidemiology, targeted clinical testing and an intervention. Science of The Total Environment, 779, 146408. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.146408 Bivins, A., Kaya, D., Ahmed, W., Brown, J., Butler, C., Greaves, J., Leal, R., Maas, K., Rao, G., Sherchan, S., Sills, D., Sinclair, R., Wheeler, R. T., & Mansfeldt, C. (2022). Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. The Science of the Total Environment, 835. https://doi.org/10.1016/J.SCITOTENV.2022.155347 Bowes, D. A., Driver, E. M., & Halden, R. U. (2022). A framework for wastewater sample collection from a sewage cleanout to inform building-scale wastewater-based epidemiology studies. The Science of the Total Environment, 836. https://doi.org/10.1016/J.SCITOTENV.2022.155576 Božič, A., & Kanduč, M. (2021). Relative humidity in droplet and airborne transmission of disease. Journal of Biological Physics, 47(1), 1–29. https://doi.org/10.1007/s10867-020-09562-5 Brumfield, K. D., Leddy, M., Usmani, M., Cotruvo, J. A., Tien, C. T., Dorsey, S., Graubics, K., Fanelli, B., Zhou, I., Registe, N., Dadlani, M., Wimalarante, M., Jinasena, D., Abayagunawardena, R., Withanachchi, C., Huq, A., Jutla, A., & Colwell, R. R. (2022). Microbiome Analysis for Wastewater Surveillance during COVID-19. MBio, 13(4). https://doi.org/10.1128/MBIO.00591-22 Callaway, E. (2022). These scientists traced a new coronavirus lineage to one office - through sewage. Nature, 609(7929), 883–885. https://doi.org/10.1038/D41586-022-02996-Y Calle, E., Martínez, D., Brugués-i-Pujolràs, R., Farreras, M., Saló-Grau, J., Pueyo-Ros, J., & Corominas, L. (2021). Optimal selection of monitoring sites in cities for SARS-CoV-2 surveillance in sewage networks. Environment International, 157, 106768. https://doi.org/https://doi.org/10.1016/j.envint.2021.106768 Castell, N., Schneider, P., Grossberndt, S., Fredriksen, M. F., Sousa-Santos, G., Vogt, M., & Bartonova, A. (2018). Localized real-time information on outdoor air quality at kindergartens in Oslo, Norway using low-cost sensor nodes. Environmental Research, 165, 410–419. https://doi.org/https://doi.org/10.1016/j.envres.2017.10.019 CDC. (2022a). Developing a Wastewater Surveillance Sampling Strategy | Water-related Topics | Healthy Water | CDC. https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/developing-a-wastewater-surveillance-sampling-strategy.html CDC. (2022b). National Wastewater Surveillance System (NWSS) – a new public health tool to understand COVID-19 spread in a community | CDC. https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/wastewater-surveillance.html CDC. (2022c). Targeted Wastewater Surveillance at Facilities and Institutions | CDC. https://www.cdc.gov/healthywater/surveillance/wastewater-surveillance/targeted-use-case.html CDC. (2023). Wastewater Surveillance Testing Methods | National Wastewater Surveillance System | CDC. https://www.cdc.gov/nwss/testing.html Chen, C.-Y., Chen, P.-H., Chen, J.-K., & Su, T.-C. (2021). Recommendations for ventilation of indoor spaces to reduce COVID-19 transmission. Journal of the Formosan Medical Association, 120(12), 2055–2060. https://doi.org/https://doi.org/10.1016/j.jfma.2021.08.007 Chen, C.-Y., Chen, P.-H., Chen, J.-K., & Su, T.-C. (2023). Recommendations for ventilation of remodeled negative-pressure isolation wards for COVID-19 patients: A comparison of international guidelines. Journal of the Formosan Medical Association, 122(2), 91–97. https://doi.org/https://doi.org/10.1016/j.jfma.2022.11.013 Christie, A., Brooks, J. T., Hicks, L. A., Sauber-Schatz, E. K., Yoder, J. S., & Honein, M. A. (2021). Guidance for Implementing COVID-19 Prevention Strategies in the Context of Varying Community Transmission Levels and Vaccination Coverage. MMWR. Morbidity and Mortality Weekly Report, 70(30), 1044–1047. https://doi.org/10.15585/MMWR.MM7030E2 Chuang, C. (2021). Taichung Uses Drone to Disinfect Campus. Ciannella, S., González-Fernández, C., & Gomez-Pastora, J. (2023). Recent progress on wastewater-based epidemiology for COVID-19 surveillance: A systematic review of analytical procedures and epidemiological modeling. Science of The Total Environment, 878, 162953. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.162953 Corchis-Scott, R., Geng, Q., Seth, R., Ray, R., Beg, M., Biswas, N., Charron, L., Drouillard, K. D., D’Souza, R., Heath, D. D., Houser, C., Lawal, F., McGinlay, J., Menard, S. L., Porter, L. A., Rawlings, D., Scholl, M. L., Siu, K. W. M., Tong, Y., … McKay, R. M. L. (2021). Averting an Outbreak of SARS-CoV-2 in a University Residence Hall through Wastewater Surveillance. Microbiology Spectrum, 9(2). https://doi.org/10.1128/SPECTRUM.00792-21 Cruz, M. C., Sanguino-Jorquera, D., Aparicio González, M., Irazusta, V. P., Poma, H. R., Cristóbal, H. A., & Rajal, V. B. (2023). Sewershed surveillance as a tool for smart management of a pandemic in threshold countries. Case study: Tracking SARS-CoV-2 during COVID-19 pandemic in a major urban metropolis in northwestern Argentina. Science of The Total Environment, 862, 160573. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.160573 D’aoust, P. M., Tian, X., Towhid, S. T., Xiao, A., Mercier, E., Hegazy, N., Jia, J.-J., Wan, S., Kabir, P., Fuzzen, M., Hasing, M., Yang, M. I., Sun, J., Plaza-Diaz, J., Zhang, Z., Cowan, A., Eid, W., Stephenson, S., Servos, M. R., … Delatolla, R. (2022). Wastewater to clinical case (WC) ratio of COVID-19 identifies insufficient clinical testing, onset of new variants of concern and population immunity in urban communities. https://doi.org/10.1016/j.scitotenv.2022.158547 Dai, H., & Zhao, B. (2020). Association of the infection probability of COVID-19 with ventilation rates in confined spaces. Build Simul, 1–7. https://doi.org/10.1007/s12273-020-0703-5 Dai, X., Champredon, D., Fazil, A., Mangat, C. S., Peterson, S. W., Mejia, E. M., Lu, X., & Chekouo, T. (2022). Statistical framework to support the epidemiological interpretation of SARS-CoV-2 concentration in municipal wastewater. Scientific Reports 2022 12:1, 12(1), 1–10. https://doi.org/10.1038/s41598-022-17543-y Daleiden, B., Niederstätter, H., Steinlechner, M., Wildt, S., Kaiser, M., Lass-Flörl, C., Posch, W., Fuchs, S., Pfeifer, B., Huber, A., & Oberacher, H. (2022). Wastewater surveillance of SARS-CoV-2 in Austria: development, implementation, and operation of the Tyrolean wastewater monitoring program. Journal of Water and Health, 20(2), 314–328. https://doi.org/10.2166/WH.2022.218 Daughton, C. G. (2020). Wastewater surveillance for population-wide Covid-19: The present and future. Science of The Total Environment, 736, 139631. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.139631 Daza–Torres, M. L., Montesinos-López, J. C., Bischel, H. N., Naughton, C. C., Desai, A. N., Wolfe, M. K., Boehm, A. B., & Nuño, M. (2024). A mixed-effects model to predict COVID-19 hospitalizations using wastewater surveillance. Journal of Environmental Chemical Engineering, 12(2), 112485. https://doi.org/https://doi.org/10.1016/j.jece.2024.112485 De Llanos, R., Cejudo-Marín, R., Barneo, M., Pérez-Cataluña, A., Barberá-Riera, M., Rebagliato, M., Bellido-Blasco, J., Sánchez, G., Hernández, F., Bijlsma, L., Phong, G. E. :, & Thai, K. (2022). Monitoring the evolution of SARS-CoV-2 on a Spanish university campus through wastewater analysis: A pilot project for the reopening strategy. Science of the Total Environment, 845, 157370. https://doi.org/10.1016/j.scitotenv.2022.157370 Dong, Y., Zhu, L., Li, S., & Wollensak, M. (2022). Optimal design of building openings to reduce the risk of indoor respiratory epidemic infections. Building Simulation, 15(5), 871–884. https://doi.org/10.1007/s12273-021-0842-3 Driver, E. M., Gushgari, A., Chen, J., & Halden, R. U. (2020). Alcohol, nicotine, and caffeine consumption on a public U.S. university campus determined by wastewater-based epidemiology. The Science of the Total Environment, 727. https://doi.org/10.1016/J.SCITOTENV.2020.138492 Elsamadony, M., Fujii, M., Miura, T., & Watanabe, T. (2021). Possible transmission of viruses from contaminated human feces and sewage: Implications for SARS-CoV-2. The Science of the Total Environment, 755, 142575. https://doi.org/10.1016/J.SCITOTENV.2020.142575 Everington, K. (2021). COVID cluster infection breaks out in New Taipei kindergarten. Gettings, J., Czarnik, M., Morris, E., Haller, E., Thompson-Paul, A. M., Rasberry, C., Lanzieri, T. M., Smith-Grant, J., Aholou, T. M., Thomas, E., Drenzek, C., & MacKellar, D. (2021). Mask Use and Ventilation Improvements to Reduce COVID-19 Incidence in Elementary Schools — Georgia, November 16–December 11, 2020. MMWR. Morbidity and Mortality Weekly Report, 70(21), 779–784. https://doi.org/10.15585/MMWR.MM7021E1 Gonçalves, J., Koritnik, T., Mioč, V., Trkov, M., Bolješič, M., Berginc, N., Prosenc, K., Kotar, T., & Paragi, M. (2021). Detection of SARS-CoV-2 RNA in hospital wastewater from a low COVID-19 disease prevalence area. Science of The Total Environment, 755, 143226. https://doi.org/10.1016/J.SCITOTENV.2020.143226 Gorriz, J. M., Dong, Z., Thongpradit, S., Prasongtanakij, S., Srisala, S., Chanprasertyothin, S., Pasomsub, E., & Ongphiphadhanakul, B. (2022). The Detection of SARS-CoV2 Antigen in Wastewater Using an Automated Chemiluminescence Enzyme Immunoassay. Public Health, 19, 7783. https://doi.org/10.3390/ijerph19137783 Grijalva, C. G., Rolfes, M. A., Zhu, Y., McLean, H. Q., Hanson, K. E., Belongia, E. A., Halasa, N. B., Kim, A., Reed, C., Fry, A. M., & Talbot, H. K. (2020). Transmission of SARS-COV-2 Infections in Households — Tennessee and Wisconsin, April–September 2020. MMWR. Morbidity and Mortality Weekly Report, 69(44). https://doi.org/10.15585/MMWR.MM6944E1 Guerrero-Latorre, L., Collado, N., Abasolo, N., Anzaldi, G., Bofill-Mas, S., Bosch, A., Bosch, L., Busquets, S., Caimari, A., Canela, N., Carcereny, A., Chacón, C., Ciruela, P., Corbella, I., Domingo, X., Escoté, X., Espiñeira, Y., Forés, E., Gandullo-Sarró, I., … Borrego, C. M. (2022). The Catalan Surveillance Network of SARS-CoV-2 in Sewage: design, implementation, and performance. Scientific Reports, 12(1), 16704. https://doi.org/10.1038/S41598-022-20957-3 Harrichandra, A., Ierardi, A. M., & Pavilonis, B. (2020). An estimation of airborne SARS-CoV-2 infection transmission risk in New York City nail salons. Toxicol Ind Health, 36(9), 634–643. https://doi.org/10.1177/0748233720964650 Harrison, A. G., Lin, T., & Wang, P. (2020). Mechanisms of SARS-CoV-2 Transmission and Pathogenesis. Trends Immunol, 41(12), 1100–1115. https://doi.org/10.1016/j.it.2020.10.004 Haskell, B. R., Dhiyebi, H. A., Srikanthan, N., Bragg, L. M., Parker, W. J., Giesy, J. P., & Servos, M. R. (2024). Implementing an adaptive, two-tiered SARS-CoV-2 wastewater surveillance program on a university campus using passive sampling. The Science of the Total Environment, 912. https://doi.org/10.1016/J.SCITOTENV.2023.168998 Hassard, F., Bajón-Fernández, Y., & Castro-Gutierrez, V. (2023). Wastewater-based epidemiology for surveillance of infectious diseases in healthcare settings. Current Opinion in Infectious Diseases, 36(4), 288–295. https://doi.org/10.1097/QCO.0000000000000929 Hassard, F., Vu, M., Rahimzadeh, S., Castro-Gutierrez, V., Stanton, I., Burczynska, B., Wildeboer, D., Baio, G., Brown, M. R., Garelick, H., Hofman, J., Kasprzyk-Hordern, B., Majeed, A., Priest, S., Denise, H., Khalifa, M., Bassano, I., Wade, M. J., Grimsley, J., … Cesare, M. Di. (2023). Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year. PloS One, 18(5). https://doi.org/10.1371/JOURNAL.PONE.0286259 Hayes, E. K., Stoddart, A. K., & Gagnon, G. A. (2022). Adsorption of SARS-CoV-2 onto granular activated carbon (GAC) in wastewater: Implications for improvements in passive sampling. Science of The Total Environment, 847, 157548. https://doi.org/10.1016/J.SCITOTENV.2022.157548 Hegazy, N., Cowan, A., D’aoust, P. M., Mercier, É., Towhid, S. T., Jia, J.-J., Wan, S., Zhang, Z., Kabir, P., Fang, W., Graber, T. E., Mackenzie, A. E., Guilherme, S., & Delatolla, R. (2022). Understanding the dynamic relation between wastewater SARS-CoV-2 signal and clinical metrics throughout the pandemic. https://doi.org/10.1016/j.scitotenv.2022.158458 Holm, R. H., Nagarkar, M., Yeager, R. A., Talley, D., Chaney, A. C., Rai, J. P., Mukherjee, A., Rai, S. N., Bhatnagar, A., & Smith, T. (2022). Surveillance of RNase P, PMMoV, and CrAssphage in wastewater as indicators of human fecal concentration across urban sewer neighborhoods, Kentucky. FEMS Microbes, 3. https://doi.org/10.1093/FEMSMC/XTAC003 Hsu, S.-Y., Bayati, M. B., Li, C., Hsieh, H.-Y., Belenchia, A., Klutts, J., Zemmer, S. A., Reynolds, M., Semkiw, E., Foley, T., Wieberg, C. G., Wenzel, J., & Johnson, M. C. (2022). Biomarkers Selection for Population Normalization in SARS-CoV-2 Wastewater-based Epidemiology. MedRxiv. https://doi.org/10.1101/2022.03.14.22272359 Huang, Q., Marzouk, T., Cirligeanu, R., Malmstrom, H., Eliav, E., & Ren, Y.-F. (2021). Ventilation Assessment by Carbon Dioxide Levels in Dental Treatment Rooms. Journal of Dental Research, 100(8), 810–816. https://doi.org/10.1177/00220345211014441 Huang, W.-L., Fann, W.-B., Shen, R.-J., Chu, Y., Yang, J.-Y., Shen, R.-J. ;, Chu, Y. ;, Yang, J.-Y., Wang, W.-H., Thitithanyanont, A., & Coppola, N. (2021). Surveillance of SARS-CoV-2 in Sewage Treatment Plants between January 2020 and July 2021 in Taiwan. Pathogens 2021, Vol. 10, Page 1611, 10(12), 1611. https://doi.org/10.3390/PATHOGENS10121611 Iddon, C., Jones, B., Sharpe, P., Cevik, M., & Fitzgerald, S. (2022). A population framework for predicting the proportion of people infected by the far-field airborne transmission of SARS-CoV-2 indoors. Building and Environment, 221, 109309. https://doi.org/https://doi.org/10.1016/j.buildenv.2022.109309 Jain, N., Hamilton, D., Mital, S., Ilias, A., Brinkmann, M., & McPhedran, K. (2022). Long-term passive wastewater surveillance of SARS-CoV-2 for seven university dormitories in comparison to municipal surveillance. Science of The Total Environment, 852, 158421. https://doi.org/10.1016/J.SCITOTENV.2022.158421 Jiang, G., Wu, J., Weidhaas, J., Li, X., Chen, Y., Mueller, J., Li, J., Kumar, M., Zhou, X., Arora, S., Haramoto, E., Sherchan, S., Orive, G., Lertxundi, U., Honda, R., Kitajima, M., & Jackson, G. (2022). Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology. Water Research, 218, 118451. https://doi.org/10.1016/J.WATRES.2022.118451 Jones, B., Sharpe, P., Iddon, C., Hathway, E. A., Noakes, C. J., & Fitzgerald, S. (2021). Modelling uncertainty in the relative risk of exposure to the SARS-CoV-2 virus by airborne aerosol transmission in well mixed indoor air. Building and Environment, 191, 107617. https://doi.org/https://doi.org/10.1016/j.buildenv.2021.107617 Kim, K., Ban, M. J., Kim, S., Park, M.-H., Stenstrom, M. K., & Kang, J.-H. (2022). Optimal allocation and operation of sewer monitoring sites for wastewater-based disease surveillance: A methodological proposal. Journal of Environmental Management, 320, 115806. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.115806 Kisand, V., Laas, P., Palmik-Das, K., Panksep, K., Tammert, H., Albreht, L., Allemann, H., Liepkalns, L., Vooro, K., Ritz, C., Hauryliuk, V., & Tenson, T. (2023). Prediction of COVID-19 positive cases, a nation-wide SARS-CoV-2 wastewater-based epidemiology study. Water Research, 231, 119617. https://doi.org/10.1016/j.watres.2023.119617 Lee, S., Golinski, M., & Chowell, G. (2012). Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza. Bulletin of Mathematical Biology, 74(4), 958–980. https://doi.org/10.1007/s11538-011-9704-y Li, J., Ahmed, W., Metcalfe, S., Smith, W. J. M., Tscharke, B., Lynch, P., Sherman, P., Vo, P. H. N., Kaserzon, S. L., Simpson, S. L., McCarthy, D. T., Thomas, K. V., Mueller, J. F., & Thai, P. (2022). Monitoring of SARS-CoV-2 in sewersheds with low COVID-19 cases using a passive sampling technique. Water Research, 218, 118481. https://doi.org/10.1016/J.WATRES.2022.118481 Li, Xiangdong, Lester, D., Rosengarten, G., Aboltins, C., Patel, M., & Cole, I. (2022). A spatiotemporally resolved infection risk model for airborne transmission of COVID-19 variants in indoor spaces. Science of The Total Environment, 812, 152592. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152592 Li, Xuan, Kulandaivelu, J., Zhang, S., Shi, J., Sivakumar, M., Mueller, J., Luby, S., Ahmed, W., Coin, L., & Jiang, G. (2021). Data-driven estimation of COVID-19 community prevalence through wastewater-based epidemiology. The Science of the Total Environment, 789, 147947. https://doi.org/10.1016/j.scitotenv.2021.147947 Li, Xuan, Zhang, S., Sherchan, S., Orive, G., Lertxundi, U., Haramoto, E., Honda, R., Kumar, M., Arora, S., Kitajima, M., & Jiang, G. (2022). Correlation between SARS-CoV-2 RNA concentration in wastewater and COVID-19 cases in community: A systematic review and meta-analysis. https://doi.org/10.1016/j.jhazmat.2022.129848 Liang, C.-J., & Yu, P.-R. (2021). Assessment and Improvement of Two Low-Cost Particulate Matter Sensor Systems by Using Spatial Interpolation Data from Air Quality Monitoring Stations. In Atmosphere (Vol. 12, Issue 3). https://doi.org/10.3390/atmos12030300 Liao, C.-M., Chang, C.-F., & Liang, H.-M. (2005). A Probabilistic Transmission Dynamic Model to Assess Indoor Airborne Infection Risks. Risk Analysis, 25(5), 1097–1107. https://doi.org/https://doi.org/10.1111/j.1539-6924.2005.00663.x Lim, M. C. Y., Wang, Y.-F., Huang, S.-W., Yang, J.-Y., & Wang, J.-R. (2015). High Incidence of Mammalian Orthoreovirus Identified by Environmental Surveillance in Taiwan. PLOS ONE, 10(11), 1–14. https://doi.org/10.1371/journal.pone.0142745 Liu, Y. M., Shahed-Al-Mahmud, M., Chen, X., Chen, T. H., Liao, K. S., Lo, J. M., Wu, Y. M., Ho, M. C., Wu, C. Y., Wong, C. H., Jan, J. T., & Ma, C. (2020). A Carbohydrate-Binding Protein from the Edible Lablab Beans Effectively Blocks the Infections of Influenza Viruses and SARS-CoV-2. Cell Reports, 32(6). https://doi.org/10.1016/J.CELREP.2020.108016 Mac Mahon, J., Criado Monleon, A. J., Gill, L. W., O’Sullivan, J. J., & Meijer, W. G. (2022). Wastewater-based epidemiology (WBE) for SARS-CoV-2 - A review focussing on the significance of the sewer network using a Dublin city catchment case study. Water Science and Technology : A Journal of the International Association on Water Pollution Research, 86(6), 1402–1425. https://doi.org/10.2166/WST.2022.278 Mangwana, N., Archer, E., Muller, C. J. F., Preiser, W., Wolfaardt, G., Kasprzyk-Hordern, B., Carstens, A., Brocker, L., Webster, C., Mccarthy, D., Street, R., Mathee, A., Louw, J., Mdhluli, M., Johnson, R., Phong, G. E. :, & Thai, K. (2022). Sewage surveillance of SARS-CoV-2 at student campus residences in the Western Cape, South Africa. Tygerberg, 7050. https://doi.org/10.1016/j.scitotenv.2022.158028 Mao, K., Zhang, K., Du, W., Ali, W., Feng, X., & Zhang, H. (2020). The potential of wastewater-based epidemiology as surveillance and early warning of infectious disease outbreaks. Current Opinion in Environmental Science & Health, 17, 1–7. https://doi.org/https://doi.org/10.1016/j.coesh.2020.04.006 Mehanni, M. M., Gadow, S. I., Alshammari, F. A., Modafer, Y., Ghanem, K. Z., El-Tahtawi, N. F., El-Homosy, R. F., & Hesham, A. E. L. (2023). Antibiotic-resistant bacteria in hospital wastewater treatment plant effluent and the possible consequences of its reuse in agricultural irrigation. Frontiers in Microbiology, 14, 1141383. https://doi.org/10.3389/FMICB.2023.1141383/BIBTEX Mejías-Molina, C., Pico-Tomàs, A., Martínez-Puchol, S., Itarte, M., Torrell, H., Canela, N., Borrego, C. M., Corominas, L., Rusiñol, M., & Bofill-Mas, S. (2024). Wastewater-based epidemiology applied at the building-level reveals distinct virome profiles based on the age of the contributing individuals. Human Genomics, 18(1). https://doi.org/10.1186/S40246-024-00580-1 Mondal, S., Feirer, N., Brockman, M., Preston, M. A., Teter, S. J., Ma, D., Goueli, S. A., Moorji, S., Saul, B., & Cali, J. J. (2021). A direct capture method for purification and detection of viral nucleic acid enables epidemiological surveillance of SARS-CoV-2. The Science of the Total Environment, 795. https://doi.org/10.1016/J.SCITOTENV.2021.148834 Morvan, M., Jacomo, A. Lo, Souque, C., Wade, M. J., Hoffmann, T., Pouwels, K., Lilley, C., Singer, A. C., Porter, J., Evens, N. P., Walker, D. I., Bunce, J. T., Engeli, A., Grimsley, J., O’Reilly, K. M., & Danon, L. (2022). An analysis of 45 large-scale wastewater sites in England to estimate SARS-CoV-2 community prevalence. Nature Communications 2022 13:1, 13(1), 1–9. https://doi.org/10.1038/s41467-022-31753-y Nagarkar, M., Keely, S. P., Jahne, M., Wheaton, E., Hart, C., Smith, B., Garland, J., Varughese, E. A., Braam, A., Wiechman, B., Morris, B., & Brinkman, N. E. (2022). SARS-CoV-2 monitoring at three sewersheds of different scales and complexity demonstrates distinctive relationships between wastewater measurements and COVID-19 case data. Science of The Total Environment, 816, 151534. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151534 Nardell, E. A., Keegan, J., Cheney, S. A., & Etkind, S. C. (1991). Airborne Infection: Theoretical Limits of Protection Achievable by Building Ventilation. American Review of Respiratory Disease, 144(2), 302–306. https://doi.org/10.1164/ajrccm/144.2.302 National Center for Immunization and Respiratory Diseases (NCIRD) Division of Viral Diseases. (2021). Science Brief: Transmission of SARS-CoV-2 in K-12 Schools and Early Care and Education Programs – Updated - PubMed. Atlanta (GA): Centers for Disease Control and Prevention (US). https://pubmed.ncbi.nlm.nih.gov/34009772/ Naughton, C. C., Roman, F. A., Alvarado, A. G. F., Tariqi, A. Q., Deeming, M. A., Kadonsky, K. F., Bibby, K., Bivins, A., Medema, G., Ahmed, W., Katsivelis, P., Allan, V., Sinclair, R., & Rose, J. B. (2023). Show us the data: global COVID-19 wastewater monitoring efforts, equity, and gaps. FEMS Microbes, 4, 1–8. https://doi.org/10.1093/FEMSMC/XTAD003 Nelson, J. R., Lu, A., Maestre, J. P., Palmer, E. J., Jarma, D., Kinney, K. A., Grubesic, T. H., & Kirisits, M. J. (2022). Space-time analysis of COVID-19 cases and SARS-CoV-2 wastewater loading: A geodemographic perspective. Spatial and Spatio-Temporal Epidemiology, 42, 100521. https://doi.org/10.1016/J.SSTE.2022.100521 Novoa, B., Ríos-Castro, R., Otero-Muras, I., Gouveia, S., Cabo, A., Saco, A., Rey-Campos, M., Pájaro, M., Fajar, N., Aranguren, R., Romero, A., Panebianco, A., Valdés, L., Payo, P., Alonso, A. A., Figueras, A., & Cameselle, C. (2022). Wastewater and marine bioindicators surveillance to anticipate COVID-19 prevalence and to explore SARS-CoV-2 diversity by next generation sequencing: One-year study. The Science of the Total Environment, 833. https://doi.org/10.1016/J.SCITOTENV.2022.155140 Oh, C., Zhou, A., O’brien, K., Jamal, Y., Wennerdahl, H., Schmidt, A. R., Shisler, J. L., Jutla, A., Schmidt Iv, A. R., Keefer, L., Brown, W. M., & Nguyen, T. H. (2022). Application of neighborhood-scale wastewater-based epidemiology in low COVID-19 incidence situations. https://doi.org/10.1016/j.scitotenv.2022.158448 Parasa, S., Desai, M., Thoguluva Chandrasekar, V., Patel, H. K., Kennedy, K. F., Roesch, T., Spadaccini, M., Colombo, M., Gabbiadini, R., Artifon, E. L. A., Repici, A., & Sharma, P. (2020). Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Network Open, 3(6). https://doi.org/10.1001/JAMANETWORKOPEN.2020.11335 Park, S., Choi, Y., Song, D., & Kim, E. K. (2021). Natural ventilation strategy and related issues to prevent coronavirus disease 2019 (COVID-19) airborne transmission in a school building. Science of The Total Environment, 789, 147764. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147764 Pavilonis, B., Ierardi, A. M., Levine, L., Mirer, F., & Kelvin, E. A. (2021). Estimating aerosol transmission risk of SARS-CoV-2 in New York City public schools during reopening. Environ Res, 195, 110805. https://doi.org/10.1016/j.envres.2021.110805 Persily, A, & de Jonge, L. (2017). Carbon dioxide generation rates for building occupants. Indoor Air, 27(5), 868–879. https://doi.org/https://doi.org/10.1111/ina.12383 Persily, Andrew. (2021). Please Don’t Blame ASHRAE Standard 62.1 for 1000 ppm CO2. https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=931732 Persily, Andrew. (2022). Development and application of an indoor carbon dioxide metric. Indoor Air, 32(7), e13059. https://doi.org/10.1111/INA.13059 Plans Rubió, P. (2012). Is the basic reproductive number (R0) for measles viruses observed in recent outbreaks lower than in the pre-vaccination era? Eurosurveillance, 17(31). https://doi.org/https://doi.org/10.2807/ese.17.31.20233-en Radu, E., Masseron, A., Amman, F., Schedl, A., Agerer, B., Endler, L., Penz, T., Bock, C., Bergthaler, A., Vierheilig, J., Hufnagl, P., Korschineck, I., Krampe, J., & Kreuzinger, N. (2022). Emergence of SARS-CoV-2 Alpha lineage and its correlation with quantitative wastewater-based epidemiology data. Water Research, 215. https://doi.org/10.1016/J.WATRES.2022.118257 Ram, K., Thakur, R. C., Singh, D. K., Kawamura, K., Shimouchi, A., Sekine, Y., Nishimura, H., Singh, S. K., Pavuluri, C. M., Singh, R. S., & Tripathi, S. N. (2021). Why airborne transmission hasn’t been conclusive in case of COVID-19? An atmospheric science perspective. Sci Total Environ, 773, 145525. https://doi.org/10.1016/j.scitotenv.2021.145525 Rauch, W., Schenk, H., Insam, H., Markt, R., & Kreuzinger, N. (2022). Data modelling recipes for SARS-CoV-2 wastewater-based epidemiology. https://doi.org/10.1016/j.envres.2022.113809 Reno, U., Regaldo, L., Ojeda, G., Schmuck, J., Romero, N., Polla, W., Kergaravat, S. V., & Gagneten, A. M. (2022). Wastewater-Based Epidemiology: Detection of SARS-CoV-2 RNA in Different Stages of Domestic Wastewater Treatment in Santa Fe, Argentina. Water, Air, and Soil Pollution, 233(9). https://doi.org/10.1007/S11270-022-05772-W Reynolds, L. J., Gonzalez, G., Sala-Comorera, L., Martin, N. A., Byrne, A., Fennema, S., Holohan, N., Ratnam Kuntamukkula, S., Sarwar, N., Nolan, T. M., Stephens, J. H., Whitty, M., Bennett, C., Luu, Q., Morley, U., Yandle, Z., Dean, J., Joyce, E., O’sullivan, J. J., … Meijer, W. G. (2022). SARS-CoV-2 variant trends in Ireland: Wastewater-based epidemiology and clinical surveillance. https://doi.org/10.1016/j.scitotenv.2022.155828 Riley, E. C., Murphy, G., & Riley, R. L. (1978). Airborne spread of measles in a suburban elementary school. Am J Epidemiol, 107(5), 421–432. https://doi.org/10.1093/oxfordjournals.aje.a112560 Riley, R. L., Mills, C. C., O’Grady, F., Sultan, L. U., Wittstadt, F., & Shivpuri, D. N. (1962). Infectiousness of Air from a Tuberculosis Ward. American Review of Respiratory Disease, 85(4), 511–525. https://doi.org/10.1164/arrd.1962.85.4.511 Robins, K., Leonard, A. F. C., Farkas, K., Graham, D. W., Jones, D. L., Kasprzyk-Hordern, B., Bunce, J. T., Grimsley, J. M. S., Wade, M. J., Zealand, A. M., & McIntyre-Nolan, S. (2022). Research needs for optimising wastewater-based epidemiology monitoring for public health protection. Journal of Water and Health, 20(9), 1284–1313. https://doi.org/10.2166/WH.2022.026 Rudnick, S. N., & Milton, D. K. (2003). Risk of indoor airborne infection transmission estimated from carbon dioxide concentration. Indoor Air, 13(3), 237–245. https://doi.org/10.1034/j.1600-0668.2003.00189.x SAGE-EMG. (2020). EMG: Role of ventilation in controlling SARS-CoV-2 transmission, 30 September 2020 - GOV.UK. https://www.gov.uk/government/publications/emg-role-of-ventilation-in-controlling-sars-cov-2-transmission-30-september-2020 Saingam, P., Li, B., Nguyen Quoc, B., Jain, T., Bryan, A., & Winkler, M. K. H. (2023). Wastewater surveillance of SARS-CoV-2 at intra-city level demonstrated high resolution in tracking COVID-19 and calibration using chemical indicators. Science of The Total Environment, 866, 161467. https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.161467 Sakarovitch, C., Schlosser, O., Courtois, S., Proust-Lima, C., Couallier, J., Pétrau, A., Litrico, X., & Loret, J. F. (2022). Monitoring of SARS-CoV-2 in wastewater: what normalisation for improved understanding of epidemic trends? Journal of Water and Health, 20(4), 712–726. https://doi.org/10.2166/WH.2022.012 Sangsanont, J., Rattanakul, S., Kongprajug, A., Chyerochana, N., Sresung, M., Sriporatana, N., Wanlapakorn, N., Poovorawan, Y., Mongkolsuk, S., & Sirikanchana, K. (2022). SARS-CoV-2 RNA surveillance in large to small centralized wastewater treatment plants preceding the third COVID-19 resurgence in Bangkok, Thailand. Science of The Total Environment, 809, 151169. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151169 Schmitz, B. W., Innes, G. K., Prasek, S. M., Betancourt, W. Q., Stark, E. R., Foster, A. R., Abraham, A. G., Gerba, C. P., & Pepper, I. L. (2021). Enumerating asymptomatic COVID-19 cases and estimating SARS-CoV-2 fecal shedding rates via wastewater-based epidemiology. Science of The Total Environment, 801, 149794. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149794 Scobie, H. M., Panaggio, M., Binder, A. M., Gallagher, M. E., Duck, W. M., Graff, P., & Silk, B. J. (2023). Correlations and Timeliness of COVID-19 Surveillance Data Sources and Indicators ― United States, October 1, 2020–March 22, 2023. MMWR. Morbidity and Mortality Weekly Report, 72(19), 529–535. https://doi.org/10.15585/MMWR.MM7219E2 Scott, L. C., Aubee, A., Babahaji, L., Vigil, K., Tims, S., & Aw, T. G. (2021). Targeted wastewater surveillance of SARS-CoV-2 on a university campus for COVID-19 outbreak detection and mitigation. Environmental Research, 200. https://doi.org/10.1016/J.ENVRES.2021.111374 Sellers, S. C., Gosnell, E., Bryant, D., Belmonte, S., Self, S., McCarter, M. S. J., Kennedy, K., & Norman, R. S. (2022a). Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. Environmental Research, 215(Pt 1). https://doi.org/10.1016/J.ENVRES.2022.114277 Sellers, S. C., Gosnell, E., Bryant, D., Belmonte, S., Self, S., McCarter, M. S. J., Kennedy, K., & Norman, R. S. (2022b). Building-level wastewater surveillance of SARS-CoV-2 is associated with transmission and variant trends in a university setting. Environmental Research, 215(Pt 1). https://doi.org/10.1016/J.ENVRES.2022.114277 Seppänen, O. A., Fisk, W. J., & Mendell, M. J. (1999). Association of Ventilation Rates and CO2 Concentrations with Health andOther Responses in Commercial and Institutional Buildings. Indoor Air, 9(4), 226–252. https://doi.org/https://doi.org/10.1111/j.1600-0668.1999.00003.x Sewerage Systems Office of the Public Works Department of Taipei City Government. (2023). Increase User Connection Rate. https://english.sso.gov.taipei/cp.aspx?n=DDCF1580321FF3BF Smith, T., Holm, R. H., Keith, R. J., Amraotkar, A. R., Alvarado, C. R., Banecki, K., Choi, B., Santisteban, I. C., Bushau-Sprinkle, A. M., Kitterman, K. T., Fuqua, J., Hamorsky, K. T., Palmer, K. E., Brick, J. M., Rempala, G. A., & Bhatnagar, A. (2022). Quantifying the relationship between sub-population wastewater samples and community-wide SARS-CoV-2 seroprevalence. Science of The Total Environment, 853, 158567. https://doi.org/10.1016/J.SCITOTENV.2022.158567 Solo-Gabriele, H. M., Kumar, S., Abelson, S., Penso, J., Contreras, J., Babler, K. M., Sharkey, M. E., Mantero, A. M. A., Lamar, W. E., Tallon, J. J., Kobetz, E., Solle, N. S., Shukla, B. S., Kenney, R. J., Mason, C. E., Schürer, S. C., Vidovic, D., Williams, S. L., Grills, G. S., … Kumar, N. (2022). Predicting COVID-19 cases using SARS-CoV-2 RNA in air, surface swab and wastewater samples. The Science of the Total Environment, 857(Pt 1). https://doi.org/10.1016/J.SCITOTENV.2022.159188 Somsen, G. A., Rijn, C. van, Kooij, S., Bem, R. A., & Bonn, D. (2020). Small droplet aerosols in poorly ventilated spaces and SARS-CoV-2 transmission. The Lancet. Respiratory Medicine, 8(7), 658. https://doi.org/10.1016/S2213-2600(20)30245-9 Spurbeck, R. R., Minard-Smith, A., & Catlin, L. (2021). Feasibility of neighborhood and building scale wastewater-based genomic epidemiology for pathogen surveillance. The Science of the Total Environment, 789. https://doi.org/10.1016/J.SCITOTENV.2021.147829 Srivastava, M., Muntz, R., & Potkonjak, M. (2001). Smart Kindergarten: Sensor-Based Wireless Networks for Smart Developmental Problem-Solving Environments. Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, 132–138. https://doi.org/10.1145/381677.381690 Stephens, D. B. (2013). HVAC filtration and the Wells-Riley approach to assessing risks of infectious airborne diseases. https://api.semanticscholar.org/CorpusID:44619670 Suriano, D., & Prato, M. (2023a). An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors, 23(8). https://doi.org/10.3390/s23083976 Suriano, D., & Prato, M. (2023b). An Investigation on the Possible Application Areas of Low-Cost PM Sensors for Air Quality Monitoring. Sensors (Basel, Switzerland), 23(8). https://doi.org/10.3390/S23083976 Sze To, G. N., & Chao, C. Y. H. (2010). Review and comparison between the Wells–Riley and dose‐response approaches to risk assessment of infectious respiratory diseases. Indoor Air, 20(1), 2. https://doi.org/10.1111/J.1600-0668.2009.00621.X Tchounwou, B., Korzeniewska, E., Catherine Otero, M. B., Anni Murao, L. E., Antoinette Limen, M. G., Rev Caalim, D. A., Lorenzo Gaite, P. A., Bacus, M. G., Acaso, J. T., Miguel, R. M., Corazo, K., Knot, I. E., Sajonia, H. I., de los Reyes III, F. L., Marie Jaraula, C. B., Baja, E. S., & Marie Del Mundo, D. N. (2022). Multifaceted Assessment of Wastewater-Based Epidemiology for SARS-CoV-2 in Selected Urban Communities in Davao City, Philippines: A Pilot Study. Int. J. Environ. Res. Public Health, 19, 8789. https://doi.org/10.3390/ijerph19148789 Tomasino, M. P., Semedo, M., Vieira e Moreira, P., Ferraz, E., Rocha, A., Carvalho, M. F., Magalhães, C., & Mucha, A. P. (2021). SARS-CoV-2 RNA detected in urban wastewater from Porto, Portugal: Method optimization and continuous 25-week monitoring. The Science of the Total Environment, 792. https://doi.org/10.1016/J.SCITOTENV.2021.148467 UC Merced. (2022). COVIDPoops19: Summary of Global SARS-CoV-2 Wastewater Monitoring Efforts by UC Merced Researchers. UNESCO. (2022). The impact of the COVID-19 pandemic on education: International evidence from the Responses to Educational Disruption Survey (REDS). US-CDC. (2021a). COVID-19 Pandemic Planning Scenarios. https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html US-CDC. (2021b). Scientific Brief: SARS-CoV-2 Transmission. https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html US-CDC. (2022). Stay Up to Date with COVID-19 Vaccines. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/stay-up-to-date.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fvaccines%2Frecommendations%2Fchildren-teens.html Vallejo, J. A., Rumbo-Feal, S., Conde-Pérez, K., López-Oriona, Á., Tarrío-Saavedra, J., Reif, R., Ladra, S., Rodiño-Janeiro, B. K., Nasser, M., Cid, Á., Veiga, M. C., Acevedo, A., Lamora, C., Bou, G., Cao, R., Poza, M., & Coruña, S. (2020). Predicting the number of people infected with SARS-COV-2 in a population using statistical models based on wastewater viral load. MedRxiv, 2020.07.02.20144865. https://doi.org/10.1101/2020.07.02.20144865 Vallejo, J. A., Trigo-Tasende, N., Rumbo-Feal, S., Conde-Pérez, K., López-Oriona, Á., Barbeito, I., Vaamonde, M., Tarrío-Saavedra, J., Reif, R., Ladra, S., Rodiño-Janeiro, B. K., Nasser-Ali, M., Cid, Á., Veiga, M., Acevedo, A., Lamora, C., Bou, G., Cao, R., & Poza, M. (2022). Modeling the number of people infected with SARS-COV-2 from wastewater viral load in Northwest Spain. Science of The Total Environment, 811, 152334. https://doi.org/10.1016/J.SCITOTENV.2021.152334 Viera, A. J., & Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Family Medicine, 37(5), 360–363. https://europepmc.org/article/med/15883903 Vo, V., Tillett, R. L., Papp, K., Shen, S., Gu, R., Gorzalski, A., Siao, D., Markland, R., Chang, C. L., Baker, H., Chen, J., Schiller, M., Betancourt, W. Q., Buttery, E., Pandori, M., Picker, M. A., Gerrity, D., & Oh, E. C. (2022). Use of wastewater surveillance for early detection of Alpha and Epsilon SARS-CoV-2 variants of concern and estimation of overall COVID-19 infection burden. Science of The Total Environment, 835, 155410. https://doi.org/10.1016/J.SCITOTENV.2022.155410 Vogt, M., Schneider, P., Castell, N., & Hamer, P. (2021). Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway. Atmosphere 2021, Vol. 12, Page 961, 12(8), 961. https://doi.org/10.3390/ATMOS12080961 Wartell, B. A., Proano, C., Bakalian, L., Kaya, D., Croft, K., McCreary, M., Lichtenstein, N., Miske, V., Arcellana, P., Boyer, J., Benschoten, I. Van, Anderson, M., Crabb, A., Gilson, S., Gourley, A., Wheeler, T., Trest, B., Bowman, G., & Kjellerup, B. V. (2022). Implementing wastewater surveillance for SARS-CoV-2 on a university campus: Lessons learned. Water Environment Research : A Research Publication of the Water Environment Federation, 94(11). https://doi.org/10.1002/WER.10807 Water & Energy Sustainable Technology Center. (2020). Wastewater testing at UArizona stops coronavirus spread; garners national attention. The University of Arizonna. https://west.arizona.edu/news/2020/08/wastewater-testing-uarizona-stops-coronavirus-spread-garners-national-attention Weidhaas, J., Aanderud, Z. T., Roper, D. K., VanDerslice, J., Gaddis, E. B., Ostermiller, J., Hoffman, K., Jamal, R., Heck, P., Zhang, Y., Torgersen, K., Laan, J. Vander, & LaCross, N. (2021). Correlation of SARS-CoV-2 RNA in wastewater with COVID-19 disease burden in sewersheds. Science of The Total Environment, 775, 145790. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.145790 West, N. W., Vasquez, A. A., Bahmani, A., Khan, M. F., Hartrick, J., Turner, C. L., Shuster, W., & Ram, J. L. (2022). Sensitive detection of SARS-CoV-2 molecular markers in urban community sewersheds using automated viral RNA purification and digital droplet PCR. The Science of the Total Environment, 847. https://doi.org/10.1016/J.SCITOTENV.2022.157547 WHO. (2020). Coronavirus disease (COVID-19): How is it transmitted? World Health Organization. https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted WHO. (2021). Roadmap to improve and ensure good indoor ventilation in the context of COVID-19. 38. Wiemken, T. L., Khan, F., Puzniak, L., Yang, W., Simmering, J., Polgreen, P., Nguyen, J. L., Jodar, L., & McLaughlin, J. M. (2023). Seasonal trends in COVID-19 cases, hospitalizations, and mortality in the United States and Europe. Scientific Reports, 13(1). https://doi.org/10.1038/S41598-023-31057-1 Wilder, M. L., Middleton, F., Larsen, D. A., Du, Q., Fenty, A., Zeng, T., Insaf, T., Kilaru, P., Collins, M., Kmush, B., & Green, H. C. (2021). Co-quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. Water Research X, 11. https://doi.org/10.1016/J.WROA.2021.100100 Wong, J. C. C., Tan, J., Lim, Y. X., Arivalan, S., Hapuarachchi, H. C., Mailepessov, D., Griffiths, J., Jayarajah, P., Setoh, Y. X., Tien, W. P., Low, S. L., Koo, C., Yenamandra, S. P., Kong, M., Lee, V. J. M., & Ng, L. C. (2021a). Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. Science of The Total Environment, 786, 147419. https://doi.org/10.1016/J.SCITOTENV.2021.147419 Wong, J. C. C., Tan, J., Lim, Y. X., Arivalan, S., Hapuarachchi, H. C., Mailepessov, D., Griffiths, J., Jayarajah, P., Setoh, Y. X., Tien, W. P., Low, S. L., Koo, C., Yenamandra, S. P., Kong, M., Lee, V. J. M., & Ng, L. C. (2021b). Non-intrusive wastewater surveillance for monitoring of a residential building for COVID-19 cases. The Science of the Total Environment, 786. https://doi.org/10.1016/J.SCITOTENV.2021.147419 Wu, F., Xiao, A., Zhang, J., Moniz, K., Endo, N., Armas, F., Bonneau, R., Brown, M. A., Bushman, M., Chai, P. R., Duvallet, C., Erickson, T. B., Foppe, K., Ghaeli, N., Gu, X., Hanage, W. P., Huang, K. H., Lee, W. L., Matus, M., … Alm, E. J. (2022). SARS-CoV-2 RNA concentrations in wastewater foreshadow dynamics and clinical presentation of new COVID-19 cases. The Science of the Total Environment, 805. https://doi.org/10.1016/J.SCITOTENV.2021.150121 Wu, T. Y., Majeed, A., & Kuo, K. N. (2010). An overview of the healthcare system in Taiwan. London Journal of Primary Care, 3(2), 115. https://doi.org/10.1080/17571472.2010.11493315 Wurtz, N., Lacoste, A., Jardot, P., Delache, A., Fontaine, X., Verlande, M., Annessi, A., Giraud-Gatineau, A., Chaudet, H., Fournier, P. E., Augier, P., & La Scola, B. (2021). Viral RNA in City Wastewater as a Key Indicator of COVID-19 Recrudescence and Containment Measures Effectiveness. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.664477 Yaglom, H. D., Maurer, M., Collins, B., Hojnacki, J., Monroy-Nieto, J., Bowers, J. R., Packard, S., Erickson, D. E., Barrand, Z. A., Simmons, K. M., Brock, B. N., Lim, E. S., Smith, S., Hepp, C. M., & Engelthaler, D. M. (2022). One health genomic surveillance and response to a university-based outbreak of the SARS-CoV-2 Delta AY.25 lineage, Arizona, 2021. PloS One, 17(10), e0272830. https://doi.org/10.1371/JOURNAL.PONE.0272830 Yanaç, K., Adegoke, A., Wang, L., Uyaguari, M., & Yuan, Q. (2022). Detection of SARS-CoV-2 RNA throughout wastewater treatment plants and a modeling approach to understand COVID-19 infection dynamics in Winnipeg, Canada. Science of The Total Environment, 825, 153906. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.153906 Zdenkova, K., Bartackova, J., Cermakova, E., Demnerova, K., Dostalkova, A., Janda, V., Jarkovsky, J., Lopez Marin, M. A., Novakova, Z., Rumlova, M., Ambrozova, J. R., Skodakova, K., Swierczkova, I., Sykora, P., Vejmelkova, D., Wanner, J., & Bartacek, J. (2022). Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network. Water Research, 216, 118343. https://doi.org/10.1016/J.WATRES.2022.118343 Zhang, D., Ling, H., Huang, X., Li, J., Li, W., Yi, C., Zhang, T., Jiang, Y., He, Y., Deng, S., Zhang, X., Wang, X., Liu, Y., Li, G., & Qu, J. (2020). Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Science of The Total Environment, 741, 140445. https://doi.org/10.1016/J.SCITOTENV.2020.140445 Zhao, L., Atoni, E., Nyaruaba, R., Du, Y., Zhang, H., Donde, O., Huang, D., Xiao, S., Ren, N., Ma, T., Shu, Z., Yuan, Z., Tong, L., & Xia, H. (2022). Environmental surveillance of SARS-CoV-2 RNA in wastewater systems and related environments in Wuhan: April to May of 2020. Journal of Environmental Sciences, 112, 115–120. https://doi.org/10.1016/J.JES.2021.05.005 Zheng, S., Fan, J., Yu, F., Feng, B., Lou, B., Zou, Q., Xie, G., Lin, S., Wang, R., Yang, X., Chen, W., Wang, Q., Zhang, D., Liu, Y., Gong, R., Ma, Z., Lu, S., Xiao, Y., Gu, Y., … Liang, T. (2020). Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study. BMJ (Clinical Research Ed.), 369. https://doi.org/10.1136/BMJ.M1443 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99908 | - |
| dc.description.abstract | 研究目的:環境監測已成為補充傳統疫情個案通報系統的關鍵工具,特別是在面對無症狀與氣膠傳播風險的情境下。本論文旨在發展環境監測方法與預測模型,以評估並預測COVID-19在臺北市的傳播風險。研究包含三個相互關聯的子題,具體目標如下:(1)透過持續性的室內空氣品質監測,評估幼兒園中SARS-CoV-2的空氣傳播風險;(2)於大學附設醫院建立機構層級的污水監測系統,用以早期偵測並預測院內及社區的疫情趨勢;(3)建立臺北市12個行政區的全市性污水病毒監測與疫情預測模型。
研究方法:第一項研究於2021年8月至11月期間,在一所幼兒園內持續監測教室與辦公室的二氧化碳(CO₂)濃度,並利用Wells-Riley模型,結合CO₂濃度、使用人數與停留時間等參數推估基本再生數(R₀)。第二項研究於2022年4月至10月,在一所醫院的七個污水井進行每週兩次的污水採樣,採用病毒RNA直接捕捉法進行預處理與濃縮,並以RT-qPCR定量分析。透過迴歸模型預測醫院、周邊社區及全市的COVID-19病例數移動平均。第三項研究將監測擴展至整個臺北市,自2022年5月至8月共90天,於信義與內湖兩行政區進行每日採樣,其餘10區則每週採樣兩次。迴歸模型以病毒相對訊號預測疫情,並透過行政區通報數據進行模型驗證。 研究結果:第一項研究顯示,教室在上課期間的室內CO₂濃度較戶外高出超過400 ppm,且30人教室的R₀估值介於3.01至3.12之間。隨著一週中與每日進程的推移,感染風險逐漸上升,顯示氣膠累積現象。情境分析指出,結合減少室內人數、停留時間與CO₂濃度方能降低感染風險。第二項研究中,即便當地確診數極低,仍能檢出SARS-CoV-2病毒,顯示污水檢測具有高度敏感性。相對病毒訊號與未來疫情指標呈現高度相關,可有效預測醫院、社區與城市層級的趨勢。第三項研究中,最佳對數迴歸模型可解釋未來五日移動平均新增病例變異量的78%。病毒相對訊號每增加1%,新發病例數增加約0.27%。模型驗證顯示10個行政區中預測值與實際通報病例無顯著差異。 研究結論:本研究證實,透過室內CO₂監測與污水病毒量化的環境監測方式,可提供敏感、非侵入性且具可擴展性的工具,有效評估感染風險並預測疫情趨勢,特別有助於發現無症狀個案及低度通報的疫情。政策建議包括:強制於教育場所設置CO₂監測系統、投資改善通風系統,以及推動全國機構與社區層級的污水病毒監測計畫。綜合三項研究成果,本研究呈現一套整合性架構,將環境監測納入防疫規劃與應變策略核心。 | zh_TW |
| dc.description.abstract | Objectives: Environmental surveillance has emerged as a vital tool to supplement traditional case-based surveillance of epidemic, particularly in the context of asymptomatic aerosol transmission. This dissertation aims to develop environmental monitoring approaches and predictive models to assess and forecast COVID-19 transmission risks in Taipei, Taiwan. The research consists of three interrelated studies with the following objectives: (1) to estimate the airborne infection risk of SARS-CoV-2 in kindergartens using continuous indoor air quality monitoring; (2) to establish an institutional wastewater surveillance system for early detection and forecasting of COVID-19 trends within and beyond a university hospital; and (3) to develop a citywide wastewater-based epidemic prediction model across 12 districts of Taipei.
Methods: The first study employed on-site continuous monitoring of carbon dioxide (CO₂) in kindergarten classrooms and staff offices between August and November 2021. The Wells-Riley model was applied to estimate the basic reproduction number (R₀) using data on CO₂ concentrations, occupant numbers, and duration of stay. The second study involved twice-weekly wastewater sampling at seven hospital manholes from April to October 2022. SARS-CoV-2 RNA was extracted using a direct viral RNA capture method and quantified by RT-qPCR. Regression models were built to forecast moving averages of COVID-19 cases at the hospital, community, and city levels. The third study extended this approach to the entire Taipei City, with daily wastewater sampling in two core districts and biweekly sampling in ten others over 90 days. Regression-based epidemic prediction models were trained using relative viral signals and validated using district-level epidemiological data. Results: In the first study, the indoor CO₂ concentrations during school hours exceeded outdoor levels by over 400 ppm, with corresponding R₀ estimates ranging from 3.01 to 3.12 in classrooms with 30 occupants. Scenario analyses showed that reducing occupancy, stay duration, and CO₂ levels together could decrease R₀. In the second study, SARS-CoV-2 RNA was detected even during low-incidence periods, indicating high sensitivity of the wastewater testing method. Relative viral signals showed strong associations with future COVID-19 trends across the hospital, community, and city levels. In the third study, the best-fitting log-log model explained 78% of the variance in the future 5-day moving average cases. A 1% increase in wastewater viral signal was associated with a 0.27% increase in new COVID-19 cases. Validation showed no significant difference between forecasted and reported epidemic indicators in 10 districts. Conclusions: The findings demonstrate that environmental surveillance using indoor CO₂ monitoring and wastewater viral quantification can provide sensitive, non-invasive, and scalable methods for assessing infection risk and forecasting epidemic trends. These methods are especially valuable for detecting underreported or asymptomatic transmission. Policy implications include the need for mandatory CO₂ monitoring in educational facilities, investments in ventilation improvements, and nationwide institutional and community wastewater surveillance programs. Together, the three studies offer a cohesive framework for integrating environmental monitoring into pandemic preparedness and response planning. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:15:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:15:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Prologue: Environmental and Occupational Health Research During the Pandemic 2
中文摘要 4 Abstract 5 圖 次 10 表 次 11 Chapter 1. Introduction 12 Chapter 2. COVID-19 infection risk assessment in a kindergarten utilizing continuous air quality monitoring data 14 Introduction 14 Airborne Transmission and the Role of Ventilation 14 CO₂ Concentration as a Surrogate for Ventilation Effectiveness 15 Theoretical Framework: The Wells-Riley Model 16 Local Context and Vulnerability of Young Children 17 Gaps in Evidence and Study Objectives 18 Materials and Methods 19 Study population and study sites 19 Infection risk assessment 22 Statistical analysis 23 Results 25 Distribution of CO2 concentrations 25 Infection risk assessment 29 Scenario and sensitivity analysis 31 Discussion 35 Overview of findings and implications 35 Ventilation and infection risk management 35 Limitations of the Wells-Riley model and CO2 monitoring 36 Conclusions 39 Chapter 3. Wastewater SARS-CoV-2 Monitoring in a University Hospital Forecasts Multilevel Epidemic Curves in Taipei City, Taiwan 40 Introduction 40 Materials and Methods 42 Wastewater sampling 42 Sample pretreatment and sampling 44 Statistical analysis 46 Results 48 Quality control 48 Analysis of virus testing in wastewater 48 Construction of forecasting model 52 Discussion 63 Conclusions 67 Chapter 4. Citywide wastewater SARS-CoV-2 concentration predicts the epidemic curve in Taipei City, Taiwan 68 Introduction 68 Materials and Methods 70 Wastewater sampling 70 Sample pretreatment and testing 72 Statistical analysis 73 Results 76 Quality control 76 Qualitative and quantitative analysis of virus testing in wastewater 77 Construction of epidemic prediction model 80 Discussion 87 Conclusions 91 Chapter 5. Conclusions 92 Academic Recommendations 92 Policy Recommendations 93 Concluding Remarks 94 Appendix 1. Study Schedule 95 Appendix 2. Hours of the day and day-of-the-week basic reproductive number (R0) estimates with lower and upper bounds at daytime during weekdays 97 Appendix 3. Day-of-the-week scenario and sensitivity analysis at daytime during weekday 102 Appendix 4. (a) virus concentrations (copies/L) and (b) relative signals of each sampling site between April 14 and October 25, 2022. 104 Appendix 5. Association between virus concentrations or relative signals and epidemic indicators of the (a) inpatient department, (b) outpatient department, and (c) emergency department (without logarithmic transformation) 106 Appendix 6. Association between virus concentrations or relative signals and epidemic indicators of (a) the Zhongzeng District and (b) Taipei City (with logarithmic transformation) 109 Appendix 7. Sampling sites for wastewater virus monitoring in Taipei City 111 Appendix 8. A Systematic Review of Wastewater Monitoring for SARS-CoV-2: Sampling, Testing, Predictive Modeling, and Public Health Reaction 112 Background 112 Methods 112 Literature Reviewed 113 Sampling and Testing 114 Sampling locations 115 Sampling frequencies 117 Sampling targets 118 Sampling methods 119 Sample volumes 121 Sample storage 121 Pretreatment methods 122 Quality control measures 123 Testing methods 124 Data Analysis 126 Public Health Actions and Reactions 128 References 132 | - |
| dc.language.iso | en | - |
| dc.subject | 污水流行病學 | zh_TW |
| dc.subject | 二氧化碳 | zh_TW |
| dc.subject | 疫情預測模型 | zh_TW |
| dc.subject | COVID-19 | zh_TW |
| dc.subject | 室內空氣品質 | zh_TW |
| dc.subject | 空氣傳播 | zh_TW |
| dc.subject | 環境監測 | zh_TW |
| dc.subject | airborne transmission | en |
| dc.subject | epidemic modeling | en |
| dc.subject | carbon dioxide | en |
| dc.subject | indoor air quality | en |
| dc.subject | wastewater epidemiology | en |
| dc.subject | environmental surveillance | en |
| dc.subject | COVID-19 | en |
| dc.title | 大流行期間台北環境職業衛生研究:COVID-19之環境監測與預測模式 | zh_TW |
| dc.title | Environmental and Occupational Health Research in Taipei During the Pandemic: Environmental Monitoring and Predictive Modeling of COVID-19 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 詹長權;蘇大成;王根樹;陳佳堃;張淑媛;馬惠明;莊人祥 | zh_TW |
| dc.contributor.oralexamcommittee | Chang-Chuan Chan;Ta-Chen Su;Gen-Shu Wang;Jia-Kun Chen;Sui-Yuan Chang;Matthew Huei-Ming Ma;Jen-hsiang Chuang | en |
| dc.subject.keyword | COVID-19,環境監測,污水流行病學,室內空氣品質,二氧化碳,疫情預測模型,空氣傳播, | zh_TW |
| dc.subject.keyword | COVID-19,environmental surveillance,wastewater epidemiology,indoor air quality,carbon dioxide,epidemic modeling,airborne transmission, | en |
| dc.relation.page | 148 | - |
| dc.identifier.doi | 10.6342/NTU202500942 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-05-19 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2025-09-20 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 12.56 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
