請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99904完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳佳堃 | zh_TW |
| dc.contributor.advisor | Jia-Kun Chen | en |
| dc.contributor.author | 姜言澄 | zh_TW |
| dc.contributor.author | Yan-Cheng Chiang | en |
| dc.date.accessioned | 2025-09-19T16:15:12Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-04 | - |
| dc.identifier.citation | 陳志峰, 台灣家禽統計手冊. 2023. 2024, 獸醫畜產發展基金會. p. 68.
農業部. 農業部「114年度禽舍現代化升級補助作業說明」. 2025 Chen, J.K., et al., Assessing Indoor Climate Control in a Water-Pad System for Small-Scale Agriculture in Taiwan: A CFD Study on Fan Modes. Bioengineering (Basel), 2023. 10(4). Zheng, W., et al., Air temperature, carbon dioxide, and ammonia assessment inside a commercial cage layer barn with manure-drying tunnels. Poult Sci, 2020. 99(8): p. 3885-3896. Thangavel, P., D. Park, and Y.C. Lee, Recent Insights into Particulate Matter (PM(2.5))-Mediated Toxicity in Humans: An Overview. Int J Environ Res Public Health, 2022. 19(12). Turner, M.C., et al., Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA Cancer J Clin, 2020. Liu, Q.X., et al., Ammonia induce lung tissue injury in broilers by activating NLRP3 inflammasome via Escherichia/Shigella. Poult Sci, 2020. 99(7): p. 3402-3410. Iversen, I.B., et al., Risk of hypersensitivity pneumonitis and other interstitial lung diseases following organic dust exposure. Thorax, 2024. 79(9): p. 853. Shen, D., et al., Distribution of particulate matter and ammonia and physicochemical properties of fine particulate matter in a layer house. Poultry Science, 2018. 97(12): p. 4137-4149. Curi, T.M.d.C., et al., Computational fluid dynamics (CFD) application for ventilation studies in broiler houses. Engenharia Agrícola, 2017. 37(01): p. 1-12. Wang, Z., et al., Effect of ventilation on distributions, concentrations, and emissions of air pollutants in a manure-belt layer house. Journal of Applied Poultry Research, 2014. 23(4): p. 763-772. Danuser, B., et al., Respiratory symptoms in Swiss farmers: an epidemiological study of risk factors. Am J Ind Med, 2001. 39(4): p. 410-8. Islam, M.N., et al., Explore the linkage of occupational respiratory symptoms on the demographics and lifestyle of poultry workers in local chicken retail markets in Dhaka, Bangladesh. Case Studies in Chemical and Environmental Engineering, 2023. 8: p. 100544. de Alencar, M.d.C., I.d.A. Nääs, and L. Gontijo, Respiratory risks in broiler production workers. Brazilian Journal of Poultry Science, 2004. 6: p. 23-29. Senthilselvan, A., et al., A prospective evaluation of air quality and workers' health in broiler and layer operations. Occup Environ Med, 2011. 68(2): p. 102-7. Wathes, C.M., et al., Concentrations and emission rates of aerial ammonia, nitrous oxide, methane, carbon dioxide, dust and endotoxin in UK broiler and layer houses. Br Poult Sci, 1997. 38(1): p. 14-28. Donham, K.J., et al., Dose-response relationships between occupational aerosol exposures and cross-shift declines of lung function in poultry workers: recommendations for exposure limits. J Occup Environ Med, 2000. 42(3): p. 260-9. Danuser, B., et al., [Lung function and symptoms in employees of poultry farms]. Soz Praventivmed, 1988. 33(6): p. 286-91. Magri, C.A., et al., Occupational risks and their implications for the health of poultry farmers. Work, 2021. 70(3): p. 815-822. Service, U.S.D.O.H.A.H.S.P.H., TOXICOLOGICAL PROFILE FOR AMMONIA. 2004. Donham, K.J., D. Cumro, and S. Reynolds, Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J Agromedicine, 2002. 8(2): p. 57-76. Walton, M., Industrial ammonia gassing. Br J Ind Med, 1973. 30(1): p. 78-86. NIOSH, N.I.f.O.S.a.H., Ammonia. 2019. 勞動部職業安全衛生署, 勞工作業場所容許暴露標準. 2025. OSHA, O.S.a.H.A., Occupational Safety and Health Standards (Table Z-1-Limits for Air Contaminants). 2025. Li, D., et al., Physiological Responses of Laying Hens to Chronic Cold Stress and Ammonia Exposure: Implications for Environmental Management and Poultry Welfare. Animals, 2025. 15: p. 1769. Li, D., et al., Effects of Cold Stress and Ammonia Concentration on Productive Performance and Egg Quality Traits of Laying Hens. Animals (Basel), 2020. 10(12). Care, H.F.A., Humane Farm Animal Care Animal Care Standards Edition 21. 2021. Producers, U.E., Animal Husbandry Guidelines for U.S. Egg-Laying Flocks. 2017. Ni, J.-Q., et al., Characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter concentrations in high-rise and manure-belt layer hen houses. Atmospheric Environment, 2012. 57: p. 165-174. 財團法人獸醫畜產發展基金會, 2022台灣家禽統計手冊. 2022. Cheng, Q., et al., Using CFD to assess the influence of ceiling deflector design on airflow distribution in hen house with tunnel ventilation. Computers and Electronics in Agriculture, 2018. 151: p. 165-174. 林連雄 and 吳柏青, 密閉式雞舍溫溼度場之分析. 宜蘭技術學報, 2000(4): p. 33-45. Jiang, J., et al., A climate-dependent global model of ammonia emissions from chicken farming. Biogeosciences, 2021. 18(1): p. 135-158. 許家齊, 水簾式雞舍室內環境與雞舍幾何關聯性之研究, in 環境與職業健康科學研究所. 2022, 國立臺灣大學. Yeo, U.-H., et al., Computational fluid dynamics evaluation of pig house ventilation systems for improving the internal rearing environment. Biosystems Engineering, 2019. 186: p. 259-278. Küçüktopçu, E., B. Cemek, and H. Simsek, Modeling Environmental Conditions in Poultry Production: Computational Fluid Dynamics Approach. Animals (Basel), 2024. 14(3). Keener, H., D. Elwell, and D. Grande, NH3 emissions and n–balances for a 1.6 million caged layer facility: manure belt/composting vs. deep pit operation. Transactions of the ASAE, 2002. 45(6): p. 1977. Wang, S., et al., Estimation of ammonia emission from manure belt poultry layer houses using an alternative mass balance method. Transactions of the ASABE, 2014. 57(3): p. 937-947. Ni, J.-Q., et al., Factors and characteristics of ammonia, hydrogen sulfide, carbon dioxide, and particulate matter emissions from two manure-belt layer hen houses. Atmospheric Environment, 2017. 156: p. 113-124. Johnson, L., Impact of sampling timing on measured gas concentrations and emissions at a commercial laying hen house. 2022. Fuller, E.N., P.D. Schettler, and J.C. Giddings, NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS. Industrial & Engineering Chemistry, 1966. 58(5): p. 18-27. Echt, A.S. and C. Qi, In-Depth Survey Report: Removing mortar with a powered chisel with on-tool local exhaust ventilation. 2017. Shi, D.S., et al., Occupational Exposure to Mercury at an Electronics Waste and Lamp Recycling Facility - Ohio, 2023. MMWR Morb Mortal Wkly Rep, 2025. 74(1): p. 9-13. Doumbia, E.M., et al., CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity depended resistance parameters. Computers and Electronics in Agriculture, 2021. 181: p. 105950. Gautam, K.R., et al., Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 2021. 186: p. 106206. Mahgoub, A., et al., Simulation of spectators’ aerodynamic drag using porous models approximation. Building and Environment, 2020. 184. Du, L., et al., Computational Fluid Dynamics aided investigation and optimization of a tunnel-ventilated poultry house in China. Computers and Electronics in Agriculture, 2019. 159: p. 1-15. Cheng, Q., et al., CFD study of the influence of laying hen geometry, distribution and weight on airflow resistance. Computers and Electronics in Agriculture, 2018. 144: p. 181-189. Ahmadi Babadi, K., H. Khorasanizadeh, and A. Aghaei, CFD modeling of air flow, humidity, CO2 and NH3 distributions in a caged laying hen house with tunnel ventilation system. Computers and Electronics in Agriculture, 2022. 193: p. 106677. Wang, X. and K. Wang, Optimizing the Pad Cooling Ventilation System of Laying Hen Barn Using CFD in Southeast China, in 2013 Kansas City, Missouri, July 21 - July 24, 2013. 2013, ASABE: St. Joseph, MI. p. 1. Cheng, Q., et al., CFD study of the effect of inlet position and flap on the airflow and temperature in a laying hen house in summer. Biosystems Engineering, 2021. 203: p. 109-123. Tong, X., S.-W. Hong, and L. Zhao, CFD modelling of airflow pattern and thermal environment in a commercial manure-belt layer house with tunnel ventilation. Biosystems Engineering, 2019. 178: p. 275-293. Kwon, K.-s., et al., Computational fluid dynamics analysis of the thermal distribution of animal occupied zones using the jet-drop-distance concept in a mechanically ventilated broiler house. Biosystems Engineering, 2015. 136: p. 51-68. Kwon, K.-S., et al., Analysis of Jet-drop Distance from the Multi Opening Slots of Forced-ventilation Broiler House. Journal of The Korean Society of Agricultural Engineers, 2012. 54. Hamid, A., A.S. Ahmad, and N. Khan, Respiratory and Other Health Risks among Poultry-Farm Workers and Evaluation of Management Practices in Poultry Farms. Revista Brasileira de Ciência Avícola, 2018. 20: p. 111-118. Lin, X., et al., Emissions of ammonia, carbon dioxide and particulate matter from cage-free layer houses in California. Atmospheric Environment, 2017. 152: p. 246-255. Liao, C.-H., J. Chen, and Z. Liu, Asymmetric price and income elasticities of residential electricity demand in Taiwan. Applied Economics, 2024: p. 1-14. IEA, T.I.E.A., Energy Prices Overview 2025. 2025. Li, X., et al., Effects of Furnished Cage Type on Behavior and Welfare of Laying Hens. Asian-Australas J Anim Sci, 2016. 29(6): p. 887-94. Engel, J.M., et al., The effects of floor space and nest box access on the physiology and behavior of caged laying hens. Poultry Science, 2019. 98(2): p. 533-547. Webster, A. and M. Czarick, Temperatures and Performance in a Tunnel-Ventilated, High-Rise Layer House. The Journal of Applied Poultry Research, 2000. 9: p. 118-129. Mendes, L., H. Xin, and H. Li, Ammonia emissions of pullets and laying hens as affected by stocking density and manure accumulation time. Transactions of the ASABE (American Society of Agricultural and Biological Engineers), 2012. 55: p. 1067-1075. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99904 | - |
| dc.description.abstract | 為降低極端氣候和禽流感對蛋雞舍的風險,台灣政府大力推動傳統開放式蛋雞舍改建為密閉水簾式蛋雞舍,但這也使蛋雞舍面臨氨氣等汙染物於末端累積和潮濕環境更有利於氨氣產生等問題,影響工作者健康或蛋雞生產力(大於20 ppm)。本研究以計算流體力學(CFD),模擬「入風口有/無導流擋板」及「出風口有/無側排風扇」4種幾何配置,對蛋雞舍工作者走道呼吸區與蛋雞活動區之氨氣分布影響。本研究首先建立雞籠與蛋雞舍的精確幾何模型,並透過數值風洞獲取雞籠在三個方向軸的壓力差,以建構雞籠Porous Media模型,此模型被應用於4種幾何配置的整體蛋雞舍氨氣分布模擬中,並於兩排走道各6個工作者呼吸區(H = 1.5 m)及兩排雞籠各4個蛋雞活動區進行氨氣模擬採樣。本研究結果顯示,入風口增設擋板將大幅影響蛋雞舍內氨氣分布:僅開啟後排風扇下,「有擋板」模型的整體走道工作者呼吸區平均氨氣濃度為2.6 ppm較「無擋板」模型的 1.8 ppm高 (提升31 %);開啟側排風扇能局部降低走道末端氨氣濃度:在「有擋板」下,僅開啟後風扇的末端工作者呼吸區平均氨氣濃度為3.9 ppm,而在開啟側排風扇後則降低為3.0 ppm (降低23 %)。在蛋雞活動區中,各模型間平均氨氣濃度相近,然而在「無擋板」模型於蛋雞舍末端的單點模擬採樣點氨氣濃度頻繁超過20 ppm下(最高達27.1 ppm),「有擋板」模型的所有模擬採樣點皆小於20 ppm。本研究結論為,於密閉水簾式蛋雞舍入風口增設導流擋板會提高走道工作者的暴露,但可抑制末端蛋雞活動區的氨氣高峰;側排風扇能有效降低走道末端濃度,建議作業時彈性啟用。 | zh_TW |
| dc.description.abstract | To mitigate risks from extreme weather and avian influenza, Taiwan is converting open layer houses into water-pad type layer house. However, higher humidity and unidirectional airflow result in ammonia accumulation, impacting worker health and layer productivity (>20 ppm). This study used computational fluid dynamics (CFD) to assess four ventilation models—presence/absence of inlet flaps and side exhaust fans—on ammonia distribution in worker breathing zones and layer activity areas. Virtual wind-tunnel experiments measured three-axis pressure drops in the cages, informing a porous-media cage model. This model was integrated into CFD simulations of the layer house under four ventilation models. Ammonia concentrations were virtually sampled at twelve breathing zones (two aisles × six locations) and eight layer activity zones (two aisles × four locations). With only the rear fans running, adding inlet flaps increased aisle mean ammonia concentration from 1.8 ppm to 2.6 ppm (+31%). With flaps installed, activating side exhaust fans lowered end-aisle concentrations by 23% (3.9 ppm → 3.0 ppm). Mean ammonia concentration of layer activity zones was similar across all models, but only flaps-installed models kept every layer activity zones sampling point below 20 ppm, whereas flap-free repeatedly exceeded 20 ppm at the downstream end (maximum 27.1 ppm). Our research suggest that inlet flaps suppress ammonia peaks in layer activity zones—supporting productivity—but raise worker exposure in aisles. Side exhaust fans effectively reduce end-aisle concentrations. We recommend flexible use of side exhaust fans during end-aisle operations. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:15:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:15:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II Abstract III 目次 IV 圖次 VI 表次 VII 縮寫說明 VIII 符號說明 IX 第一章 前言 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究目的 4 第二章 研究方法與材料 5 2.1 研究流程及基本假設 5 2.2 蛋雞舍尺寸量測 6 2.3 現場風速量測 9 2.4 量測儀器 10 2.5 雞籠Porous Media模型建構 11 2.6 整體雞舍模擬 13 2.7 工作者呼吸區和蛋雞活動區之模擬採樣 19 2.8 模擬分析軟體 22 2.9 統御方程式 22 2.10 網格獨立性 24 第三章 結果 25 3.1 雞籠Porous Media模型 25 3.2 整體雞舍現場和模擬結果比較 27 3.3 不同幾何模型對蛋雞舍工作者呼吸區之氨氣分布影響 29 3.4 不同幾何模型對蛋雞活動區之氨氣分布影響 37 第四章 討論 41 第五章 結論與研究限制 45 研究限制與未來展望 46 參考文獻 47 附錄一 52 附錄二 53 附錄三 54 附錄四 57 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 氨氣分布 | zh_TW |
| dc.subject | 密閉水簾式雞舍 | zh_TW |
| dc.subject | 多孔性材質模型 | zh_TW |
| dc.subject | 職業衛生 | zh_TW |
| dc.subject | 幾何變化 | zh_TW |
| dc.subject | CFD | en |
| dc.subject | Porous media model | en |
| dc.subject | Occupational health | en |
| dc.subject | Ammonia | en |
| dc.subject | Water-Pad layer houses | en |
| dc.title | 密閉水簾式蛋雞舍於入風口增設擋板和出風口增設側排風扇對內部氨氣分布之影響:以雲林某蛋雞舍為例 | zh_TW |
| dc.title | Impact of Inlet Flaps and Side Exhaust Fans on Ammonia Distribution in a Water-Pad Layer House: A Case Study in Yunlin | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃盛修;曾子彝 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Hsiu Huang;Tzu-I Tseng | en |
| dc.subject.keyword | 密閉水簾式雞舍,氨氣分布,幾何變化,職業衛生,多孔性材質模型, | zh_TW |
| dc.subject.keyword | Water-Pad layer houses,Ammonia,CFD,Porous media model,Occupational health, | en |
| dc.relation.page | 57 | - |
| dc.identifier.doi | 10.6342/NTU202503569 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
| dc.date.embargo-lift | 2025-09-20 | - |
| 顯示於系所單位: | 環境與職業健康科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
