請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99906完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹長權 | zh_TW |
| dc.contributor.advisor | Chang-Chuan Chan | en |
| dc.contributor.author | 張家瑀 | zh_TW |
| dc.contributor.author | Chia-Yu Chang | en |
| dc.date.accessioned | 2025-09-19T16:15:34Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | Ahmed, Z. S., Hashad, M. E., Atef, Y., Badr, H., Elhariri, M., & Kadry, M. (2025). Public health threat of antimicrobial resistance and virulence genes in Escherichia coli from human-chicken transmission in Egypt. Scientific Reports, 15(1), 12627.
Andersson, D. I., & Hughes, D. (2011). Persistence of antibiotic resistance in bacterial populations. FEMS microbiology reviews, 35(5), 901-911. Arnold, K. E., Laing, G., McMahon, B. J., Fanning, S., Stekel, D. J., Pahl, O., Coyne, L., Latham, S. M., & McIntyre, K. M. (2024). The need for One Health systems-thinking approaches to understand multiscale dissemination of antimicrobial resistance. The Lancet Planetary Health, 8(2), e124-e133. Avantika, M., Kiran, N., JS, R., & Twinkle, D. (2021). Antibiotic resistance in agriculture: Perspectives on upcoming strategies to overcome upsurge in resistance. Current research in microbial sciences, 2, 100030. B, L. S., B, F. G., & B, M. A. (1976). Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature, 260(5546), 40-42. Boeckel, T. P. V., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2020). Global trends in antimicrobial resistance in animals in low-and middle-income countries. International Journal of Infectious Diseases, 101, 19. Bredemeyer, M. (2016). ACP/CDC provide guidelines on the use of antibiotics for acute respiratory tract infection. American Family Physician, 94(12), 1016-1016. Carattoli, A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrobial agents and chemotherapy, 53(6), 2227-2238. CDC. (2024a). Antibiotic Use and Stewardship in the United States, 2024 Update: Progress and Opportunities. https://www.cdc.gov/antibiotic-use/hcp/data-research/stewardship-report.html#:~:text=implementation%20of%20antibiotic%20stewardship%20programs,Elements%20by%20year%20and%20state CDC. (2024b, September 6, 2024). National Antimicrobial Resistance Monitoring System (NARMS). Retrieved July 30, 2025 from https://www.cdc.gov/narms/about/index.html CDC. (2025). Outpatient Antibiotic Use: Retail Pharmacy Prescription Data https://arpsp.cdc.gov/profile/antibiotic-use/all-classes CDC. (n.d.). Antibiotic resistance & patient safety portal: Antibiotic resistance. National Healthcare Safety Network (NHSN). https://arpsp.cdc.gov/profile/antibiotic-resistance?tab=antibiotic-resistance CDC, A. (2019). Antibiotic resistance threats in the United States. US Department of Health and Human Services: Washington, DC, USA, 1, 67-100. CODEX. (2021). CODE OF PRACTICE TO MINIMIZE AND CONTAIN FOODBORNE ANTIMICROBIAL RESISTANCE. https://www.fao.org/fao-who-codexalimentarius/sh-proxy/fr/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXC%2B61-2005%252FCXC_061e.pdf Crosby, M., von den Baumen, T. R., Chu, C., Gomes, T., Schwartz, K. L., & Tadrous, M. (2022). Interprovincial variation in antibiotic use in Canada, 2019: a retrospective cross-sectional study. Canadian Medical Association Open Access Journal, 10(1), E262-E268. David, K., Kaisen, L., Amy, P., & C, M. L. (2022). Critical review of antibiotic resistance genes in the atmosphere. Environmental Science: Processes & Impacts, 24(6), 870-883. Davies, J., & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and molecular biology reviews, 74(3), 417-433. de Greeff, S., Kolwijck, E., & Schoffelen, A. (2024). NethMap 2024. Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in the Netherlands in 2023. ECDC. (2023a). Antimicrobial consumption in the EU/EEA (ESAC-Net) - Annual Epidemiological Report for 2022 (Annual Epidemiological Report, Issue. https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2022 ECDC. (2023b). Surveillance Atlas of Infectious Diseases Surveillance Atlas of Infectious Diseases. https://www.ecdc.europa.eu/en/surveillance-atlas-infectious-diseases ECDC. (2024). Antimicrobial resistance in the EU/EEA (EARS-Net) - Annual Epidemiological Report 2023. https://www.ecdc.europa.eu/sites/default/files/documents/antimicrobial-resistance-annual-epidemiological-report-EARS-Net-2023.pdf EMA. (2023). Sales of veterinary antimicrobial agents in 31 European countries in 2022 - Trends from 2010 to 2022, thirteenth ESVAC report. FAO. (2024). The International FAO Antimicrobial Resistance Monitoring (InFARM) system. https://doi.org/10.4060/cd0805en Ha, D., Ong’uti, S., Chang, A., Mui, E., Nelligan, I., Betts, B., Lentz, C., Alegria, W., Fox, E., Meng, L., Stenehjem, E., Hersh, A. L., Deresinski, S., Artandi, M., & Holubar, M. (2022). Sustained reduction in urgent care antibiotic prescribing during the coronavirus disease 2019 pandemic: an academic medical center’s experience. Open Forum Infectious Diseases, Hal, S. J. v., Jensen, S. O., Tong, S. Y. C., Bentley, S., & Holden, M. T. (2024). Unravelling the complex interplay between antibiotic consumption and adaptive changes in methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother, 79(4), 891-896. https://doi.org/10.1093/jac/dkae048 Holmes, A. H., Moore, L. S. P., Sundsfjord, A., Steinbakk, M., Regmi, S., Karkey, A., Guerin, P. J., & Piddock, L. J. V. (2016). Understanding the mechanisms and drivers of antimicrobial resistance. The Lancet, 387(10014), 176-187. Huang, Y. C., Kuo, S. C., Fang, C. T., & Lauderdale, T. L. (2024). Changing epidemiology and antimicrobial resistance of bacteria causing bacteremia in Taiwan: 2002–2020. Microbiology Spectrum, 12(8), e00608-00624. IHME. (2024). The Global Research on Antimicrobial Resistance (GRAM) Jeong, Y.-I., Lee, H. Y., Lee, S., Jeong, G. Y., Kim, S. H., Kim, S., Seo, S.-H., & Shin, N.-R. (2025). Korea’s National Action Plan on Antimicrobial Resistance: Focusing on the Appropriate Use of Antibiotics. Infection & Chemotherapy, 57(2), 203-214. Jong, E. P. d., Chen, C.-H. S., Lin, W.-C., Chang, C.-Y., & Chan, C.-C. (2024). A nationwide cohort study on pneumonia infections among agriculture and healthcare workers in Taiwan. Epidemiology & Infection, 152, e156. Jungmi, C., Bongyoung, K., & Dong-Sook, K. (2022). Changes in antibiotic consumption patterns after the implementation of the National Action Plan according to the Access, Watch, Reserve (AWaRe) classification system. International Journal of Infectious Diseases, 122, 345-351. King, L. M., Lovegrove, M. C., Shehab, N., Tsay, S., Budnitz, D. S., Geller, A. I., Lind, J. N., Roberts, R. M., Hicks, L. A., & Kabbani, S. (2021). Trends in US outpatient antibiotic prescriptions during the coronavirus disease 2019 pandemic. Clinical Infectious Diseases, 73(3), e652-e660. Kissler, S. M., Roster, K. I. O., Petherbridge, R., Mehrotra, A., Barnett, M. L., & Grad, Y. H. (2024). Drivers of geographic patterns in outpatient antibiotic prescribing in the United States. Clinical Infectious Diseases, 79(2), 325-328. Kissler, S. M., Roster, K. I. O., Petherbridge, R., Mehrotra, A., Barnett, M. L., & HGrad, Y. (2024). Drivers of geographic patterns in outpatient antibiotic prescribing in the United States. Clinical Infectious Diseases, 79(2), 325-328. Klein, E. Y., Impalli, I., Poleon, S., Denoel, P., Cipriano, M., Van Boeckel, T. P., Pecetta, S., Bloom, D. E., & Nandi, A. (2024). Global trends in antibiotic consumption during 2016–2023 and future projections through 2030. Proceedings of the National Academy of Sciences, 121(49), e2411919121. Klein, E. Y., Van Boeckel, T. P., Martinez, E. M., Pant, S., Gandra, S., Levin, S. A., Goossens, H., & Laxminarayan, R. (2018). Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proceedings of the National Academy of Sciences, 115(15), E3463-E3470. Kuo, S.-C., Shih, S.-M., Hsieh, L.-Y., Lauderdale, T.-L. Y., Chen, Y.-C., Hsiung, C. A., & Chang, S.-C. (2017). Antibiotic restriction policy paradoxically increased private drug consumptions outside Taiwan’s National Health Insurance. Journal of Antimicrobial Chemotherapy, 72(5), 1544-1545. Lagha, A. B., Haas, B., Gottschalk, M., & Grenier, D. (2017). Antimicrobial potential of bacteriocins in poultry and swine production. Veterinary research, 48(1), 22. Larissa, M., Sara, C., Michelle, L. A., A, T. D., Perry, P., & E, R. R. (2012). Antimicrobial stewardship in the emergency department and guidelines for development. Annals of emergency medicine, 62(1), 10.1016/j. annemergmed. 2012.1009. 1002. Luyao, M., E, K. M., & Xiaonan, L. (2021). Antimicrobial resistance gene transfer from Campylobacter jejuni in mono-and dual-species biofilms. Applied and environmental microbiology, 87(15), e00659-00621. Mestrovic, T., Aguilar, G. R., Swetschinski, L. R., Ikuta, K. S., Gray, A. P., Weaver, N. D., Han, C., Wool, E. E., Hayoon, A. G., & Hay, S. I. (2022). The burden of bacterial antimicrobial resistance in the WHO European region in 2019: a cross-country systematic analysis. The Lancet Public Health, 7(11), e897-e913. MHLW. (2014). Japan Nosocomial Infections Surveillance (JANIS) Annual Open Report 2013. https://janis.mhlw.go.jp/english/report/open_report/2013/3/1/ken_Open_Report_Eng_201300.pdf MHLW. (2020). Japan Nosocomial Infections Surveillance (JANIS) Annual Open Report 2019. https://janis.mhlw.go.jp/english/report/open_report/2019/3/1/ken_Open_Report_Eng_201900_clsi2012.pdf Miller, R. A., & Harbottle, H. (2018). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria from livestock and companion animals, 501-520. Naghavi, M., Vollset, S. E., Ikuta, K. S., Swetschinski, L. R., Gray, A. P., Wool, E. E., Aguilar, G. R., Mestrovic, T., Smith, G., & Han, C. (2024). Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. The Lancet, 404(10459), 1199-1226. OECD. (2023). Embracing a one health framework to fight antimicrobial resistance. OECD. OIE. (2016). The OIE strategy on antimicrobial resistance and the prudent use of antimicrobials. Paris: OIE. PHAC. (2024, November 06, 2024). Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS). Retrieved July 30, 2025 from https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars/about-cipars.html Pin, M., Somasundaram, R., Wrede, C., Schwab, F., Gastmeier, P., & Hansen, S. (2022). Antimicrobial resistance control in the emergency department: a need for concrete improvement. Antimicrobial Resistance & Infection Control, 11(1), 94. Rahman, S., Kesselheim, A. S., & Hollis, A. (2023). Persistence of resistance: a panel data analysis of the effect of antibiotic usage on the prevalence of resistance. The Journal of Antibiotics, 76(5), 270-278. Rashmi, M., Quentin, L., & Gwen, K. (2025). P-176. Detecting Evidence for Bystander Selection by Comparing Trends in Antibiotic Resistance among Infection Causing Bacteria in a Large Global AMR Database. Open Forum Infectious Diseases, Ribeiro Duarte, A. S., Pessoa, J., Attauabi, M., & Wolff Sönksen, U. (2024). DANMAP 2023: Use of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from food animals, food and humans in Denmark. Ricciardi, W., Giubbini, G., & Laurenti, P. (2016). Surveillance and control of antibiotic resistance in the Mediterranean region. Mediterranean Journal of Hematology and Infectious Diseases, 8(1), e2016036. Rizzo, L., Manaia, C., Merlin, C., Schwartz, T., Dagot, C., Ploy, M.-C., Michael, I., & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Science of the total environment, 447, 345-360. Romaszko-Wojtowicz, A., Tokarczyk-Malesa, K., Doboszyńska, A., & Glińska-Lewczuk, K. (2024). Impact of COVID-19 on antibiotic usage in primary care: a retrospective analysis. Scientific Reports, 14(1), 4798. Sørum, H. (2005). Antimicrobial drug resistance in fish pathogens. Antimicrobial resistance in bacteria of animal origin, 213-238. Schnabel, E. L., & Jones, A. L. (1999). Distribution of tetracycline resistance genes and transposons among phylloplane bacteria in Michigan apple orchards. Applied and environmental microbiology, 65(11), 4898-4907. Stockwell, V., & Duffy, B. (2012). Use of antibiotics in plant agriculture. Revue Scientifique Et Technique-Office International Des Epizooties, 31(1). Tan, S. Y., Khan, R. A., Khalid, K. E., Chong, C. W., & Bakhtiar, A. (2022). Correlation between antibiotic consumption and the occurrence of multidrug-resistant organisms in a Malaysian tertiary hospital: a 3-year observational study. Sci Rep, 12(1), 3106. https://doi.org/10.1038/s41598-022-07142-2 The, H. C., Pham, P., Thanh, T. H., Phuong, L. V. K., Yen, N. P., Le, S. N. H., Thuy, D. V., Chau, T. T. H., Phuc, H. L., Ngoc, N. M., Vi, L. L., Mather, A. E., Thwaites, G. E., Thomson, N. R., Bake, S., & Pham, D. T. (2023). Multidrug resistance plasmids underlie clonal expansions and international spread of Salmonella enterica serotype 1, 4,[5], 12: i:-ST34 in Southeast Asia. Communications Biology, 6(1), 1007. Thomas, C. M., & Nielsen, K. M. (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature reviews microbiology, 3(9), 711-721. Thornber, K., Bashar, A., Ahmed, M. S., Bell, A., Trew, J., Hasan, M., Hasan, N. A., Alam, M. M., Chaput, D. L., & Haque, M. M. (2022). Antimicrobial resistance in aquaculture environments: unravelling the complexity and connectivity of the underlying societal drivers. Environmental Science & Technology, 56(21), 14891-14903. UNEP. (2023). Bracing for Superbugs: Strengthening environmental action in the One Health response to antimicrobial resistance. Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. Pharmacy and therapeutics, 40(4), 277. WHO. (2015). Global Action Plan on Antimicrobial Resistance. World Health Organization. https://www.who.int/publications/i/item/9789241509763 WHO. (2022a). Global antimicrobial resistance and use surveillance system (GLASS) report: 2022. https://www.who.int/publications/i/item/9789240062702 WHO. (2022b). One health joint plan of action (2022‒2026): working together for the health of humans, animals, plants and the environment. https://www.who.int/publications/i/item/9789240059139 WHO. (2023a). Antimicrobial resistance. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance WHO. (2023b). AWaRe classification of antibiotics for evaluation and monitoring of use, 2023. https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 WHO. (2024). Report by the Director-General: Status of AMR national action plan implementation 2022– 2023 and specific human health considerations ahead of the High-level Meeting on AMR to be held at the 79th session of the United Nations General Assembly. https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/dg_amr-status-report_wha77_unga_hlm_amr-2024.pdf WHO. (2025). Japan's AMR response 2013-2025: developing, implementing and evaluating national AMR action plans. WOAH. (2025a). ANIMUSE WOAH. (2025b). PVS Pathway. https://www.woah.org/en/what-we-offer/improving-veterinary-services/pvs-pathway/ WOAH. (2025c). World Animal Health Information System. https://www.woah.org/en/what-we-do/animal-health-and-welfare/disease-data-collection/world-animal-health-information-system/ Xin, H., Gao, M., Wang, X., Qiu, T., Guo, Y., & Zhang, L. (2022). Animal farms are hot spots for airborne antimicrobial resistance. Science of the total environment, 851, 158050. Yang, P., Chen, Y., Jiang, S., Shen, P., Lu, X., & Xiao, Y. (2020). Association between the rate of third generation cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae and antibiotic consumption based on 143 Chinese tertiary hospitals data in 2014. Eur J Clin Microbiol Infect Dis, 39(8), 1495-1502. https://doi.org/10.1007/s10096-020-03856-1 Yuan, L., L, N. A., Xiaoxian, Z., Haiyan, F., Honglu, L., & Zhongyang, L. (2022). Cropping system exerts stronger influence on antibiotic resistance gene assemblages in greenhouse soils than reclaimed wastewater irrigation. Journal of Hazardous Materials, 425, 128046. 古鯉榕, 李佳純, & 李中ㄧ. (2018). 臺灣 [醫療利用歸人檔資料庫] 之建置介紹. 健康科技期刊, 11-23. 余清祥, 梁穎誼, & 林佩柔. (2022). 健康, 醫療利用與人口移動的關聯. 地理學報(02), 55-80. 林民浩, 楊安琪, & 溫在弘. (2011). 利用地區差異與人口學特徵評估全民健保資料庫人口居住地變項之推估原則. 臺灣衛誌, 30(4), 347-361. 林宜瑾, & 郭年真. (2019). 中醫資源可近性對於中醫門診利用之影響. Taiwan Journal of Publich Health/Taiwan Gong Gong Wei Sheng Za Zhi, 38(6). 劉嘉年, & 楊志良. (2006). 門診醫師以抗生素治療上呼吸道感染症與急性支氣管炎的影響因素與介入策略. 台灣公共衛生雜誌, 25(5), 330-339. 衛生福利部. (2021). 國家因應細菌抗藥性行動方案 (2021-2025). 衛生福利部. (2024a). 抗生素抗藥性監視年報(2023年). https://www.cdc.gov.tw/File/Get?q=t9WnCInvvVMS9kUboNEwGy9oGlxugq8VDCuHEcI94OMCNqXu6mpogwQ6fE8JeCnz6qXpZRo-ikSFh7RIkZBpbRxqLly7a7e04ecXJQaogvQfYYi8A2kzGh_rU3mgoMqRKzUz8fQD_-Nil9Q9moXuTw 衛生福利部. (2024b). 國家級防疫一體抗生素抗藥性管理行動計畫(114年至118年). https://www.cdc.gov.tw/File/Get/dH-Iu0hXpwmjVlhXYL4_uQ 衛生福利部. (2024c). 臺灣抗生素使用量監視年報(2023年). https://www.cdc.gov.tw/File/Get?q=t9WnCInvvVMS9kUboNEwG2pl1xsGoNtx9oy3QTb8TYOr0HBrZK8LIbgFjC73fPN8UC3VJ7IOWN3n-9TgvRw4XoesOGPlLM1qlHJ3ue5_Dwb042rljXjVhS3uvBYTXo8Bd0hFDBkIaIFYWcyqvLtk_Q | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99906 | - |
| dc.description.abstract | 前言
抗微生物抗藥性 (Antimicrobial Resistance, AMR) 已成為全球公共衛生的重要議題,而抗生素的不當使用為其主要推動因素。世界衛生組織 (World Health Organization, WHO) 提出了抗生素察覺分類(AWaRe classification,以下簡稱世衛察覺分類),將抗生素分為Access、Watch及Reserve類別,以促進合理使用。此外,也強調了需以 One Health 為架構來全面應對 AMR 問題。本研究旨在探討臺灣世衛察覺分類中Watch或Reserve類抗生素使用 (Antibiotics Use, AMU) 的時空分布及其影響因素。 材料與方法 本研究使用全民健康保險資料庫 (National Health Insurance Research Database, NHIRD) 2005 至 2020 年之門、急診資料,處方率的定義為該年度每十萬人口中使用 Watch 或 Reserve 類抗生素的人數,搭配 2023 世衛察覺分類將抗生素使用情形分為三種類別:AMU 1 為處方中使用 Watch 或 Reserve 類抗生素者(納入 630,534 至 1,104,855 人)、AMU 2 為 7 至 14 天內回診並被重複開立 Watch 或 Reserve 類抗生素處方者(納入 112,422 至 187,537 人)以及 AMU 3 為因急性支氣管炎就診且處方中使用 Watch 或 Reserve 類抗生素者(納入 345,760 至 605,858 人)。以 One Health 為架構,分別以蔬菜水果產量(單位:公噸)、牛、豬、雞依照體重加權換算雞等值重量(單位:公噸)、內陸養殖漁業產量(單位:公噸)、平均每日門急診就診量(單位:人次)作為農業、畜牧業、漁業、醫療業等經濟活動指標,進一步探討這些經濟活動及PM10濃度對抗生素使用的影響。首先使用 WHO 2000 年標準人口將處方率進行年齡標準化,繪製年度趨勢圖及依 2015 至 2019 年處方率的五分位為標準做分類的縣市地理分布熱度圖。進一步採用廣義相加模型 (Generalised Additive Model, GAM) 繪製時間平滑曲線、空間分布情形,並同時控制時間趨勢及縣市間空間異質性,評估暴露因子與各縣市處方率的影響。最後使用配對 t 檢定比較 COVID-19 疫情期間抗生素處方率的變化。資料清理與前處理於衛生福利部資料科學中心以 SAS 9.4 進行,後續分析與作圖使用R 4.4.2 完成。 結果 研究發現,臺灣 Watch 或 Reserve 類抗生素處方率與國際抗生素消耗的趨勢相似,在 2006 年達最低後逐年增加,2019 年達最高峰(AMU 1:每十萬人口 2,920 人至 4,876 人;AMU 2:每十萬人口 522 人至 843 人;AMU 3:每十萬人口 1,615 人至 2,831 人),2020 年因疫情因素而下降(AMU 1:每十萬人口 3,356 人;AMU 2:每十萬人口 679 人;AMU 3:每十萬人口 2,021 人)。性別上女性處方率(AMU 1:每十萬人口 3,119 至 5,002 人之間;AMU 2:每十萬人口 522 至 844 人之間;AMU 3:每十萬人口 1,735 至 2,934 人之間)高於男性(AMU 1:每十萬人口 2,607 至 4,517 人之間;AMU 2:每十萬人口 500 至 822 人之間;AMU 3:每十萬人口 1,453 至 2,615 人之間),各年齡層以 0-18 歲及 65 歲以上處方率最高。地理分布上呈現明顯的地理不均分布,臺南市、臺中市與宜蘭縣長期處於高處方率區域,且不同縣市的抗生素使用存在顯著差異。大部分縣市在三個時間段均呈穩定上升,僅有新竹縣市的處方率呈下降趨勢。One Health 相關因子的模式中,以放入門急診每日就診人次、內陸養殖漁業產量及 PM10 濃度的模式為最佳 (R2=0.79, -REML=1790.50),門急診每日就診人次、內陸養殖漁業產量與 AMU 1 的抗生素處方率呈顯著正相關,門診人次增加可能加劇抗生素濫用;而畜牧及養殖產業也可能透過環境選擇壓力促使抗藥性細菌傳播間接導致更高的抗生素處方率。 結論 本研究首次整合 WHO AWaRe 分類及 One Health 因子,呈現臺灣廣效型抗生素處方率逐年增加且地理分布不均的現象,並確認醫療利用、畜牧及養殖活動為重要影響因素,建議政策制定者應根據地區特性擬定差異化的管理措施。此外,即使臺灣的 Access 抗生素使用比例已達到 WHO 標準,但仍可從本研究中發現抗生素濫用的情形,因此建議推動加強基層診所抗生素處方管理,並提升畜牧與養殖業抗生素使用監測。 | zh_TW |
| dc.description.abstract | Introduction
Antimicrobial resistance (AMR) has become a critical global public health issue, primarily driven by inappropriate antibiotic use. The World Health Organization (WHO) developed the AWaRe classification system, categorizing antibiotics into Access, Watch, and Reserve groups, to promote rational antibiotic use. Additionally, the WHO emphasizes employing the One Health framework to comprehensively address AMR. This study aims to investigate the spatiotemporal distribution of Watch or Reserve antibiotics use (AMU) according to the WHO AWaRe classification and associated influencing factors in Taiwan. Materials and Methods This study utilized outpatient and emergency department data from Taiwan's National Health Insurance Research Database (NHIRD) spanning 2005 to 2020. The prescription rate in this study was defined as the population using the antibiotics per 100,000, combined with the WHO AWaRe 2023 classification list to categorize the AMU into three situations: prescriptions containing Watch or Reserve antibiotics (AMU 1, include 630,534 to 1,104,855 people), repeated visits with recurrent prescriptions of Watch or Reserve antibiotics (AMU 2, include 112,422 to 187,537 people), and visits for acute bronchitis receiving prescriptions containing Watch or Reserve antibiotics (AMU 3, 345,760 to 605,858 people). Under the One Health framework, the fruit and vegetables production (unit: t), combined weight equivalents of cattle, pigs, and chickens (unit: t), inland aquaculture production (unit: t) and daily outpatient and emergency visit volumes (unit: person-times) were used as indicators of economic activities in agriculture, animal husbandry, fisheries, and healthcare, respectively. Then, exploring the impact of these economic activities and PM10 concentrations on AMU. First, we age-standardized prescription rates using the WHO 2000 standard population and then produced annual trend charts and heat maps of the geographic distribution of counties and cities categorized by quintiles of prescription rates from 2015 to 2019. The study analyzed temporal trends and geographical distributions of prescription rates for Watch or Reserve antibiotics and examined the influence of agricultural, livestock, inland aquaculture, healthcare economic activities, and PM10 concentration on antibiotic use. Generalized additive models (GAM) were employed for statistical analysis, and paired t-tests were used to compare changes in antibiotic prescription rates during the COVID-19 pandemic. Data cleaning and preprocessing were conducted using SAS 9.4 at the Ministry of Health and Welfare Data Science Center, while subsequent analysis and visualization were performed using R version 4.4.2. Results The prescription rate of Watch or Reserve antibiotics in Taiwan reached the lowest point in 2006 and gradually increased, peaking in 2019 (AMU 1: 2,920 increase to 4,876 per 100,000 people; AMU 2: 522 increase to 843 per 100,000 people; AMU 3: 1,615 increase to 2,831 per 100,000 people) before declining in 2020 due to the COVID-19 pandemic (AMU 1: 3,356 per 100,000 people; AMU 2: 679 per 100,000 people; AMU 3: 2,021 per 100,000 people). Women had higher prescription rates than men(AMU 1: 3,119 to 5,002 vs 2,607 to 4,517; AMU 2: 522 to 844 vs 500 to 822; AMU 3: 1,735 to 2,934 vs 1,453 to 2,615), and the highest rates were observed among age groups 0-18 and over 65 years. Geographically, Tainan City, Taichung City, and Yilan County consistently exhibited high prescription rates, with significant regional variations. Among One Health-related factors, daily outpatient and emergency visits, livestock, and inland aquaculture production were positively correlated with antibiotic prescription rates. Among the models including One Health related factors, the optimal model comprised daily outpatient and emergency department visits, inland aquaculture production, and PM10 concentration (R² = 0.79, -REML = 1790.50). Daily outpatient and emergency department visits and inland aquaculture production exhibited significant positive correlations with the prescription rates of AMU 1. Increased outpatient visits may intensify antibiotic misuse, while livestock and aquaculture industries may indirectly elevate antibiotic prescription rates by facilitating the spread of antimicrobial-resistant bacteria through environmental selection pressures. Conclusion This study is the first to integrate the WHO AWaRe classification and One Health factors to reveal an increasing trend and geographical disparities in broad-spectrum antibiotic prescription rates in Taiwan. It identifies healthcare utilization, livestock, and aquaculture activities as significant influencing factors. Policymakers are advised to implement region-specific management strategies to address these variations effectively. Although Taiwan’s use of Access category antibiotics has met WHO targets, evidence of antibiotic misuse persists, highlighting the need to strengthen antibiotic prescription management in primary care settings and enhance surveillance of antibiotic use in livestock and aquaculture industries. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:15:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:15:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
中文摘要 II ABSTRACT IV 1.1 抗微生物抗藥性:全球與臺灣現況 1 1.1.1 抗微生物抗藥性 (Antimicrobial resistance, AMR) 1 1.1.2 全球 AMR 現況 3 1.1.3 臺灣 AMR 現況 4 1.2 AMR 的因應策略:以 One Health 為架構 6 1.2.1 抗生素抗藥性全球行動計畫 6 1.2.2 One Health 與 AMR 7 1.2.3 四方組織的分工 10 1.3 各國與區域 AMR/AMU 監測系統 13 1.3.1 單一領域的 AMR 與 AMU 監測 13 1.3.2 跨部門的 AMR 與 AMU 監測 15 1.4 世衛察覺分類 (WHO AWaRe Classification) 18 1.5 臺灣目前侷限 21 1.6 研究目的 23 第二章 材料與方法 24 2.1 研究架構 24 2.2 研究地區與人群 26 2.3 資料來源 27 2.3.1 全民健康保險資料庫 (National Health Insurance Research Database, NHIRD) 27 2.3.2 門、急診人數統計資料 28 2.3.3 農、漁、牧業統計資料 29 2.3.4 環境部空氣品質監測資料 30 2.4 資料庫串聯 31 2.5 定義 32 2.5.1. Watch 或 Reserve 類抗生素處方率 32 2.5.2. 地理分布 33 2.6 統計分析 34 2.6.1. 年齡標準化處方率 34 2.6.2. 地理分布熱度圖 34 2.6.3. 時間趨勢、空間分布及 One Health 因子分析 34 2.6.4. 2019 年與 2020 年比較 36 2.6.5. 統計軟體 36 第三章 結果 37 3.1 時間趨勢 37 3.2 地理分布 43 3.3 One Health因子 52 3.4 2019 年與 2020 年比較 63 第四章 討論 64 4.1 抗生素處方率趨勢 64 4.2 AMR 感染趨勢 67 4.3 AMU 地理分布差異 69 4.4 與 AMU 相關的 One Health 因子 70 4.5 One Health 架構下的 AMU 與 AMR 監測 71 4.6 研究限制 72 第五章 結論與建議 73 參考文獻 74 附錄 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 抗微生物抗藥性 | zh_TW |
| dc.subject | 時空分布 | zh_TW |
| dc.subject | 健康保險資料庫 | zh_TW |
| dc.subject | 抗生素使用量 | zh_TW |
| dc.subject | Antibiotics Use | en |
| dc.subject | Antimicrobial Resistance | en |
| dc.subject | National Health Insurance data | en |
| dc.subject | Spatiotemporal distribution | en |
| dc.title | 臺灣的世界衛生組織 AWaRe 抗生素使用的時空分布及影響因子之探討 | zh_TW |
| dc.title | WHO AWaRe Antibiotics Use in Taiwan: Spatiotemporal Distribution and Influencing Factors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 袁子軒;林亮瑜 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Hsuen Yuan;Liang-Yu Lin | en |
| dc.subject.keyword | 抗生素使用量,抗微生物抗藥性,健康保險資料庫,時空分布, | zh_TW |
| dc.subject.keyword | Antibiotics Use,Antimicrobial Resistance,National Health Insurance data,Spatiotemporal distribution, | en |
| dc.relation.page | 99 | - |
| dc.identifier.doi | 10.6342/NTU202503566 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
