請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99897完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑惠 | zh_TW |
| dc.contributor.advisor | Shu-Hui Chang | en |
| dc.contributor.author | 胡凱婷 | zh_TW |
| dc.contributor.author | Kai-Ting Hu | en |
| dc.date.accessioned | 2025-09-19T16:13:55Z | - |
| dc.date.available | 2025-09-20 | - |
| dc.date.copyright | 2025-09-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | Abdollahi, M., Hajizadeh, E., Baghestani, A. R., & Haghighat, S. (2016). Determination of a Change Point in the Age at Diagnosis of Breast Cancer Using a Survival Model. Asian Pacific Journal of Cancer Prevention, 17(S3), 5-10.
Cox, D. R. (1972). Regression Models and Life-Tables. Journal of the Royal Statistical Society: Series B (Methodological), 34(2), 187-202. de Boor, C. (1978). A Practical Guide to Spline (Vol. Volume 27). Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via the EM Algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22. Du, M., Lou, Y., & Sun, J. (2025). Estimation and Variable Selection for Interval-Censored Failure Time Data with Random Change Point and Application to Breast Cancer Study. Journal of the American Statistical Association, 1-12. Geman, S., & Hwang, C.-R. (1982). Nonparametric Maximum Likelihood Estimation by the Method of Sieves. The Annals of Statistics, 10(2), 401-414, 414. Goodman, M. S., Li, Y., & Tiwari, R. C. (2011). Detecting multiple change points in piecewise constant hazard functions. J Appl Stat, 38(11), 2523-2532. Kosorok, M. R., & Song, R. (2007). Inference under right censoring for transformation models with a change-point based on a covariate threshold. The Annals of Statistics, 35(3), 957-989, 933. Lam, K. F., Xu, J., & Xue, H. (2018). Estimation of age effect with change-points on survival of cancer patients. Statistics in Medicine, 37(10), 1732-1743. Lee, C. Y., Chen, X., & Lam, K. F. (2020). Testing for change-point in the covariate effects based on the Cox regression model. Statistics in Medicine, 39(10), 1473-1488. Liang, K.-Y., Self, S. G., & Liu, X. (1990). The Cox Proportional Hazards Model with Change Point: An Epidemiologic Application. Biometrics, 46(3), 783-793. Luo, X., Turnbull, B. W., & Clark, L. C. (1997). Likelihood Ratio Tests for a Changepoint with Survival Data. Biometrika, 84(3), 555-565. Nishino, M., Giobbie-Hurder, A., Manos, M. P., Bailey, N., Buchbinder, E. I., Ott, P. A., Ramaiya, N. H., & Hodi, F. S. (2017). Immune-Related Tumor Response Dynamics in Melanoma Patients Treated with Pembrolizumab: Identifying Markers for Clinical Outcome and Treatment Decisions. Clinical Cancer Research, 23(16), 4671-4679. Pons, O. (2002). Estimation in a Cox Regression Model With a Change-Point at an Unknown Time. Statistics, 36(2), 101-124. Pons, O. (2003). Estimation in a Cox Regression Model with a Change-Point According to a Threshold in a Covariate. The Annals of Statistics, 31(2), 442-463. Ramsay, J. O. (1988). Monotone Regression Splines in Action. Statistical Science, 3(4), 425-441. Schmoor, C., Olschewski, M., & Schumacher, M. (1996). Randomized and non-randomized patients in clinical trials: experiences with comprehensive cohort studies. Statistics in Medicine, 15(3), 263-271. Schumacher, M., Bastert, G., Bojar, H., Hübner, K., Olschewski, M., Sauerbrei, W., Schmoor, C., Beyerle, C., Neumann, R. L., & Rauschecker, H. F. (1994). Randomized 2 x 2 trial evaluating hormonal treatment and the duration of chemotherapy in node-positive breast cancer patients. German Breast Cancer Study Group. Journal of Clinical Oncology, 12(10), 2086-2093. Shapiro, J. M., Smith, H., & Schaffner, F. (1979). Serum bilirubin: a prognostic factor in primary biliary cirrhosis. Gut, 20(2), 137-140. Sleeper, L. A., & Harrington, D. P. (1990). Regression Splines in the Cox Model with Application to Covariate Effects in Liver Disease. Journal of the American Statistical Association, 85(412), 941-949. Tapsoba, J. D., Wang, C. Y., Zangeneh, S., & Chen, Y. Q. (2020). Methods for generalized change-point models: with applications to human immunodeficiency virus surveillance and diabetes data. Stat Med, 39(8), 1167-1182. Willeit, P., Raschenberger, J., Heydon, E. E., Tsimikas, S., Haun, M., Mayr, A., Weger, S., Witztum, J. L., Butterworth, A. S., Willeit, J., Kronenberg, F., & Kiechl, S. (2014). Leucocyte telomere length and risk of type 2 diabetes mellitus: new prospective cohort study and literature-based meta-analysis. PLoS One, 9(11), e112483. Yin Lee, C., & Wong, K. Y. (2023). Survival analysis with a random change-point. Statistical Methods in Medical Research, 32(11), 2083-2095. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99897 | - |
| dc.description.abstract | 轉折點模型在醫學統計中扮演重要角色,能夠識別共變數效果的結構性變化,協助建立更精確的風險預測模型。傳統的固定轉折點模型假設所有個體共享相同的轉折點,然而此假設忽略了個體間的異質性,在個人化醫療趨勢下顯得不夠貼合實際。因此,本研究在Cox比例風險模型架構下,將原先假設常態分配的隨機轉折點推廣至更靈活的分配假設,包括指數分配、對數常態分配及伽瑪分配。在估計方法上,採用sieve最大概似估計法,結合B-spline函數近似基礎風險函數,克服未知基礎風險函數估計的困難。本研究推導出包含轉折點積分的個體對數概似函數,可透過轉折點共變數的數值拆解為兩個部分的總和。值得注意的是,個體對數概似函數的每個部分僅涉及轉折點的累積分布函數,而非複雜的分布函數積分運算。透過模擬研究設定不同樣本數、設限率和B-spline階數,評估所提出方法的有限樣本統計性質。模擬結果顯示,在轉折點分配正確設定下,參數估計表現良好。當轉折點分配錯誤設定時,共變數效果與轉折點效果的估計仍維持良好表現,但隨機轉折點的變異數估計表現不佳。本研究並將所提出的方法應用於德國乳癌研究的真實資料進行驗證說明。 | zh_TW |
| dc.description.abstract | Change-point models play an important role in medical statistics by identifying structural changes in covariate effects and helping to establish more accurate risk prediction models. Traditional fixed change-point models assume that all individuals share the same change-point; however, this assumption ignores heterogeneity among individuals and appears inadequate for real-world applications under the trend of personalized medicine. Therefore, under the Cox proportional hazards model with random change-points, our study extends normally-distributed random change-points to accommodate more flexible distributions of change-points, including exponential, log normal, and gamma distributions. We adopt the sieve maximum likelihood estimation approach and use B-spline functions to approximate the baseline hazard function, which overcomes the difficult task of estimating the unknown baseline hazard function. Our study derives that an individual log-likelihood function involving the integration of change-point components can be reduced to a sum of two parts via the value of covariate with change-point. It is noted that each part of an individual log-likelihood function involves only the cumulative distribution functions of change-points rather than complex integration with respect to their distribution function. We conduct simulation studies including different sample sizes, censoring rates, and B-spline orders to evaluate the finite-sample statistical properties of the proposed method. The simulation results show that under correct change-point distribution, the parameter estimation performs well. When the change-point distribution is mis-specified, the covariate and change-point effect estimators maintain good performance, but the variance estimation of random change points performs poorly. The proposed method is also applied to a real data from German Breast Cancer Study for illustration. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:13:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-19T16:13:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 第一章 緒論 1 1.1前言 1 1.2 研究動機與目的 1 第二章 文獻回顧 3 2.1轉折點模型 3 2.2固定轉折點模型 5 2.3隨機轉折點模型 6 2.4 B-SPLINE在存活分析中的應用 6 2.4.1 B-splines 6 2.4.2 基礎風險函數的B-spline估計 8 第三章 方法 9 3.1符號定義與假設 9 3.2具隨機轉折點之比例風險模型 10 3.3估計方法 10 3.4個人化轉折點 17 第四章 模擬 22 4.1指數轉折點與常態轉折點 22 4.2轉折點分配設定錯誤 24 第五章 實例資料分析 39 第六章 結果與討論 43 參考文獻 46 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 隨機轉折點 | zh_TW |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | 模型誤設定 | zh_TW |
| dc.subject | 轉折點分析 | zh_TW |
| dc.subject | B樣條 | zh_TW |
| dc.subject | Cox比例風險模型 | zh_TW |
| dc.subject | Cox proportional hazards model | en |
| dc.subject | misspecification | en |
| dc.subject | B-splines | en |
| dc.subject | random change-point | en |
| dc.subject | change-point analysis | en |
| dc.subject | survival analysis | en |
| dc.title | 具隨機轉折點之比例風險模型基於樣條函數的半參數估計:多種轉折點分配與誤設定研究 | zh_TW |
| dc.title | A Spline-Based Semiparametric Estimation for PH Model with a Random Change Point of Various Distributions and Mis-specification Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 杜裕康;蔡政安 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Kang Tu;Chen-An Tsai | en |
| dc.subject.keyword | 存活分析,轉折點分析,隨機轉折點,Cox比例風險模型,B樣條,模型誤設定, | zh_TW |
| dc.subject.keyword | survival analysis,change-point analysis,random change-point,Cox proportional hazards model,B-splines,misspecification, | en |
| dc.relation.page | 48 | - |
| dc.identifier.doi | 10.6342/NTU202502898 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 健康數據拓析統計研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| 顯示於系所單位: | 健康數據拓析統計研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
