Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99907
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王根樹zh_TW
dc.contributor.advisorGen-Shuh Wangen
dc.contributor.author陳孝桐zh_TW
dc.contributor.authorSiao-Tong Chenen
dc.date.accessioned2025-09-19T16:15:45Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-02-
dc.identifier.citationAgency for Toxic Substances and Disease Registry (ATSDR). (2021). Toxicological Profile for Perfluoroalkyls. https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf
Ahrens, L., Gerwinski, W., Theobald, N., & Ebinghaus, R. (2010). Sources of polyfluoroalkyl compounds in the North Sea, Baltic Sea and Norwegian Sea: Evidence from their spatial distribution in surface water. Marine Pollution Bulletin, 60(2), 255-260. https://doi.org/https://doi.org/10.1016/j.marpolbul.2009.09.013
Alameddine, M., Liu, Z., Sauvé, S., & Barbeau, B. (2025). Comparative Assessment of Powdered versus Granular Activated Carbon for PFAS Removal in Drinking Water Treatment Plants. ACS ES&T Water, 5(2), 851-861. https://doi.org/10.1021/acsestwater.4c00901
Allen, S. J., McKay, G., & Porter, J. F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280(2), 322-333. https://doi.org/https://doi.org/10.1016/j.jcis.2004.08.078
Appleman, T. D., Higgins, C. P., Quiñones, O., Vanderford, B. J., Kolstad, C., Zeigler-Holady, J. C., & Dickenson, E. R. V. (2014). Treatment of poly- and perfluoroalkyl substances in U.S. full-scale water treatment systems. Water Research, 51, 246-255. https://doi.org/https://doi.org/10.1016/j.watres.2013.10.067
Arvaniti, O. S., & Stasinakis, A. S. (2015). Review on the occurrence, fate and removal of perfluorinated compounds during wastewater treatment. Science of The Total Environment, 524-525, 81-92. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.04.023
Babel, S., & Kurniawan, T. A. (2003). Low-cost adsorbents for heavy metals uptake from contaminated water: a review. Journal of Hazardous Materials, 97(1), 219-243. https://doi.org/https://doi.org/10.1016/S0304-3894(02)00263-7
Baluyot, J. C., Reyes, E. M., & Velarde, M. C. (2021). Per- and polyfluoroalkyl substances (PFAS) as contaminants of emerging concern in Asia's freshwater resources. Environmental Research, 197, 111122. https://doi.org/https://doi.org/10.1016/j.envres.2021.111122
Bansal, R. C. G., Meenakshi. (2005). Activated Carbon Adsorption. CRC Press. https://doi.org/10.1201/9781420028812
Benskin, J. P., Muir, D. C. G., Scott, B. F., Spencer, C., De Silva, A. O., Kylin, H., Martin, J. W., Morris, A., Lohmann, R., Tomy, G., Rosenberg, B., Taniyasu, S., & Yamashita, N. (2012). Perfluoroalkyl Acids in the Atlantic and Canadian Arctic Oceans. Environmental Science & Technology, 46(11), 5815-5823. https://doi.org/10.1021/es300578x
Buck, R. C., Franklin, J., Berger, U., Conder, J. M., Cousins, I. T., de Voogt, P., Jensen, A. A., Kannan, K., Mabury, S. A., & van Leeuwen, S. P. (2011). Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integrated Environmental Assessment and Management, 7(4), 513-541. https://doi.org/https://doi.org/10.1002/ieam.258
Cai, Y., Wang, X., Wu, Y., Zhao, S., Li, Y., Ma, L., Chen, C., Huang, J., & Yu, G. (2018). Temporal trends and transport of perfluoroalkyl substances (PFASs) in a subtropical estuary: Jiulong River Estuary, Fujian, China. Science of The Total Environment, 639, 263-270. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.05.042
Calafat, A. M., Kuklenyik, Z., Reidy, J. A., Caudill, S. P., Tully, J. S., & Needham, L. L. (2007). Serum concentrations of 11 polyfluoroalkyl compounds in the u.s. population: data from the national health and nutrition examination survey (NHANES). Environ Sci Technol, 41(7), 2237-2242. https://doi.org/10.1021/es062686m
Cantoni, B., Turolla, A., Wellmitz, J., Ruhl, A. S., & Antonelli, M. (2021). Perfluoroalkyl substances (PFAS) adsorption in drinking water by granular activated carbon: Influence of activated carbon and PFAS characteristics. Science of The Total Environment, 795, 148821. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.148821
Carlson, L. M., Angrish, M., Shirke, A. V., Radke, E. G., Schulz, B., Kraft, A., Judson, R., Patlewicz, G., Blain, R., Lin, C., Vetter, N., Lemeris, C., Hartman, P., Hubbard, H., Arzuaga, X., Davis, A., Dishaw, L. V., Druwe, I. L., Hollinger, H.,…Thayer, K. A. (2022). Systematic Evidence Map for Over One Hundred and Fifty Per- and Polyfluoroalkyl Substances (PFAS). Environmental Health Perspectives, 130(5). https://doi.org/10.1289/ehp10343
CHEMICAL & ENGINEERING NEWS. A guide to the PFAS found in our environment. https://cen.acs.org/sections/pfas.html
Chemicals Administration Ministry of Environment (CAME). (2025). 毒性化學物質簡介. https://www.cha.gov.tw/cp-92-313-9da3e-1.html
Chow, S. J., Croll, H. C., Ojeda, N., Klamerus, J., Capelle, R., Oppenheimer, J., Jacangelo, J. G., Schwab, K. J., & Prasse, C. (2022). Comparative investigation of PFAS adsorption onto activated carbon and anion exchange resins during long-term operation of a pilot treatment plant. Water Research, 226, 119198. https://doi.org/https://doi.org/10.1016/j.watres.2022.119198
Corwin, C. J., & Summers, R. S. (2010). Scaling trace organic contaminant adsorption capacity by granular activated carbon. Environ Sci Technol, 44(14), 5403-5408. https://doi.org/10.1021/es9037462
Cousins, I. T., DeWitt, J. C., Glüge, J., Goldenman, G., Herzke, D., Lohmann, R., Ng, C. A., Scheringer, M., & Wang, Z. (2020). The high persistence of PFAS is sufficient for their management as a chemical class. Environ Sci Process Impacts, 22(12), 2307-2312. https://doi.org/10.1039/d0em00355g
Crittenden, J., Reddy, P., Arora, H., Trynoski, J., Hand, D., Perram, D., & Summers, R. (1991). Predicting GAC Performance with Rapid Small-Scale Test Columns. Journal American Water Works Association - J AMER WATER WORK ASSN, 83, 77-87.
Crone, B. C., F., S. T., G., W. D., J., S. S., Gulizhaer, A., J., K. E., & and Pressman, J. G. (2019). Occurrence of per- and polyfluoroalkyl substances (PFAS) in source water and their treatment in drinking water. Critical Reviews in Environmental Science and Technology, 49(24), 2359-2396. https://doi.org/10.1080/10643389.2019.1614848
Danish Environmental Protection Agency. (2024). Agreement on a National Action Plan for PFAS. https://mim.dk/media/hszhzysc/agreement-on-a-national-action-plan-for-pfas.pdf
Dauchy, X. (2019). Per- and polyfluoroalkyl substances (PFASs) in drinking water: Current state of the science. Current Opinion in Environmental Science & Health, 7, 8-12. https://doi.org/https://doi.org/10.1016/j.coesh.2018.07.004
Delpla, I., Jung, A. V., Baures, E., Clement, M., & Thomas, O. (2009). Impacts of climate change on surface water quality in relation to drinking water production. Environment International, 35(8), 1225-1233. https://doi.org/10.1016/j.envint.2009.07.001
Domingo, J. L., & Nadal, M. (2019). Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water: A review of the recent scientific literature. Environmental Research, 177, 108648. https://doi.org/https://doi.org/10.1016/j.envres.2019.108648
e-GOV Public Comment Portal (Japan). (2025). 「食品、添加物等の規格基準の一部を改正する告示(案)」(清涼飲料水(P FOS及びPFOA)に係る改正)について(概要).
Ericson, I., Martí-Cid, R., Nadal, M., Van Bavel, B., Lindström, G., & Domingo, J. L. (2008). Human Exposure to Perfluorinated Chemicals through the Diet: Intake of Perfluorinated Compounds in Foods from the Catalan (Spain) Market. Journal of Agricultural and Food Chemistry, 56(5), 1787-1794. https://doi.org/10.1021/jf0732408
Ersan, M. S., Wang, B., Wong, M. S., & Westerhoff, P. (2024). Advanced oxidation processes may transform unknown PFAS in groundwater into known products. Chemosphere, 349, 140865. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.140865
Eun, H., Shimamura, K., Asano, T., Yamazaki, E., Taniyasu, S., & Yamashita, N. (2022). Removal of perfluoroalkyl substances from water by activated carbons: Adsorption of perfluorooctane sulfonate and perfluorooctanoic acid. Environmental Monitoring and Contaminants Research, 2(0), 88-93. https://doi.org/10.5985/emcr.20220010
European Union. (2020). Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption (recast) (Text with EEA relevance).
Fenton, S. E., Ducatman, A., Boobis, A., DeWitt, J. C., Lau, C., Ng, C., Smith, J. S., & Roberts, S. M. (2021). Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ Toxicol Chem, 40(3), 606-630. https://doi.org/10.1002/etc.4890
Fontanals, N., Cormack, P. A. G., & Sherrington, D. (2008). Hypercrosslinked polymer microspheres with weak anion-exchange character. Preparation of the microspheres and their applications in pH-tuneable, selective extractions of analytes from complex environmental samples. Journal of chromatography. A, 1215 1-2, 21-29.
Fromme, H., Tittlemier, S. A., Völkel, W., Wilhelm, M., & Twardella, D. (2009). Perfluorinated compounds – Exposure assessment for the general population in western countries. International Journal of Hygiene and Environmental Health, 212(3), 239-270. https://doi.org/https://doi.org/10.1016/j.ijheh.2008.04.007
Gagliano, E., Sgroi, M., Falciglia, P. P., Vagliasindi, F. G. A., & Roccaro, P. (2020). Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res, 171, 115381. https://doi.org/10.1016/j.watres.2019.115381
Gagliano, E., Sgroi, M., Falciglia, P. P., Vagliasindi, F. G. A., & Roccaro, P. (2020). Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Research, 171, 115381. https://doi.org/https://doi.org/10.1016/j.watres.2019.115381
Garg, S., Kumar, P., Mishra, V., Guijt, R., Singh, P., Dumée, L. F., & Sharma, R. S. (2020). A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. Journal of Water Process Engineering, 38, 101683. https://doi.org/https://doi.org/10.1016/j.jwpe.2020.101683
Gidstedt, S., Betsholtz, A., Falås, P., Cimbritz, M., Davidsson, Å., Micolucci, F., & Svahn, O. (2022). A comparison of adsorption of organic micropollutants onto activated carbon following chemically enhanced primary treatment with microsieving, direct membrane filtration and tertiary treatment of municipal wastewater. Science of The Total Environment, 811, 152225. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.152225
Government of Canada. (2024). Objective for Canadian drinking water quality- per- and polyfluoroalkyl substances. https://www.canada.ca/en/health-canada/services/publications/healthy-living/objective-drinking-water-quality-per-polyfluoroalkyl-substances.html
Grandjean, P., Andersen, E. W., Budtz-Jørgensen, E., Nielsen, F., Mølbak, K., Weihe, P., & Heilmann, C. (2012). Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JAMA, 307(4). https://doi.org/10.1001/jama.2011.2034
Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/https://doi.org/10.1016/S0032-9592(98)00112-5
Hu, X. C., Andrews, D. Q., Lindstrom, A. B., Bruton, T. A., Schaider, L. A., Grandjean, P., Lohmann, R., Carignan, C. C., Blum, A., Balan, S. A., Higgins, C. P., & Sunderland, E. M. (2016). Detection of Poly- and Perfluoroalkyl Substances (PFASs) in U.S. Drinking Water Linked to Industrial Sites, Military Fire Training Areas, and Wastewater Treatment Plants. Environmental Science & Technology Letters, 3(10), 344-350. https://doi.org/10.1021/acs.estlett.6b00260
Integrated Risk Information System (IRIS). (2025). IRIS Toxicological Review of Perfluorohexanesulfonic Acid (PFHxS, CASRN 335-46-4) and Related Salts. https://iris.epa.gov/static/pdfs/0705_summary.pdf
Interstate Technology & Regulatory Council. (2022). Naming Conventions for Per- and Polyfluoroalkyl Substances (PFAS). https://pfas-1.itrcweb.org/wp-content/uploads/2022/09/NamingConventions_PFAS_Fact-Sheet_083122_508.pdf
Jiang, J.-J., Okvitasari, A. R., Huang, F.-Y., & Tsai, C.-S. (2021). Characteristics, pollution patterns and risks of Perfluoroalkyl substances in drinking water sources of Taiwan. Chemosphere, 264, 128579. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.128579
Johnson, G. R., Brusseau, M. L., Carroll, K. C., Tick, G. R., & Duncan, C. M. (2022). Global distributions, source-type dependencies, and concentration ranges of per- and polyfluoroalkyl substances in groundwater. Science of The Total Environment, 841, 156602. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156602
Kalam, S., Abu-Khamsin, S. A., Kamal, M. S., & Patil, S. (2021). Surfactant Adsorption Isotherms: A Review. ACS Omega, 6(48), 32342-32348. https://doi.org/10.1021/acsomega.1c04661
Kempisty, D. M., Arevalo, E., Spinelli, A. M., Edeback, V., Dickenson, E. R. V., Husted, C., Higgins, C. P., Summers, R. S., & Knappe, D. R. U. (2022). Granular activated carbon adsorption of perfluoroalkyl acids from ground and surface water. AWWA Water Science, 4(1). https://doi.org/10.1002/aws2.1269
Kurwadkar, S., Dane, J., Kanel, S. R., Nadagouda, M. N., Cawdrey, R. W., Ambade, B., Struckhoff, G. C., & Wilkin, R. (2022). Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Science of The Total Environment, 809, 151003. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151003
Lee, C. H., Kim, D. H., Park, S. Y., Sim, K. T., & Seok, K. S. (2018). Analysis Characteristics of Perfluorinated Compounds Using Solid Phase Extraction. Journal of Korean Society of Environmental Engineers, 40(11), 465-472. https://doi.org/10.4491/ksee.2018.40.11.465
Li, S., Oliva, P., Zhang, L., Goodrich, J. A., McConnell, R., Conti, D. V., Chatzi, L., & Aung, M. (2025). Associations between per-and polyfluoroalkyl substances (PFAS) and county-level cancer incidence between 2016 and 2021 and incident cancer burden attributable to PFAS in drinking water in the United States. Journal of Exposure Science & Environmental Epidemiology, 35(3), 425-436. https://doi.org/10.1038/s41370-024-00742-2
Li, Z., Luo, Z.-M., Huang, Y., Wang, J.-W., & Ouyang, G. (2023). Recent trends in degradation strategies of PFOA/PFOS substitutes. Chemosphere, 315, 137653. https://doi.org/https://doi.org/10.1016/j.chemosphere.2022.137653
Lin, A. Y.-C., Panchangam, S. C., & Lo, C.-C. (2009). The impact of semiconductor, electronics and optoelectronic industries on downstream perfluorinated chemical contamination in Taiwanese rivers. Environmental Pollution, 157(4), 1365-1372. https://doi.org/https://doi.org/10.1016/j.envpol.2008.11.033
Lin, A. Y.-C., Panchangam, S. C., Tsai, Y.-T., & Yu, T.-H. (2014). Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues. Environmental Monitoring and Assessment, 186(5), 3265-3275. https://doi.org/10.1007/s10661-014-3617-9
Lindstrom, A. B., Strynar, M. J., & Libelo, E. L. (2011). Polyfluorinated Compounds: Past, Present, and Future. Environmental Science & Technology, 45(19), 7954-7961. https://doi.org/10.1021/es2011622
Lutze, H. V., Brekenfeld, J., Naumov, S., von Sonntag, C., & Schmidt, T. C. (2018). Degradation of perfluorinated compounds by sulfate radicals - New mechanistic aspects and economical considerations. Water Res, 129, 509-519. https://doi.org/10.1016/j.watres.2017.10.067
Margot Lee, C. P. (2024). Repeatability and Reproducibility of the Oasis™ GCB/WAX for PFAS Analysis Cartridges in Soil/Solid Samples for EPA Method 1633. https://www.waters.com/content/dam/waters/en/app-notes/2024/720008494/720008494-en.pdf
McNamara, J. D., Franco, R., Mimna, R., & Zappa, L. (2018). Comparison of Activated Carbons for Removal of Perfluorinated Compounds From Drinking Water. Journal AWWA, 110(1), E2-E14.
Miljøstyrelsen. (2024). Grænseværdier for PFAS i miljøet. https://mst.dk/media/x14n2bsd/graensevaerdier-ved-miljoestyrelsen_05-11-2024.pdf
Ministry of the Environment (Japan). (2024). 水道水における PFOS 及び PFOA の取扱いの改正方針等について(案). https://www.env.go.jp/content/000276966.pdf
Nakazawa, Y., Kosaka, K., Asami, M., & Matsui, Y. (2024). Maximum desorption of perfluoroalkyl substances adsorbed on granular activated carbon used in full-scale drinking water treatment plants. Water Res, 254, 121396. https://doi.org/10.1016/j.watres.2024.121396
National Environmental Research Agency (NERA). (2024). NIEA W542.52B:水中全氟與多氟烷基物質檢測方法-液相層析串聯式質譜儀法. https://www.nera.gov.tw/zh-tw/Categoryquery/2302.html
National Research Council (US) Safe Drinking Water Committee. (1980). IV, An Evaluation of Activated Carbon for Drinking Water Treatment. In Drinking Water and Health: Volume 2. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK234593/
Newcombe, G., Drikas, M., & Hayes, R. (1997). Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Research, 31(5), 1065-1073. https://doi.org/https://doi.org/10.1016/S0043-1354(96)00325-9
NHMRC. (2025). Updated Australian Drinking Water Guidelines. https://www.nhmrc.gov.au/about-us/news-centre/updated-australian-drinking-water-guidelines#:~:text=The%20Guidelines%20include%20revised%20health%2Dbased%20guideline%20values,acid%20(PFOS)%20%E2%80%93%208%20nanograms%20per%20litre
OECD Series on Risk Management of Chemicals. (2021). Reconciling Terminology of the Universe of Per- and Polyfluoroalkyl Substances. https://www.oecd.org/content/dam/oecd/en/publications/reports/2021/07/reconciling-terminology-of-the-universe-of-per-and-polyfluoroalkyl-substances_a7fbcba8/e458e796-en.pdf
Pan, C.-G., Liu, Y.-S., & Ying, G.-G. (2016). Perfluoroalkyl substances (PFASs) in wastewater treatment plants and drinking water treatment plants: Removal efficiency and exposure risk. Water Research, 106, 562-570. https://doi.org/https://doi.org/10.1016/j.watres.2016.10.045
Park, M., Wu, S., Lopez, I. J., Chang, J. Y., Karanfil, T., & Snyder, S. A. (2020). Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons: Roles of hydrophobicity of PFAS and carbon characteristics. Water Research, 170, 115364. https://doi.org/https://doi.org/10.1016/j.watres.2019.115364
Poddar, M. (2013). A Review on the Use of Rapid Small Scale Column Test (RSSCT) on Predicting Adsorption of Various Contaminants. IOSR Journal of Environmental Science, Toxicology and Food Technology, 3, 77-85. https://doi.org/10.9790/2402-0317785
Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: A critical review of recent literature. Environmental Research, 116, 93-117. https://doi.org/https://doi.org/10.1016/j.envres.2012.03.007
Pranić, M., Carlucci, L., van der Wal, A., & Dykstra, J. E. (2025). Kinetic and isotherm study for the adsorption of per- and polyfluoroalkyl substances (PFAS) on activated carbon in the low ng/L range. Chemosphere, 370, 143889. https://doi.org/10.1016/j.chemosphere.2024.143889
Rahman, M. F., Peldszus, S., & Anderson, W. B. (2014). Behaviour and fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in drinking water treatment: A review. Water Research, 50, 318-340. https://doi.org/https://doi.org/10.1016/j.watres.2013.10.045
Robertson, M., Lamb, B. G., Griffin, A., He, L., Ma, B., & Qiang, Z. (2025). Critical role of pore size on perfluorooctanoic acid adsorption behaviors in carbonaceous sorbents. Materials horizons.
Ross, I., McDonough, J., Miles, J., Storch, P., Thelakkat Kochunarayanan, P., Kalve, E., Hurst, J., S. Dasgupta, S., & Burdick, J. (2018). A review of emerging technologies for remediation of PFASs. Remediation Journal, 28(2), 101-126. https://doi.org/10.1002/rem.21553
Rt Hon Dame Helen Winkelmann, A. o. t. G. (2022). Water Services (Drinking Water Standards for New Zealand) Regulations 2022. https://www.legislation.govt.nz/regulation/public/2022/0168/latest/whole.html#whole
Russo, V., Trifuoggi, M., Serio, M., & Tesser, R. (2017). Fluid‐Solid Adsorption in Batch and Continuous Processing: A Review and Insights into Modeling. Chemical Engineering & Technology, 40, 799-820.
Saeidi, N., Lai, A., Harnisch, F., & Sigmund, G. (2024). A FAIR comparison of activated carbon, biochar, cyclodextrins, polymers, resins, and metal organic frameworks for the adsorption of per- and polyfluorinated substances. Chemical Engineering Journal, 498, 155456. https://doi.org/https://doi.org/10.1016/j.cej.2024.155456
Sanzana, S., Fenti, A., Iovino, P., & Panico, A. (2025). “A review of PFAS remediation: Separation and degradation technologies for water and wastewater treatment”. Journal of Water Process Engineering, 74, 107793. https://doi.org/https://doi.org/10.1016/j.jwpe.2025.107793
Seo, S., & Kim, M. (2025). Kinetics and Thermodynamics of Per - and Polyfluoroalkyl Substances (PFASs) Adsorption by Activated Carbon in Aqueous Systems. Journal of Environmental Analysis, Health and Toxicology, 28(1), 1-10. https://doi.org/10.36278/jeaht.28.1.1
Smalling, K. L., Romanok, K. M., Bradley, P. M., Morriss, M. C., Gray, J. L., Kanagy, L. K., Gordon, S. E., Williams, B. M., Breitmeyer, S. E., Jones, D. K., DeCicco, L. A., Eagles-Smith, C. A., & Wagner, T. (2023). Per- and polyfluoroalkyl substances (PFAS) in United States tapwater: Comparison of underserved private-well and public-supply exposures and associated health implications. Environment International, 178, 108033. https://doi.org/https://doi.org/10.1016/j.envint.2023.108033
Smith, S. J., Lauria, M., Ahrens, L., McCleaf, P., Hollman, P., Bjälkefur Seroka, S., Hamers, T., Arp, H. P. H., & Wiberg, K. (2023). Electrochemical Oxidation for Treatment of PFAS in Contaminated Water and Fractionated Foam─A Pilot-Scale Study. ACS ES&T Water, 3(4), 1201-1211. https://doi.org/10.1021/acsestwater.2c00660
Smith, S. J., Wiberg, K., McCleaf, P., & Ahrens, L. (2022). Pilot-Scale Continuous Foam Fractionation for the Removal of Per- and Polyfluoroalkyl Substances (PFAS) from Landfill Leachate. ACS ES&T Water, 2(5), 841-851. https://doi.org/10.1021/acsestwater.2c00032
Standardization Administration of China (SAC). (2022). Standards for drinking water quality (GB 5749-2022).
Steenland, K., Fletcher, T., & Savitz, D. A. (2010). Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect, 118(8), 1100-1108. https://doi.org/10.1289/ehp.0901827
Sunderland, E. M., Hu, X. C., Dassuncao, C., Tokranov, A. K., Wagner, C. C., & Allen, J. G. (2019). A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol, 29(2), 131-147. https://doi.org/10.1038/s41370-018-0094-1
Tan, H.-M., Pan, C.-G., Yin, C., & Yu, K. (2023). Toward systematic understanding of adsorptive removal of legacy and emerging per-and polyfluoroalkyl substances (PFASs) by various activated carbons (ACs). Environmental Research, 233, 116495. https://doi.org/https://doi.org/10.1016/j.envres.2023.116495
The International Agency for Research on Cancer (IARC). (2025). Perfluorooctanoic Acid (PFOA) and Perfluorooctanesulfonic Acid (PFOS).
Tisler, S., Mrkajic, N. S., Reinhardt, L. M., Jensen, C. M., Clausen, L., Thomsen, A. H., Albrechtsen, H.-J., & Christensen, J. H. (2025). A non-target evaluation of drinking water contaminants in pilot scale activated carbon and anion exchange resin treatments. Water Research, 271, 122871. https://doi.org/https://doi.org/10.1016/j.watres.2024.122871
U.S. EPA. (2017). Technical Fact Sheet – Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA). https://19january2021snapshot.epa.gov/sites/static/files/2017-12/documents/ffrrofactsheet_contaminants_pfos_pfoa_11-20-17_508_0.pdf
U.S. EPA. (2024). Our Current Understanding of the Human Health and Environmental Risks of PFAS. Retrieved December 26 from https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas
U.S. EPA. (2025a). Drinking Water Treatability Database (TDB). Retrieved May 22, 2025 from https://www.epa.gov/water-research/drinking-water-treatability-database-tdb
U.S. EPA. (2025b). EPA Announces It Will Keep Maximum Contaminant Levels for PFOA, PFOS. https://www.epa.gov/newsreleases/epa-announces-it-will-keep-maximum-contaminant-levels-pfoa-pfos
U.S. EPA. (2025c). Overview of Drinking Water Treatment Technologies. https://www.epa.gov/sdwa/overview-drinking-water-treatment-technologies
U.S. EPA. (2025d). Per- and Polyfluoroalkyl Substances (PFAS)
Final PFAS National Primary Drinking Water Regulation. https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas
Wang, Z., Buser, A. M., Cousins, I. T., Demattio, S., Drost, W., Johansson, O., Ohno, K., Patlewicz, G., Richard, A. M., Walker, G. W., White, G. S., & Leinala, E. (2021). A New OECD Definition for Per- and Polyfluoroalkyl Substances. Environmental Science & Technology, 55(23), 15575-15578. https://doi.org/10.1021/acs.est.1c06896
Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environmental Science & Technology, 51(5), 2508-2518. https://doi.org/10.1021/acs.est.6b04806
Wang, Z., DeWitt, J. C., Higgins, C. P., & Cousins, I. T. (2017). A Never-Ending Story of Per- and Polyfluoroalkyl Substances (PFASs)? Environ Sci Technol, 51(5), 2508-2518. https://doi.org/10.1021/acs.est.6b04806
Waters. (2025). Oasis WAX for PFAS Analysis. https://www.waters.com/waters/global/Oasis-WAX-SPE-for-PFAS-Analysis/nav.htm?cid=135045957
We, A. C. E., Zamyadi, A., Stickland, A. D., Clarke, B. O., & Freguia, S. (2024). A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices. Journal of Hazardous Materials, 465, 133182. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.133182
Whitehead, P. G., Wilby, R. L., Battarbee, R. W., Kernan, M., & Wade, A. J. (2009). A review of the potential impacts of climate change on surface water quality. Hydrological Sciences Journal, 54(1), 101-123. https://doi.org/10.1623/hysj.54.1.101
Winchell, L. J., Ross, J. J., Wells, M. J. M., Fonoll, X., Norton, J. W., & Bell, K. Y. (2021). Per‐ and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review. Water Environment Research, 93(6), 826-843. https://doi.org/10.1002/wer.1483
Wu, C., Klemes, M. J., Trang, B., Dichtel, W. R., & Helbling, D. E. (2020). Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Research, 182, 115950. https://doi.org/https://doi.org/10.1016/j.watres.2020.115950
Xu, B., Liu, S., Zhou, J. L., Zheng, C., Weifeng, J., Chen, B., Zhang, T., & Qiu, W. (2021). PFAS and their substitutes in groundwater: Occurrence, transformation and remediation. Journal of Hazardous Materials, 412, 125159. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.125159
Yadav, S., Ibrar, I., Al-Juboori, R. A., Singh, L., Ganbat, N., Kazwini, T., Karbassiyazdi, E., Samal, A. K., Subbiah, S., & Altaee, A. (2022). Updated review on emerging technologies for PFAS contaminated water treatment. Chemical Engineering Research and Design, 182, 667-700. https://doi.org/https://doi.org/10.1016/j.cherd.2022.04.009
Young, C. J., Furdui, V. I., Franklin, J., Koerner, R. M., Muir, D. C. G., & Mabury, S. A. (2007). Perfluorinated Acids in Arctic Snow:  New Evidence for Atmospheric Formation. Environmental Science & Technology, 41(10), 3455-3461. https://doi.org/10.1021/es0626234
Yu, Q., Zhang, R., Deng, S., Huang, J., & Yu, G. (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research, 43(4), 1150-1158. https://doi.org/https://doi.org/10.1016/j.watres.2008.12.001
Zahm, S., Bonde, J. P., Chiu, W. A., Hoppin, J., Kanno, J., Abdallah, M., Blystone, C. R., Calkins, M. M., Dong, G. H., Dorman, D. C., Fry, R., Guo, H., Haug, L. S., Hofmann, J. N., Iwasaki, M., Machala, M., Mancini, F. R., Maria-Engler, S. S., Møller, P.,…Schubauer-Berigan, M. K. (2024). Carcinogenicity of perfluorooctanoic acid and perfluorooctanesulfonic acid. Lancet Oncol, 25(1), 16-17. https://doi.org/10.1016/s1470-2045(23)00622-8
Zhang, Y., Thomas, A., Apul, O., & Venkatesan, A. K. (2023). Coexisting ions and long-chain per- and polyfluoroalkyl substances (PFAS) inhibit the adsorption of short-chain PFAS by granular activated carbon. Journal of Hazardous Materials, 460, 132378. https://doi.org/https://doi.org/10.1016/j.jhazmat.2023.132378
台灣自來水股份有限公司. https://www.water.gov.tw/ch/Subject/Detail/1396?nodeId=776
行政院. (2024). 全氟及多氟烷基物質(PFAS)管理行動計畫.
環境部. (2023). Investigation of Compounds of Emerging Concern in Drinking Water and Management of Water Quality 2023. https://www.grb.gov.tw/search/planDetail?id=16327559
環境部水質保護司. (2024). 環境部因應全氟化合物(PFAS)管制趨勢,預告修正飲用水水質標準,確保飲用水安全及品質. https://enews.moenv.gov.tw/Page/3B3C62C78849F32F/c9fdf632-b0d3-4a13-ba10-52e9602dc3b2
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99907-
dc.description.abstract隨著全球對環境保護與資源永續利用的重視,聯合國永續發展目標(Sustainable Development Goals, SDGs)第6項:「確保所有人都能享有水與衛生及其永續管理」已成為各國水資源治理的重要方針。水資源的安全與衛生是當代關鍵議題,而新興污染物的廣泛流布,對環境與公共健康構成潛在風險。傳統自來水處理程序的目的為去除雜質以達到水質標準,但卻無法有效去除全氟與多氟烷基物質(Per- and Polyfluoroalkyl Substances, PFAS)等新興污染物,因此多種處理技術被廣泛討論以降低飲用水中PFAS濃度。其中活性碳吸附因其高去除效率、不產生副產物、操作簡便、成本相對較低廉等優勢,且無論粉狀或粒狀活性碳皆展現良好吸附性能,被認為是可行的PFAS解決方案。
本研究以實驗室規模探討活性碳對四種代表性PFAS(PFBS、PFHxS、PFOA與PFOS)的吸附行為,並比較椰子殼與煤質兩種材質活性碳之處理效率。分析方法參考國家環境研究院公告之標準檢測方法「水中全氟與多氟烷基物質檢測方法-液相層析串聯式質譜儀法(NIEA W542.52B)」進行調整。另外,對於PFAS檢測分析前處理方式之固相萃取(Solid phase extraction, SPE)亦進行優化測試比較。實驗設計結合吸附動力學、等溫吸附模型與快速迷你管柱試驗(Rapid Small Scale Column Test, RSSCT),先於Milli-Q水(二次去離子水)中探討活性碳對PFAS吸附之模型,進一步應用RSSCT,分別在Milli-Q 水和實場採樣的快濾池清水進行額外添加固定濃度之PFAS後,使用粒狀活性碳(Granular Activated Carbon, GAC)填充之迷你管柱吸附,透過PFAS貫穿曲線評估GAC在水中吸附PFAS的表現。
本研究結果顯示,前處理經過初步酸化的樣本,使用Oasis WAX固相萃取管匣進行萃取,且管匣不再經過0.1%甲酸潤洗,可獲得四種PFAS最佳SPE回收條件(回收率均超過75%)。接著進行動力吸附與等溫吸附實驗,著重於討論椰子殼活性碳(TAC-C)與煙煤活性碳(F400)對PFAS之吸附效能。發現在Milli-Q水中進行吸附模型擬合下,對於所有四種PFAS化合物,使用TAC-C作為吸附劑的結果符合擬二級吸附動力學。相反,使用F400作為吸附劑的結果則符合擬一級吸附動力學。總結等溫吸附之模型結果,得出在Milli-Q水中使用Freundlich等溫吸附模型能更好地描述TAC-C和F400對PFAS的吸附,反應了異質介面相互作用。
透過操作RSSCT兩周的實驗結果,在Milli-Q水中,TAC-C較早出現貫穿,尤其是對PFBS和PFOA。而F400表現出最佳的整體吸附能力,對大多數PFAS的貫穿維持在10%以下。相比之下,在實場快濾池清水中,PFAS吸附能力由於其他天然有機物的競爭而顯著降低GAC的吸附成效。以TAC-C而言,在25,000個濾床體積時除了PFOS以外,皆出現90%貫穿現象;F400在大約15,000個濾床體積四種PFAS已出現30%貫穿現象;TAC-Q作為與TAC-C來自相同品牌之煤質活性碳,其貫穿曲線在PFBS出現超出初始濃度之貫穿現象,然而其餘PFAS的貫穿程度皆低於椰子殼活性碳。
這些結果顯示水體基質效應對PFAS吸附行為中的重要性,並凸顯了煤質GAC的優異吸附性能。實際應用必須考慮到背景污染物的競爭,可能會加速GAC飽和並降低處理效能。以上結果確立煙煤質活性碳整體吸附效能優於椰子殼活性碳,且對長鏈PFAS(PFOA與PFOS)之去除率高於短鏈PFAS(PFBS與PFHxS)。本研究結果可作為未來臺灣淨水場採用活性碳處理PFAS之參考,並提供具體建議以協助實踐SDGs第6項永續發展目標,確保民眾飲水安全。
zh_TW
dc.description.abstractWith growing global attention to environmental protection and sustainable resource management, the United Nations Sustainable Development Goal (SDG) 6 - “Ensure availability and sustainable management of water and sanitation for all” - has become a key policy direction for water resource management across nations. The safety of water resources remains a critical issue, particularly as the widespread presence of emerging contaminants poses potential risks to the environment and public health. Conventional drinking water treatment processes are designed to remove impurities to meet the water quality standards. However, they are ineffective in removing emerging contaminants such as Per- and Polyfluoroalkyl Substances (PFAS), and therefore, various treatment technologies have been proposed to reduce the concentration of PFAS in drinking water. Various treatment methods have been developed for different PFAS types, among which activated carbon (AC) adsorption stands out for its high removal efficiency, lack of harmful byproducts, operational simplicity, and relatively low cost. Both powdered (PAC) and granular (GAC) activated carbon have demonstrated excellent adsorption performance and are considered feasible solutions for controlling PFAS in drinking water.
In this study, the adsorption behavior of activated carbon on four representative PFAS (PFBS, PFHxS, PFOA, and PFOS) was investigated on a laboratory scale, and the treatment efficiencies of activated carbon on two materials, coconut shell and coal, were compared. The analytical method has been adjusted with the standard method “Method for Determination of Per and Polyfluoroalkyl Substances in Water by Liquid Chromatography/Tandem Mass Spectrometry (NIEA W542.52B)”. In addition, the analytical pretreatment method, solid phase extraction (SPE), was optimized to compare the analytical performance of the PFAS studied. The experimental design integrated adsorption kinetics, adsorption isotherms in Milli-Q water (deionized water) to discuss the adsorption models, and further applied in the Rapid Small Scale Column Test (RSSCT) to determine the PFAS adsorption characteristics and parameters in Milli-Q water. Following this, the RSSCT assessed the breakthrough of a spiked concentration of PFAS in both Milli-Q water and rapidly filtered water collected from a drinking water treatment plant. After the addition of a fixed concentration of PFAS to Milli-Q water and field rapid filtered water, the adsorption operation was carried out using a mini column filled with granular activated carbon (GAC) to evaluate the performance of GAC in the adsorption of PFAS in water by the PFAS breakthrough curve.
The results of the study showed that the best SPE recovery conditions for all four PFAS (recovery of more than 75%) were obtained when the samples, which were initially acidified in the pre-treatment, were extracted using Oasis WAX cartridges, which were no longer lubricated with 0.1% formic acid. Kinetics and equilibrium isotherm adsorption experiments were then conducted, focusing on the adsorption efficacy of PFAS adsorption with coconut shell activated carbon (TAC-C) and bituminous activated carbon (F400). In Milli-Q water, the results using TAC-C as adsorbent were consistent with the proposed pseudo-second-order model for all four PFAS compounds. On the contrary, the results using F400 as the adsorbent were best described with the proposed pseudo-first-order model. Summarizing the results of isothermal adsorption modeling, it was concluded that in Milli-Q water, the adsorption of PFAS on both TAC-C and F400 could be better described by the Freundlich isothermal adsorption model, which reflects the heterogeneous interactions.
By manipulating the RSSCT results conducted for 2 weeks, TAC-C showed an earlier breakthrough in Milli-Q water, especially for PFBS and PFOA, whereas F400 showed the best overall adsorption capacity, maintaining breakthrough below 10% for most PFAS. In contrast, the adsorption efficacy of GAC was significantly reduced by competition from other naturally occurring organic matter (NOM) in the field rapid filtered water. In the case of TAC-C, 90% breakthrough was observed at 25,000 bed volumes except for PFOS, while F400 showed 30% breakthrough at about 15,000 bed volumes for the four types of PFAS; TAC-Q, which is the same brand of coal-based activated carbon as TAC-C, showed breakthrough curves except for breakthrough beyond the initial concentration of PFBS. However, the breakthrough degree of the other PFAS was lower than that of the coconut shell activated carbon.
These results highlight the importance of the aquatic matrix effect on PFAS adsorption behavior and underscore the superior adsorption performance of coal-based GAC. The real-world applications must consider the competitive effects of background contaminants, which may accelerate GAC saturation and reduce treatment efficiency. The above results establish that coal-based activated carbon has overall superior adsorption performance compared to coconut shell activated carbon, and achieves higher removal rates for long-chain PFAS (PFOA and PFOS) than for short-chain PFAS (PFBS and PFHxS). The findings of this study can serve as a reference for future adoption of activated carbon treatment for PFAS in Taiwan's water treatment plants, and provide concrete recommendations to support the implementation of SDG 6, ensuring public drinking water safety.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:15:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:15:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract v
Contents viii
List of figures xii
List of tables xv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2 Literature Review 4
2.1 Occurrence and health effects of PFAS 4
2.1.1 Introduction of PFAS 4
2.1.2 Environmental Occurrence of PFAS 5
2.1.3 Health effects of PFAS 6
2.2 Overview of PFAS in the aquatic environment 8
2.2.1 Occurrence of PFAS in the aquatic environment worldwide 8
2.2.2 Occurrence of PFAS in the aquatic environment in Taiwan 9
2.2.3 The selected PFAS 10
2.3 The challenges of conventional water treatments 12
2.3.1 The conventional water treatment processes 12
2.3.2 The challenges of conventional water treatments 15
2.4 Regulations of PFAS in water 16
2.4.1 International PFAS regulations in drinking water 16
2.4.2 Evolution of PFAS regulations in Taiwan 21
2.5 Overview of emerging and experimental PFAS treatment methods 23
2.5.1 Comparison of different PFAS treatment technologies 23
2.5.2 The removal of PFAS by activated carbon adsorption 25
2.5.3 Laboratory experiments for assessing adsorption efficiency 29
Chapter 3 Materials and Methods 35
3.1 Research Frameworks 35
3.2 Sample collection and preparation 36
3.3 Chemicals and Materials 37
3.3.1 PFAS analyzed 37
3.3.2 Activated carbon adsorption 40
3.4 Experiment processes 42
3.4.1 Adsorption kinetics 42
3.4.2 Adsorption isotherms 43
3.4.3 Rapid Small Scale Column Test (RSSCT) 44
3.5 Sample analysis 47
3.5.1 Pretreatments of the analysis 47
3.5.2 PFAS determination by UPLC-MS/MS 54
Chapter 4 Results and Discussions 58
4.1 Water quality characteristics of the water samples 58
4.2 PFAS determination 59
4.2.1 Solid Phase Extraction (SPE) method verification 59
4.2.2 Evaluation of recoveries and analytical accuracy in SPE pretreatment 62
4.2.3 Method validation 62
4.3 Adsorption kinetics 65
4.3.1 The results of adsorption kinetics in Milli-Q water with coconut shell PAC 65
4.3.2 The results of adsorption kinetics in Milli-Q water with bituminous coal PAC 71
4.4 Adsorption isotherms 75
4.4.1 The results of adsorption isotherms in Milli-Q water with coconut shell PAC 75
4.4.2 The results of Adsorption isotherms in Milli-Q water with bituminous coal PAC 79
4.4.3 A comprehensive discussion of the adsorption isotherms in Milli-Q water 82
4.5 Rapid Small Scale Column Tests 83
4.5.1 Removal of PFAS in Milli-Q water with coconut shell GAC 83
4.5.2 Removal of PFAS in Milli-Q water with bituminous coal GAC 86
4.5.3 Removal of PFAS in field rapid filtered water sample with coconut shell GAC 88
4.5.4 Removal of PFAS in field rapid filtered water sample through bituminous coal GAC 91
4.5.5 Removal of PFAS in field rapid filtered water with coal-based GAC 93
4.6 Research strengths and limitations 96
4.6.1 A comprehensive discussion of the adsorption kinetics, adsorption isotherms, and RSSCT 96
4.6.2 Research strengths 99
4.6.3 Research limitations 100
Chapter 5 Conclusions and Suggestions 102
Reference 105
Appendixes 115
-
dc.language.isoen-
dc.subject吸附動力學zh_TW
dc.subject活性碳zh_TW
dc.subject等溫吸附模型zh_TW
dc.subject快速迷你管柱試驗zh_TW
dc.subject貫穿曲線zh_TW
dc.subject全氟與多氟烷基物質zh_TW
dc.subjectRapid Small Scale Column Test (RSSCT)en
dc.subjectBreakthrough Curvesen
dc.subjectAdsorption Isothermsen
dc.subjectAdsorption Kineticsen
dc.subjectGranular Activated Carbon (GAC)en
dc.subjectPer- and Polyfluoroalkyl Substances (PFAS)en
dc.title活性碳應用於水中全氟與多氟烷基物質吸附效率之評估zh_TW
dc.titleAssessments on the Adsorption Efficiency of Per- and Polyfluoroalkyl Substances (PFAS) in Water with Activated Carbonen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林財富;童心欣zh_TW
dc.contributor.oralexamcommitteeTsair-Fuh Lin;Hsin-Hsin Tungen
dc.subject.keyword全氟與多氟烷基物質,活性碳,吸附動力學,等溫吸附模型,快速迷你管柱試驗,貫穿曲線,zh_TW
dc.subject.keywordPer- and Polyfluoroalkyl Substances (PFAS),Granular Activated Carbon (GAC),Adsorption Kinetics,Adsorption Isotherms,Rapid Small Scale Column Test (RSSCT),Breakthrough Curves,en
dc.relation.page116-
dc.identifier.doi10.6342/NTU202503155-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-04-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2025-09-20-
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.68 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved