Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99905
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor楊孝友zh_TW
dc.contributor.advisorHsiao-Yu Yangen
dc.contributor.author張哲瑞zh_TW
dc.contributor.authorChe-Jui Changen
dc.date.accessioned2025-09-19T16:15:22Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation1. Masson-Delmotte V, Zhai P, Pirani A, et al. Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change 2021:2.
2. Li L, Zha Y. Satellite-based regional warming hiatus in China and its implication. Science of The Total Environment 2019;648:1394-402.
3. Bikbov B, Purcell CA, Levey AS, et al. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. The Lancet 2020;395:709-33.
4. 105年度腎臟病健康促進機構慢性腎臟病整體照護成效. 台灣腎臟醫學會, 2017. (Accessed 23 Jun 2024, at https://www.tsn.org.tw/archive/20210906/cfc14b8f-f982-44bb-8e4b-c7a2245874dc/cfc14b8f-f982-44bb-8e4b-c7a2245874dc.pdf.)
5. Johnson RJ, Wesseling C, Newman LS. Chronic Kidney Disease of Unknown Cause in Agricultural Communities. New England Journal of Medicine 2019;380:1843-52.
6. Amante IDT, Lin M-Y, Hwang S-J. CKD of Unknown Etiology: Is Taiwan Another Hotspot? Kidney International Reports 2024;9:4-6.
7. Sorensen CJ, Butler-Dawson J, Dally M, et al. Risk Factors and Mechanisms Underlying Cross-Shift Decline in Kidney Function in Guatemalan Sugarcane Workers. Journal of Occupational and Environmental Medicine 2019;61.
8. Redmon JH, Levine KE, Lebov J, Harrington J, Kondash AJ. A comparative review: Chronic Kidney Disease of unknown etiology (CKDu) research conducted in Latin America versus Asia. Environmental Research 2021;192:110270.
9. Van Someren EJW. Thermoregulation and aging. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 2007;292:R99-R102.
10. Gasparrini A, Guo Y, Hashizume M, et al. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. The Lancet 2015;386:369-75.
11. Chang JC-J, Yang H-Y. Epidemiology of chronic kidney disease of undetermined aetiology in Taiwanese farmers: a cross-sectional study from Changhua Community-based Integrated Screening programme. Occupational and Environmental Medicine 2021.
12. Chang C-J, Chi C-Y, Yang H-Y. Heat exposure and chronic kidney disease: a temporal link in a Taiwanese agricultural county. International Journal of Environmental Health Research 2023:1-14.
13. Chang CJ, Yang HY. Chronic Kidney Disease Among Agricultural Workers in Taiwan: A Nationwide Population-Based Study. Kidney International Reports 2023.
14. Cockwell P, Fisher L-A. The global burden of chronic kidney disease. The Lancet 2020;395:662-4.
15. Glaser J, Lemery J, Rajagopalan B, et al. Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clin J Am Soc Nephrol 2016;11:1472-83.
16. Hansson E, Glaser J, Weiss I, et al. Workload and cross-harvest kidney injury in a Nicaraguan sugarcane worker cohort. Occupational and Environmental Medicine 2019;76:818.
17. Nanayakkara S, Senevirathna S, Abeysekera T, et al. An Integrative Study of the Genetic, Social and Environmental Determinants of Chronic Kidney Disease Characterized by Tubulointerstitial Damages in the North Central Region of Sri Lanka. Journal of Occupational Health 2014;56:28-38.
18. Pearce N, Caplin B. Let’s take the heat out of the CKDu debate: more evidence is needed. Occupational and Environmental Medicine 2019;76:357.
19. Shiu C-J, Liu SC, Chen J-P. Diurnally Asymmetric Trends of Temperature, Humidity, and Precipitation in Taiwan. Journal of Climate 2009;22:5635-49.
20. Liu C-Y, Hung Y-T, Chuang Y-L, Chen Y-J, Weng W-S, Liu J-S. Incorporating development stratification of Taiwan townships into sampling design of large scale health interview survey. 2006.
21. Levin A, Stevens PE, Bilous RW, et al. Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl (2011) 2013;3:1-150.
22. Caplin B, Yang C-W, Anand S, et al. The International Society of Nephrology’s International Consortium of Collaborators on Chronic Kidney Disease of Unknown Etiology: report of the working group on approaches to population-level detection strategies and recommendations for a minimum dataset. Kidney International 2019;95:4-10.
23. Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604-12.
24. Chapter 2: Definition, identification, and prediction of CKD progression. Kidney Int Suppl (2011) 2013;3:63-72.
25. Lozier M, Turcios-Ruiz RM, Noonan G, Ordunez P. Chronic kidney disease of nontraditional etiology in Central America: a provisional epidemiologic case definition for surveillance and epidemiologic studies. Rev Panam Salud Publica 2016;40:294-300.
26. Yang H-Y, Chen P-C, Wang J-D. Chinese Herbs Containing Aristolochic Acid Associated with Renal Failure and Urothelial Carcinoma: A Review from Epidemiologic Observations to Causal Inference. BioMed Research International 2014;2014:569325.
27. Dupont WD. Power calculations for matched case-control studies. Biometrics 1988;44:1157-68.
28. Freemantle N. StatsDirect—Statistical Software for Medical Research in the 21st Century. BMJ 2000;321:1536.
29. Flatharta TÓ, Flynn A, Mulkerrin EC. Heat-related chronic kidney disease mortality in the young and old: differing mechanisms, potentially similar solutions? BMJ evidence-based medicine 2019;24:45-7.
30. García-Arroyo FE, Gonzaga G, Muñoz-Jiménez I, et al. Antioxidant supplements as a novel mean for blocking recurrent heat stress-induced kidney damage following rehydration with fructose-containing beverages. Free Radical Biology and Medicine 2019;141:182-91.
31. Roncal-Jimenez C, Lanaspa MA, Jensen T, Sanchez-Lozada LG, Johnson RJ. Mechanisms by Which Dehydration May Lead to Chronic Kidney Disease. Annals of Nutrition and Metabolism 2015;66:10-3.
32. Hansson E, Glaser J, Jakobsson K, et al. Pathophysiological Mechanisms by which Heat Stress Potentially Induces Kidney Inflammation and Chronic Kidney Disease in Sugarcane Workers. Nutrients 2020;12:1639.
33. Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012;2:1303-53.
34. Roncal-Jimenez CA, Sato Y, Milagres T, et al. Experimental heat stress nephropathy and liver injury are improved by allopurinol. Am J Physiol Renal Physiol 2018;315:F726-f33.
35. Roncal Jimenez CA, Ishimoto T, Lanaspa MA, et al. Fructokinase activity mediates dehydration-induced renal injury. Kidney Int 2014;86:294-302.
36. Glaser J, Hansson E, Weiss I, et al. Preventing kidney injury among sugarcane workers: promising evidence from enhanced workplace interventions. Occupational and Environmental Medicine 2020;77:527.
37. Orr SE, Bridges CC. Chronic Kidney Disease and Exposure to Nephrotoxic Metals. International journal of molecular sciences 2017;18:1039.
38. Valcke M, Levasseur M-E, Soares da Silva A, Wesseling C. Pesticide exposures and chronic kidney disease of unknown etiology: an epidemiologic review. Environmental Health 2017;16:49.
39. Athuraliya NTC, Abeysekera TDJ, Amerasinghe PH, et al. Uncertain etiologies of proteinuric-chronic kidney disease in rural Sri Lanka. Kidney International 2011;80:1212-21.
40. Fitria L, Prihartono NA, Ramdhan DH, Wahyono TYM, Kongtip P, Woskie S. Environmental and Occupational Risk Factors Associated with Chronic Kidney Disease of Unknown Etiology in West Javanese Rice Farmers, Indonesia. Int J Environ Res Public Health 2020;17.
41. Tatapudi RR, Rentala S, Gullipalli P, et al. High Prevalence of CKD of Unknown Etiology in Uddanam, India. Kidney Int Rep 2019;4:380-9.
42. Number of Farm Households by Size of Farm (In Chinese). Agriculture and Food Agency (Taiwan), 2019. (Accessed May 31, 2020, at https://agrstat.coa.gov.tw/sdweb/public/book/Book_File.ashx?chapter_id=348_11_2; https://www.stat.gov.tw/public/data/dgbas04/bc1/2015census/104%E5%B9%B4%E8%BE%B2%E6%9E%97%E6%BC%81%E7%89%A7%E6%A5%AD%E6%99%AE%E6%9F%A5%E5%88%9D%E6%AD%A5%E7%B5%B1%E8%A8%88%E7%B5%90%E6%9E%9C%E6%8F%90%E8%A6%81%E5%88%86%E6%9E%90.pdf.)
43. Hsu C-C, Hwang S-J, Wen C-P, et al. High Prevalence and Low Awareness of CKD in Taiwan: A Study on the Relationship Between Serum Creatinine and Awareness From a Nationally Representative Survey. American Journal of Kidney Diseases 2006;48:727-38.
44. Dally M, Butler-Dawson J, Johnson RJ, et al. Creatinine Fluctuations Forecast Cross-Harvest Kidney Function Decline Among Sugarcane Workers in Guatemala. Kidney International Reports 2020;5:1558-66.
45. Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data 2021;13:4349-83.
46. Liljegren JC, Carhart RA, Lawday P, Tschopp S, Sharp R. Modeling the Wet Bulb Globe Temperature Using Standard Meteorological Measurements. Journal of Occupational and Environmental Hygiene 2008;5:645-55.
47. Casanueva A, Kotlarski S, Herrera S, Fischer AM, Kjellstrom T, Schwierz C. Climate projections of a multivariate heat stress index: the role of downscaling and bias correction. Geosci Model Dev 2019;12:3419-38.
48. Bunker A, Wildenhain J, Vandenbergh A, et al. Effects of Air Temperature on Climate-Sensitive Mortality and Morbidity Outcomes in the Elderly; a Systematic Review and Meta-analysis of Epidemiological Evidence. eBioMedicine 2016;6:258-68.
49. Wu P-C, Lin C-Y, Lung S-C, Guo H-R, Chou C-H, Su H-J. Cardiovascular mortality during heat and cold events: determinants of regional vulnerability in Taiwan. Occupational and Environmental Medicine 2011;68:525.
50. Adeyeye TE, Insaf TZ, Al-Hamdan MZ, et al. Estimating policy-relevant health effects of ambient heat exposures using spatially contiguous reanalysis data. Environ Health 2019;18:35.
51. Zafirah Y, Lin Y-K, Andhikaputra G, Sung F-C, Deng L-W, Wang Y-C. Mortality and morbidity of chronic kidney disease associated with ambient environment in metropolitans in Taiwan. Atmospheric Environment 2022;289:119317.
52. Gasparrini A. Modeling exposure-lag-response associations with distributed lag non-linear models. Stat Med 2014;33:881-99.
53. Samoli E, Stafoggia M, Rodopoulou S, et al. Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project. Environ Health Perspect 2013;121:932-8.
54. Lee H, Myung W, Kim DK, Kim SE, Kim CT, Kim H. Short-term air pollution exposure aggravates Parkinson's disease in a population-based cohort. Sci Rep 2017;7:44741.
55. Mork D, Wilson A. Treed distributed lag nonlinear models. arXiv preprint arXiv:201006147 2020.
56. Braga ALF, Zanobetti A, Schwartz J. The effect of weather on respiratory and cardiovascular deaths in 12 U.S. cities. Environmental health perspectives 2002;110:859-63.
57. Saha MV, Davis RE, Hondula DM. Mortality Displacement as a Function of Heat Event Strength in 7 US Cities. American Journal of Epidemiology 2014;179:467-74.
58. González-Quiroz M, Camacho A, Faber D, et al. Rationale, description and baseline findings of a community-based prospective cohort study of kidney function amongst the young rural population of Northwest Nicaragua. BMC Nephrology 2017;18:16.
59. Aguilar-Ramirez D, Raña-Custodio A, Villa A, et al. Decreased kidney function and agricultural work: a cross-sectional study in middle-aged adults from Tierra Blanca, Mexico. Nephrol Dial Transplant 2021;36:1030-8.
60. Lin S, Hsu W-H, Van Zutphen Alissa R, Saha S, Luber G, Hwang S-A. Excessive Heat and Respiratory Hospitalizations in New York State: Estimating Current and Future Public Health Burden Related to Climate Change. Environmental Health Perspectives 2012;120:1571-7.
61. Schmeltz MT, Petkova EP, Gamble JL. Economic Burden of Hospitalizations for Heat-Related Illnesses in the United States, 2001–2010. International Journal of Environmental Research and Public Health 2016;13.
62. Wondmagegn BY, Xiang J, Williams S, Pisaniello D, Bi P. What do we know about the healthcare costs of extreme heat exposure? A comprehensive literature review. Science of The Total Environment 2019;657:608-18.
63. Foster J, Hodder SG, Lloyd AB, Havenith G. Individual Responses to Heat Stress: Implications for Hyperthermia and Physical Work Capacity. Front Physiol 2020;11:541483.
64. Zhou Y-L. The changing roles of women in agriculture from the perspective of census data (In Chinese). The Directorate General of Budget, Accounting and Statistics (Taiwan); 2018.
65. Ou Y, Wang F, Zhao J, Deng Q. Risk of heatstroke in healthy elderly during heatwaves: A thermoregulatory modeling study. Building and Environment 2023;237:110324.
66. Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O. Heat stress in older individuals and patients with common chronic diseases. Canadian Medical Association Journal 2010;182:1053.
67. Urban and regional development statistics (in Chinese). 2021. (Accessed 5 March 2021, at https://stat.ncl.edu.tw/browse.jsp?p=98092975.)
68. Jayasumana C, Orantes C, Herrera R, et al. Chronic interstitial nephritis in agricultural communities: a worldwide epidemic with social, occupational and environmental determinants. Nephrol Dial Transplant 2017;32:234-41.
69. Hoy W, Ordunez P. Epidemic of Chronic Kidney Disease in Agricultural Communities in Central America. Case definitions, methodological basis and approaches for public health surveillance: Pan American Health Organization; 2017.
70. Chapman E, Haby MM, Illanes E, Sanchez-Viamonte J, Elias V, Reveiz L. Risk factors for chronic kidney disease of non-traditional causes: a systematic review. Rev Panam Salud Publica 2019;43:e35.
71. Lash JP, Go AS, Appel LJ, et al. Chronic Renal Insufficiency Cohort (CRIC) Study: baseline characteristics and associations with kidney function. Clin J Am Soc Nephrol 2009;4:1302-11.
72. McClellan WM, Flanders WD. Risk factors for progressive chronic kidney disease. J Am Soc Nephrol 2003;14:S65-70.
73. 2024 USRDS Annual Data Report: End Stage Renal Disease, Chapter 11: International Comparisons. National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), 2024. (Accessed 30 July 2025, at https://usrds-adr.niddk.nih.gov/2024/end-stage-renal-disease/11-international-comparisons.)
74. Yang HY, Wen KC, Chiu PF, et al. Environmental risk factors for chronic kidney disease of non-traditional causes in tropical coastal areas: A systematic review and meta-analysis. PLoS Negl Trop Dis 2025;19:e0013056.
75. ACGIH. TLVs and BEIs: Based on the documentation of the threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists; 2005.
76. de Boer IH, Caramori ML, Chan JCN, et al. KDIGO 2020 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney International 2020;98:S1-S115.
77. 10. Cardiovascular Disease and Risk Management: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022;45:S144-s74.
78. Kenny GP, Sigal RJ, McGinn R. Body temperature regulation in diabetes. Temperature 2016;3:119-45.
79. Wen CP, Cheng TY, Tsai MK, et al. All-cause mortality attributable to chronic kidney disease: a prospective cohort study based on 462 293 adults in Taiwan. Lancet 2008;371:2173-82.
80. Adult Preventive Health Services Utilization (In Chinese). Ministry of Digital Affairs (Taiwan), 2022. (Accessed 18 March 2023, at https://data.gov.tw/dataset/151265.)
81. Number and Average Age of Farmers' Health Insurance Insured (In Chinese). Agriculture and Food Agency (Taiwan), 2022. (Accessed 18 March 2023, at https://events.bli.gov.tw/report/reportY.aspx?y=110&f=h1050.)
82. Organization WH. The UN decade of healthy ageing 2021–2030 in a climate changing world. Decade of Healthy Ageing Connection Series 2022;3.
83. 台灣慢性腎臟病臨床診療指引更新版. 台灣腎臟醫學會, 2022. (Accessed 30 Sep 2023, at https://tsnorgtw.gitbook.io/2022_taiwan_chronic_kidney_disease_clinical_guidelines/.)
84. Upamalika SWAM, Wannige CT, Vidanagamachchi SM, et al. A review of molecular mechanisms linked to potential renal injury agents in tropical rural farming communities. Environmental Toxicology and Pharmacology 2022;92:103850.
85. Venugopal V, Krishnamoorthy M, Venkatesan V, Jaganathan V, Paul S. Occupational heat stress, DNA damage and heat shock protein-a review. Medical Research Archives 2018;6.
86. Wilson TE. Renal sympathetic nerve, blood flow, and epithelial transport responses to thermal stress. Autonomic Neuroscience 2017;204:25-34.
87. Johnson RJ, Rodriguez-Iturbe B, Roncal-Jimenez C, et al. Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nature Reviews Nephrology 2014;10:415-20.
88. Sonna LA, Fujita J, Gaffin SL, Lilly CM. Invited Review: Effects of heat and cold stress on mammalian gene expression. Journal of Applied Physiology 2002;92:1725-42.
89. Liao Y, Tong L, Tang L, Wu S. The role of cold-inducible RNA binding protein in cell stress response. International Journal of Cancer 2017;141:2164-73.
90. Lennquist S. Cold-induced diuresis. A study with special reference to electrolyte excretion, osmolal balance and hormonal changes. Scand J Urol Nephrol 1972;9:Suppl 9:1-142.
91. Wilson TE, Sauder CL, Kearney ML, et al. Skin-surface cooling elicits peripheral and visceral vasoconstriction in humans. Journal of Applied Physiology 2007;103:1257-62.
92. Shi H, He L, Wang S, Zhang Y, Ye K. Changes of renal function and structure in rats exposed to cold. Journal of Thermal Biology 2007;32:421-7.
93. Narumi K, Hirose T, Sato E, et al. A functional (pro)renin receptor is expressed in human lymphocytes and monocytes. American Journal of Physiology-Renal Physiology 2014;308:F487-F99.
94. Rasini E, Cosentino M, Marino F, et al. Angiotensin II type 1 receptor expression on human leukocyte subsets: a flow cytometric and RT-PCR study. Regul Pept 2006;134:69-74.
95. Luo L, Wang L, Luo Y, Romero E, Yang X, Liu M. Glucocorticoid/Adiponectin Axis Mediates Full Activation of Cold-Induced Beige Fat Thermogenesis. Biomolecules2021.
96. Agrawal V, Shah A, Rice C, Franklin BA, McCullough PA. Impact of treating the metabolic syndrome on chronic kidney disease. Nature Reviews Nephrology 2009;5:520-8.
97. Coppé JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 2010;5:99-118.
98. Patel SS, Molnar MZ, Tayek JA, et al. Serum creatinine as a marker of muscle mass in chronic kidney disease: results of a cross-sectional study and review of literature. J Cachexia Sarcopenia Muscle 2013;4:19-29.
99. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 2012;367:20-9.
100. Straseski JA, Lyon ME, Clarke W, Dubois JA, Phelan LA, Lyon AW. Investigating interferences of a whole-blood point-of-care creatinine analyzer: comparison to plasma enzymatic and definitive creatinine methods in an acute-care setting. Clin Chem 2011;57:1566-73.
101. Herath C, Jayasumana C, De Silva PMCS, De Silva PHC, Siribaddana S, De Broe ME. Kidney Diseases in Agricultural Communities: A Case Against Heat-Stress Nephropathy. Kidney International Reports 2018;3:271-80.
102. Chen H-C, Guh J-Y, Tsai J-H, Lai Y-H. Induction of heat shock protein 70 protects mesangial cells against oxidative injury. Kidney International 1999;56:1270-3.
103. Sugiura T, Wada A. Resistive index predicts renal prognosis in chronic kidney disease. Nephrology Dialysis Transplantation 2009;24:2780-5.
104. Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE. Biomarkers in chronic kidney disease: a review. Kidney International 2011;80:806-21.
105. Exposure Assessment in Occupational and Environmental Epidemiology. Oxford University Press; 2003.
106. Heat Index Chart. National Weather Service (US), 2022. (Accessed 16 November 2023, at https://www.noaa.gov/sites/default/files/2022-05/heatindex_chart_rh.pdf.)
107. Seabold S, Perktold J. Statsmodels: econometric and statistical modeling with python. SciPy 2010;7:92-6.
108. Lin Y-K, Wang Y-C, Ho T-J, Lu C. Temperature effects on hospital admissions for kidney morbidity in Taiwan. Science of The Total Environment 2013;443:812-20.
109. Tseng M-F, Chou C-L, Chung C-H, et al. Risk of chronic kidney disease in patients with heat injury: A nationwide longitudinal cohort study in Taiwan. PLOS ONE 2020;15:e0235607.
110. He L, Xue B, Wang B, et al. Impact of high, low, and non-optimum temperatures on chronic kidney disease in a changing climate, 1990–2019: A global analysis. Environmental Research 2022;212:113172.
111. Park MY, Ahn J, Bae S, et al. Effects of cold and hot temperatures on the renal function of people with chronic disease. Journal of Occupational Health 2024;66:uiae037.
112. Abed Alharbi S, Alzahrani AH, Alahmari AS, et al. A review on the role of urinary biomarkers in predicting renal recovery post-sepsis. International Journal Of Community Medicine And Public Health 2024;12:493-8.
113. Qian B-S, Jia H-M, Weng Y-B, et al. Analysis of urinary C–C motif chemokine ligand 14 (CCL14) and first-generation urinary biomarkers for predicting renal recovery from acute kidney injury: a prospective exploratory study. Journal of Intensive Care 2023;11:11.
114. Daniels JR, Ma JZ, Cao Z, et al. Discovery of Novel Proteomic Biomarkers for the Prediction of Kidney Recovery from Dialysis-Dependent AKI Patients. Kidney360 2021;2.
115. Blanco-Gozalo V, Casanova AG, Sancho-Martínez SM, et al. Combined use of GM2AP and TCP1-eta urinary levels predicts recovery from intrinsic acute kidney injury. Scientific Reports 2020;10:11599.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99905-
dc.description.abstract氣候變遷加劇環境溫度的波動,對人類的身心健康造成重大衝擊。眾多與氣候變遷相關的健康風險中,慢性腎臟病(CKD)已成為全球的重要疾病負擔;在臺灣,慢性腎臟病及末期腎病透析更長年高居健保支出首位。受到國際間對病因未明慢性腎臟病(CKDu)關注的啟發,本研究進一步探討非理想環境溫度對臺灣脆弱族群腎臟健康的影響,特別聚焦於農業工作者與居家高齡衰弱者。
針對彰化縣農民族群,回溯性研究發現非傳統病因之慢性腎臟病佔所有CKD個案的48.9%,且農民罹患CKDu的調整後盛行率勝算比比非農民高出45%至63%。高達22%的農民有脫水現象,是非農民(14%)的約兩倍,暗示熱壓力與脫水是農民CKDu的潛在危險因子。戶外熱暴露與慢性腎病存在顯著的時間滯後效應,彰化縣研究顯示腎功能受損與前1至9個月的戶外熱暴露呈正向關聯,平均氣溫每升高1°C,慢性腎病風險增加4%至22%,其中累積9個月的影響最顯著(勝算比為1.22,95%信賴區間為1.09–1.37)。此關聯在女性及農民族群中尤其顯著。然而對勞力工作者的額外分析,並未顯示CKDu風險顯著上升,這可能表示臺灣農民的腎損傷不僅由熱壓力引起,其他農業相關危害如農藥、重金屬、止痛藥等也可能是潛在病因。全國性研究同樣驗證農民有較高CKDu風險(勝算比為1.09,95%信賴區間為1.001–1.18),並且發現戶外熱暴露與整體族群慢性腎臟病風險的顯著相關。儘管許多參與者(農民24.9%,非農民7.4%)腎功能已達慢性腎臟病標準,但僅約七分之一的人接受醫師診斷,凸顯臺灣腎病診斷率普遍偏低的問題。
在前瞻型研究世代中,我們首次發現,在臺灣相對寒冷的月份(11月至4月),室內環境低溫與居家高齡衰弱者的疑似腎損傷(pKI)發生呈顯著關聯。低溫對pKI的累積滯後效應在25日以上達到顯著(勝算比為0.996,95%信賴區間為0.992–0.999),顯示溫度下降會增加pKI風險。高溫對此族群的pKI未觀察到顯著影響,這可能與高齡衰弱者主要待在室內且高溫幅度較小有關。研究進一步發現,pKI事件伴隨血清和肽素(copeptin)濃度上升、尿液嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)濃度上升,以及心律變異度低頻/高頻比(LF/HF)的增加,這些生物指標變化初步顯示高齡衰弱者腎損傷的潛在病生理機轉,例如抗利尿激素路徑活化、早期腎小管間質性損傷及交感神經活性增強等。
整體而言,環境高低溫對脆弱族群腎功能有潛在負面影響,強調氣候變遷下需針對高風險群制定特殊保護策略,並提升早期診斷與監測,以強化社會韌性應對未來健康挑戰。
zh_TW
dc.description.abstractClimate change exacerbates environmental temperature fluctuations, significantly impacting human health. Among numerous climate-related health risks, chronic kidney disease (CKD) represents a major global burden, with CKD and end-stage renal disease dialysis consistently topping Taiwan’s healthcare expenditures. Inspired by international focus on chronic kidney disease of undetermined etiology (CKDu), this study investigates the effects of non-optimal environmental temperatures on kidney health in vulnerable Taiwanese populations, particularly agricultural workers and frail elderly receiving home care.
Retrospective analyses of Changhua County farmers revealed that chronic kidney disease of nontraditional etiology accounted for 48.9% of all CKD cases, with farmers exhibiting a 45–63% higher adjusted prevalence odds ratio for CKDu compared to non-farmers. Notably, 22% of farmers showed signs of dehydration, nearly double that of non-farmers (14%), suggesting heat stress and dehydration as potential CKDu risk factors. Outdoor heat exposure was significantly associated with CKD, with a 1°C increase in average temperature linked to a 4–22% increased CKD risk over 1–9 months, with the most pronounced effect at 9 months (OR=1.22, 95% CI: 1.09–1.37). This association was particularly evident in females and farmers (females: OR=1.39, 95% CI: 1.13–1.71; farmers: OR=1.28, 95% CI: 1.11–1.49). However, analysis of manual laborers showed no significant CKDu risk elevation, indicating that farmers’ kidney injury may involve additional agricultural hazards such as pesticides, heavy metals, or analgesics. A nationwide case-control study confirmed higher CKDu risk in farmers (OR=1.09) and a significant association between outdoor heat exposure and CKD risk. Despite 24.9% of farmers and 7.4% of non-farmers meeting CKD criteria, only about one-seventh received a physician diagnosis, highlighting Taiwan’s low CKD diagnosis rate.
In the prospective research cohort, for the first time, we identified a significant association between indoor low temperatures (November–April) and possible kidney injury (pKI) in frail elderly individuals (OR=0.996, 95% CI: 0.992–0.999 for cumulative lag over 25 days). High indoor temperatures showed no significant pKI effect, likely due to limited temperature fluctuations indoors. pKI events were accompanied by elevated serum copeptin, urinary NGAL, and increased heart rate variability low-to-high frequency ratio (LF/HF), suggesting pathophysiological mechanisms such as vasopressin pathway activation, early tubulointerstitial injury, and enhanced sympathetic activity.
Overall, this study underscores the significant impact of extreme environmental temperatures on kidney health in vulnerable populations. It emphasizes the need for targeted protective strategies and enhanced early diagnosis and monitoring to strengthen community resilience against climate change-related health challenges.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:15:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:15:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 ii
致謝 iii
摘要 iv
Abstract vi
目 次 viii
圖 次 x
表 次 xi
第一章 緒論 1
第二章 彰化縣農業族群之病因未明慢性腎臟病 5
研究背景與目的 5
研究方法 5
研究結果 9
討論 10
第三章 彰化縣農業族群之慢性腎臟病與室外氣溫關聯性 26
研究背景與目的 26
研究方法 26
研究結果 28
討論 29
第四章 全國農業族群之慢性腎臟病與室外氣溫關聯性 44
研究背景與目的 44
研究方法 44
研究結果 46
討論 47
第五章 室內環境溫度對居家高齡衰弱族群的腎功能影響 65
研究背景與目的 65
研究方法 67
研究結果 72
討論 74
第六章 結論 103
參考文獻 106
附錄 112
口試委員修訂建議與回應 113
研究資源與技術聲明 124
-
dc.language.isozh_TW-
dc.subject環境溫度zh_TW
dc.subject高溫壓力zh_TW
dc.subject低溫壓力zh_TW
dc.subject病因未明慢性腎臟病zh_TW
dc.subject疑似腎損傷zh_TW
dc.subject農民zh_TW
dc.subject老年衰弱族群zh_TW
dc.subject氧化壓力zh_TW
dc.subject氣候變遷zh_TW
dc.subjectfarmersen
dc.subjectpossible kidney injuryen
dc.subjectenvironmental temperatureen
dc.subjectheat stressen
dc.subjectcold stressen
dc.subjectchronic kidney disease of undetermined etiologyen
dc.subjectCKDuen
dc.subjectclimate changeen
dc.subjectoxidative stressen
dc.subjectfrail elderlyen
dc.title環境非理想溫度對於脆弱族群的腎損傷zh_TW
dc.titleThe Impact of Suboptimal Environmental Temperatures on Kidney Injury in the Vulnerable Populationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee林靖愉;黃尚志;許志成;蔡兆勳zh_TW
dc.contributor.oralexamcommitteeChing-Yu Lin;Shang-Jyh Hwang;Chih-Cheng Hsu;Jaw-Shiun Tsaien
dc.subject.keyword環境溫度,高溫壓力,低溫壓力,病因未明慢性腎臟病,疑似腎損傷,農民,老年衰弱族群,氧化壓力,氣候變遷,zh_TW
dc.subject.keywordenvironmental temperature,heat stress,cold stress,chronic kidney disease of undetermined etiology,CKDu,possible kidney injury,farmers,frail elderly,oxidative stress,climate change,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202504214-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-07-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept環境與職業健康科學研究所-
dc.date.embargo-lift2025-09-20-
Appears in Collections:環境與職業健康科學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf3.12 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved