Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99862
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張慶國zh_TW
dc.contributor.advisorChin-Kuo Changen
dc.contributor.author賴庭茵zh_TW
dc.contributor.authorTing-Yin Laien
dc.date.accessioned2025-09-19T16:07:33Z-
dc.date.available2025-09-20-
dc.date.copyright2025-09-19-
dc.date.issued2025-
dc.date.submitted2025-07-24-
dc.identifier.citation1. WHO, Depressive disorder (depression). 2023.
2. Otte, C., et al., Major depressive disorder. Nature Reviews Disease Primers, 2016. 2(1): p. 16065.
3. Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5 (American Psychiatric Association, 2013). 2013: American Psychiatric Association.
4. WHO, International Classification of Diseases 11th Revision.
5. Li, Z., et al., Major Depressive Disorder: Advances in Neuroscience Research and Translational Applications. Neuroscience Bulletin, 2021. 37(6): p. 863-880.
6. Cuijpers, P., et al., Interpersonal psychotherapy for depression: a meta-analysis. Am J Psychiatry, 2011. 168(6): p. 581-92.
7. Oud, M., et al., Effectiveness of CBT for children and adolescents with depression: A systematic review and meta-regression analysis. Eur Psychiatry, 2019. 57: p. 33-45.
8. Fries, G.R., et al., Molecular pathways of major depressive disorder converge on the synapse. Molecular Psychiatry, 2023. 28(1): p. 284-297.
9. Chand SP, A.H., Depression, in StatPearls. 2023, StatPearls Publishing: Treasure Island (FL).
10. Marx, W., et al., Major depressive disorder. Nat Rev Dis Primers, 2023. 9(1): p. 44.
11. Delgado, P.L., Depression: the case for a monoamine deficiency. J Clin Psychiatry, 2000. 61 Suppl 6: p. 7-11.
12. Artigas, F., D.J. Nutt, and R. Shelton, Mechanism of action of antidepressants. Psychopharmacol Bull, 2002. 36 Suppl 2: p. 123-32.
13. McIntyre, R.S., et al., Treatment-resistant depression: definition, prevalence, detection, management, and investigational interventions. World Psychiatry, 2023. 22(3): p. 394-412.
14. Souery, D., et al., Treatment resistant depression: methodological overview and operational criteria. Eur Neuropsychopharmacol, 1999. 9(1-2): p. 83-91.
15. Al-Harbi, K.S., Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence, 2012. 6: p. 369-88.
16. Zanger, U.M. and M. Schwab, Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 2013. 138(1): p. 103-141.
17. Fava, M. and K.G. Davidson, DEFINITION AND EPIDEMIOLOGY OF TREATMENT-RESISTANT DEPRESSION. Psychiatric Clinics of North America, 1996. 19(2): p. 179-200.
18. Kornstein, S.G. and R.K. Schneider, Clinical features of treatment-resistant depression. Journal of Clinical Psychiatry, 2001. 62: p. 18-25.
19. Malhi, G.S. and J.J. Mann, Depression. Lancet, 2018. 392(10161): p. 2299-2312.
20. Lisanby, S.H., Electroconvulsive Therapy for Depression. New England Journal of Medicine, 2007. 357(19): p. 1939-1945.
21. Efficacy of ECT: a meta-analysis. American Journal of Psychiatry, 1985. 142(3): p. 297-302.
22. Efficacy and safety of electroconvulsive therapy in depressive disorders: a systematic review and meta-analysis. The Lancet, 2003. 361(9360): p. 799-808.
23. Marx, W., et al., Major depressive disorder. Nature Reviews Disease Primers, 2023. 9(1).
24. Gutierrez-Rojas, L., et al., Prevalence and correlates of major depressive disorder: a systematic review. Braz J Psychiatry, 2020. 42(6): p. 657-672.
25. Proudman, D., P. Greenberg, and D. Nellesen, The Growing Burden of Major Depressive Disorders (MDD): Implications for Researchers and Policy Makers. Pharmacoeconomics, 2021. 39(6): p. 619-625.
26. Greenberg, P.E., et al., The Economic Burden of Adults with Major Depressive Disorder in the United States (2010 and 2018). Pharmacoeconomics, 2021. 39(6): p. 653-665.
27. Wu, Y.C., et al., Mortality, morbidity, and risk factors in Taiwan, 1990-2017: findings from the Global Burden of Disease Study 2017. J Formos Med Assoc, 2021. 120(6): p. 1340-1349.
28. Chan, A.L., et al., Cost of depression of adults in Taiwan. Int J Psychiatry Med, 2006. 36(1): p. 131-5.
29. Shadrina, M., E.A. Bondarenko, and P.A. Slominsky, Genetics Factors in Major Depression Disease. Front Psychiatry, 2018. 9: p. 334.
30. Mann, S.K. and N.K. Malhi, Repetitive Transcranial Magnetic Stimulation, in StatPearls. 2023: Treasure Island (FL).
31. Stultz, D.J., et al., Transcranial Magnetic Stimulation (TMS) Safety with Respect to Seizures: A Literature Review. Neuropsychiatr Dis Treat, 2020. 16: p. 2989-3000.
32. Loo, C.K., T.F. McFarquhar, and P.B. Mitchell, A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. International Journal of Neuropsychopharmacology, 2008. 11(1): p. 131-147.
33. Nestler, E.J., et al., Neurobiology of Depression. Neuron, 2002. 34(1): p. 13-25.
34. Grimm, S., et al., Imbalance between Left and Right Dorsolateral Prefrontal Cortex in Major Depression Is Linked to Negative Emotional Judgment: An fMRI Study in Severe Major Depressive Disorder. Biological Psychiatry, 2008. 63(4): p. 369-376.
35. De Raedt, R. and E.H. Koster, Understanding vulnerability for depression from a cognitive neuroscience perspective: A reappraisal of attentional factors and a new conceptual framework. Cogn Affect Behav Neurosci, 2010. 10(1): p. 50-70.
36. Padberg, F. and M.S. George, Repetitive transcranial magnetic stimulation of the prefrontal cortex in depression. Experimental Neurology, 2009. 219(1): p. 2-13.
37. Fox, M.D., et al., Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry, 2012. 72(7): p. 595-603.
38. Benschop, L., et al., Reduced subgenual cingulate–dorsolateral prefrontal connectivity as an electrophysiological marker for depression. Scientific Reports, 2022. 12(1): p. 16903.
39. Tang, V.M., et al., Repetitive Transcranial Magnetic Stimulation for Comorbid Major Depressive Disorder and Alcohol Use Disorder. Brain Sci, 2021. 12(1).
40. Taiwan Food and Drug Administration. MAGSTIM Repetitive transcranial magnetic stimulator (rTMS) System – License No. 030972. 2018 [cited 2025 April 18]; Available from: https://lmspiq.fda.gov.tw/web/MDPIQ/MDPIQ1000Result?licBaseId=F5D580BE-9CCB-4A3D-8613-C1D3D79B77F7.
41. Blumberger, D.M., et al., Effectiveness of theta burst versus high-frequency repetitive transcranial magnetic stimulation in patients with depression (THREE-D): a randomised non-inferiority trial. The Lancet, 2018. 391(10131): p. 1683-1692.
42. Sackeim, H.A., et al., Clinical outcomes in a large registry of patients with major depressive disorder treated with Transcranial Magnetic Stimulation. J Affect Disord, 2020. 277: p. 65-74.
43. Fitzgerald, P.B., Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it? Brain Stimulation, 2021. 14(3): p. 730-736.
44. Cash, R.F.H., et al., Personalized connectivity-guided DLPFC-TMS for depression: Advancing computational feasibility, precision and reproducibility. Hum Brain Mapp, 2021. 42(13): p. 4155-4172.
45. Weigand, A., et al., Prospective Validation That Subgenual Connectivity Predicts Antidepressant Efficacy of Transcranial Magnetic Stimulation Sites. Biological Psychiatry, 2018. 84(1): p. 28-37.
46. Cole, E.J., et al., Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am J Psychiatry, 2020. 177(8): p. 716-726.
47. Nollet, H., et al., Transcranial magnetic stimulation: review of the technique, basic principles and applications. The Veterinary Journal, 2003. 166(1): p. 28-42.
48. Fitzgerald, P.B., T.L. Brown, and Z.J. Daskalakis, The application of transcranial magnetic stimulation in psychiatry and neurosciences research. Acta Psychiatr Scand, 2002. 105(5): p. 324-40.
49. Klomjai, W., R. Katz, and A. Lackmy-Vallée, Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Annals of Physical and Rehabilitation Medicine, 2015. 58(4): p. 208-213.
50. Fregni, F. and A. Pascual-Leone, Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol, 2007. 3(7): p. 383-93.
51. Chung, S.W., K.E. Hoy, and P.B. Fitzgerald, Theta‐burst stimulation: A new form of TMS treatment for depression? Depression and anxiety, 2015. 32(3): p. 182-192.
52. Huang, Y.-Z., et al., Theta Burst Stimulation of the Human Motor Cortex. Neuron, 2005. 45(2): p. 201-206.
53. Di Lazzaro, V., et al., Modulation of motor cortex neuronal networks by rTMS: comparison of local and remote effects of six different protocols of stimulation. J Neurophysiol, 2011. 105(5): p. 2150-6.
54. Lan, X.-J., et al., Efficacy and safety of intermittent theta burst stimulation versus high-frequency repetitive transcranial magnetic stimulation for patients with treatment-resistant depression: a systematic review. Frontiers in Psychiatry, 2023. 14.
55. Bakker, N., et al., rTMS of the Dorsomedial Prefrontal Cortex for Major Depression: Safety, Tolerability, Effectiveness, and Outcome Predictors for 10 Hz Versus Intermittent Theta-burst Stimulation. Brain Stimulation, 2015. 8(2): p. 208-215.
56. Bulteau, S., et al., Intermittent theta burst stimulation (iTBS) versus 10 Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) to alleviate treatment-resistant unipolar depression: A randomized controlled trial (THETA-DEP). Brain Stimulation, 2022. 15(3): p. 870-880.
57. Lee, J.C., et al., Subthreshold stimulation intensity is associated with greater clinical efficacy of intermittent theta-burst stimulation priming for Major Depressive Disorder. Brain Stimulation, 2021. 14(4): p. 1015-1021.
58. Li, C.-T., et al., Efficacy of prefrontal theta-burst stimulation in refractory depression: a randomized sham-controlled study. Brain, 2014. 137(7): p. 2088-2098.
59. Li, C.-T., et al., Antidepressant Efficacy of Prolonged Intermittent Theta Burst Stimulation Monotherapy for Recurrent Depression and Comparison of Methods for Coil Positioning: A Randomized, Double-Blind, Sham-Controlled Study. Biological Psychiatry, 2020. 87(5): p. 443-450.
60. Shen, Y. and L. Fang, Efficacy and Safety of Intermittent Theta Burst Stimulation and High-Frequency Repetitive Transcranial Magnetic Stimulation for Major Depressive Disorder: A Systematic Meta-Analysis. Br J Hosp Med (Lond), 2024. 85(8): p. 1-19.
61. Ehrenthal, J.C., et al., Altered cardiovascular adaptability in depressed patients without heart disease. World J Biol Psychiatry, 2010. 11(3): p. 586-93.
62. Licht, C.M., et al., Association between major depressive disorder and heart rate variability in the Netherlands Study of Depression and Anxiety (NESDA). Arch Gen Psychiatry, 2008. 65(12): p. 1358-67.
63. Agelink, M.W., et al., Relationship between major depression and heart rate variability. Clinical consequences and implications for antidepressive treatment. Psychiatry Res, 2002. 113(1-2): p. 139-49.
64. Lesnewich, L.M., et al., Associations of depression severity with heart rate and heart rate variability in young adults across normative and clinical populations. Int J Psychophysiol, 2019. 142: p. 57-65.
65. Stein, P.K., et al., Severe depression is associated with markedly reduced heart rate variability in patients with stable coronary heart disease. J Psychosom Res, 2000. 48(4-5): p. 493-500.
66. Kemp, A.H., et al., Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biological Psychiatry, 2010. 67(11): p. 1067-1074.
67. Iseger, T.A., et al., Cardiovascular differences between sham and active iTBS related to treatment response in MDD. Brain Stimul, 2020. 13(1): p. 167-174.
68. Iseger, T.A., et al., Neuro-Cardiac-Guided TMS (NCG TMS): A replication and extension study. Biological Psychology, 2021. 162: p. 108097.
69. Iseger, T.A., et al., Neuro-Cardiac-Guided TMS (NCG-TMS): Probing DLPFC-sgACC-vagus nerve connectivity using heart rate - First results. Brain Stimul, 2017. 10(5): p. 1006-1008.
70. Iseger, T.A., et al., A frontal-vagal network theory for Major Depressive Disorder: Implications for optimizing neuromodulation techniques. Brain Stimul, 2020. 13(1): p. 1-9.
71. Browning, K.N., S. Verheijden, and G.E. Boeckxstaens, The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation. Gastroenterology, 2017. 152(4): p. 730-744.
72. Kaur, M., et al., Investigating high- and low-frequency neuro-cardiac-guided TMS for probing the frontal vagal pathway. Brain Stimulation, 2020. 13(3): p. 931-938.
73. Alario, A.A., et al., Transcranial magnetic stimulation induces heart rate decelerations independent of treatment outcome. Brain Stimulation, 2023. 16(4): p. 1044-1046.
74. Dijkstra, E., et al., Transcranial Magnetic Stimulation–Induced Heart-Brain Coupling: Implications for Site Selection and Frontal Thresholding—Preliminary Findings. Biological Psychiatry Global Open Science, 2023. 3(4): p. 939-947.
75. Dijkstra, E.S.A., et al., Probing prefrontal-sgACC connectivity using TMS-induced heart–brain coupling. Nature Mental Health, 2024. 2(7): p. 809-817.
76. Cash, R.F.H., et al., Using Brain Imaging to Improve Spatial Targeting of Transcranial Magnetic Stimulation for Depression. Biological Psychiatry, 2021. 90(10): p. 689-700.
77. Dalhuisen, I., et al., rTMS as a Next Step in Antidepressant Nonresponders: A Randomized Comparison With Current Antidepressant Treatment Approaches. Am J Psychiatry, 2024. 181(9): p. 806-814.
78. Neuteboom, D., et al., Accelerated intermittent theta burst stimulation in major depressive disorder: A systematic review. Psychiatry Research, 2023. 327: p. 115429.
79. Miron, J.P., et al., Repetitive transcranial magnetic stimulation for major depressive disorder: basic principles and future directions. Ther Adv Psychopharmacol, 2021. 11: p. 20451253211042696.
80. Beam, W., et al., An efficient and accurate new method for locating the F3 position for prefrontal TMS applications. Brain Stimul, 2009. 2(1): p. 50-4.
81. Klem, G.H., et al., The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl, 1999. 52: p. 3-6.
82. Beam, W.a.B., Jeff. BA9 BA8 BA43 Location System. 2010 [cited 2025 July 20]; Available from: https://clinicalresearcher.org/F3/.
83. Fitzgerald, P.B., et al., A double blind randomized trial of unilateral left and bilateral prefrontal cortex transcranial magnetic stimulation in treatment resistant major depression. Journal of Affective Disorders, 2012. 139(2): p. 193-198.
84. Fitzgerald, P.B., et al., A Randomized, Controlled Trial of Sequential Bilateral Repetitive Transcranial Magnetic Stimulation for Treatment-Resistant Depression. American Journal of Psychiatry, 2006. 163(1): p. 88-94.
85. Bulteau, S., et al., Efficacy of intermittent Theta Burst Stimulation (iTBS) and 10-Hz high-frequency repetitive transcranial magnetic stimulation (rTMS) in treatment-resistant unipolar depression: study protocol for a randomised controlled trial. Trials, 2017. 18(1): p. 17.
86. Snaith, P., What do depression rating scales measure? Br J Psychiatry, 1993. 163: p. 293-8.
87. Riedel, M., et al., Response and remission criteria in major depression--a validation of current practice. J Psychiatr Res, 2010. 44(15): p. 1063-8.
88. Zimmerman, M., M.A. Posternak, and I. Chelminski, Derivation of a definition of remission on the Montgomery–Asberg depression rating scale corresponding to the definition of remission on the Hamilton rating scale for depression. Journal of Psychiatric Research, 2004. 38(6): p. 577-582.
89. Riedel, M., et al., Response and remission criteria in major depression – A validation of current practice. Journal of Psychiatric Research, 2010. 44(15): p. 1063-1068.
90. Autonomic Nervous System Monitoring. 2020, IntechOpen: Rijeka.
91. Alario, A.A., et al., Transcranial magnetic stimulation-associated heart rate decelerations attenuate after a TMS treatment course for depression. Brain Stimulation, 2024. 17(5): p. 1155-1156.
92. Jaskowiak, P.A., I.G. Costa, and R.J.G.B. Campello, The area under the ROC curve as a measure of clustering quality. Data Mining and Knowledge Discovery, 2022. 36(3): p. 1219-1245.
93. Parikh, R., et al., Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology, 2008. 56(1).
94. Mandrekar, J.N., Receiver Operating Characteristic Curve in Diagnostic Test Assessment. Journal of Thoracic Oncology, 2010. 5(9): p. 1315-1316.
95. Youden, W.J., Index for rating diagnostic tests. Cancer, 1950. 3(1): p. 32-5.
96. Shaffer, F. and J.P. Ginsberg, An Overview of Heart Rate Variability Metrics and Norms. Front Public Health, 2017. 5: p. 258.
97. Shaffer, F., Z.M. Meehan, and C.L. Zerr, A Critical Review of Ultra-Short-Term Heart Rate Variability Norms Research. Front Neurosci, 2020. 14: p. 594880.
98. Billman, G.E., The LF/HF ratio does not accurately measure cardiac sympatho-vagal balance. Front Physiol, 2013. 4: p. 26.
99. Schiweck, C., et al., Heart rate and high frequency heart rate variability during stress as biomarker for clinical depression. A systematic review. Psychological Medicine, 2019. 49(2): p. 200-211.
100. Snaith, P., What Do Depression Rating Scales Measure? British Journal of Psychiatry, 1993. 163(3): p. 293-298.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99862-
dc.description.abstract背景/目的:重複經顱磁刺激(repetitive transcranial magnetic stimulation, rTMS)是一種非侵入性神經刺激技術,針對大腦背外側前額葉皮質(dorsolateral prefrontal cortex, DLPFC)進行刺激,已被美國食品藥物管理局(US FDA)核准用於治療難治型憂鬱症(treatment-resistant depression, TRD)。憂鬱症患者若無心臟節律相關疾病,其典型的生理症狀之一,就是心跳頻率(簡稱心率)(heart rate, HR)上升以及心率變異度(heart rate variability, HRV)下降。初步的人體研究指出,以TMS刺激大腦的DLPFC部位,會透過自律神經系統(autonomic nervous system, ANS)調節的機制,降低心率並提升心率變異度。然而,目前尚不清楚心率相關指標是否具備預測 rTMS 治療成效的潛力,仍需進一步研究探討。本研究的第一目標為評估 rTMS 治療對重度憂鬱症(major depressive disorder, MDD)或是難治型憂鬱症(treatment-resistant depression, TRD)患者HR與HRV變化的影響;第二目標為找出最佳預測治療成效(efficacy)的心率變化之指標。
方法:本研究納入隨機對照試驗之介入組及常規神經刺激治療接受rTMS或間歇性西塔波叢集磁波刺激(intermittent theta burst stimulation, iTBS)治療的重度憂鬱症或難治型憂鬱症患者。從刺激開始前一分鐘起至當次治療結束期間,以指尖型光體積描記法之穿戴裝置(photoplethysmography, PPG)連續記錄心率資料。於治療前、後以 MADRS (Montgomery-Åsberg Depression Rating Scale)、HAM-D-17 (17-item Hamilton Depression Rating Scale) 或BDI-II (Beck Depression Inventory-II) 等三種評估憂鬱症狀嚴重程度,並蒐集人口學與臨床基線資料。為探討 HR 與 HRV 指標與治療成效之關聯,研究採用邏輯斯迴歸分析,建立未調整模型與控制年齡、性別後的調整模型,評估各指標與治療反應(response)或緩解(remission)之相關性。進一步以接受者操作特徵曲線(receiver operating characteristic, ROC)方法分析,評估各指標前後變化對治療反應的預測能力,並鑑別出最具預測潛力之指標,做為未來臨床應用與進一步研究的基礎。
結果:本研究共納入47位受試者,在2023年十二月到2025年五月期間於台北的兩家醫院,其中女性34位、男性13位,平均年齡41.51歲(標準差:13.28)。結果顯示治療後憂鬱量表分數顯著下降,完成rTMS或iTBS治療的整個療程(sessions)時,整體治療反應率為57.45%。其中,在最早一次的開始治療前15秒至開始治療後60秒區間中HRV的低頻與高頻功率比值(LF/HF ratio)於年齡性別調整模型下達到最高曲線下面積(area under curve, AUC)值(0.69,95%信賴區間為0.52–0.85,p < 0.05),敏感度為0.56,特異度為0.89,陽性預測值(positive predictive value, PPV)為0.88,為最佳指標。
結論:以心率資料計算出來的指標作為生物指標(biomarker)可能有助於預測rTMS的治療反應,反映出磁刺激治療目標區域是否有成功被活化,未來可望成為發展出個別化定位與優化臨床實用性rTMS治療方案之依據。
zh_TW
dc.description.abstractBackground/Aims: Repetitive transcranial magnetic stimulation (rTMS), a non-invasive neurostimulation technique targeting the dorsolateral prefrontal cortex (DLPFC) in the brain, has emerged in recent decades as a US FDA-approved treatment for treatment-resistant depression (TRD). One of the typical physiological symptoms of depression is an increase in heart rate (HR) and a decrease in heart rate variability (HRV) for patients without heart rhythm-related diseases. Preliminary evidence given by human research has suggested that DLPFC stimulation may modulate the autonomic nervous system (ANS), potentially reducing HR and increasing HRV. However, the predictive value of heart rate profile (HR and HRV indicators) in rTMS treatment outcomes for depression remains unclear and warrants further investigation. The first aim is to evaluate the impact of rTMS on changes of HR and HRV indicators before and after the start of the earliest TMS treatment in patients with MDD/TRD involved in the intervention group of ongoing RCTs or TMS treatment in regular practice. The second aim is to identify optimal cut-off points for HR and HRV changes that best predict therapeutic outcomes of depression.
Materials and Methods: Participants were recruited from the intervention arms of randomized controlled trials or regular neurostimulation treatments (rTMS or iTBS) in regular practice of MDD or TRD treatment to assemble a clinical cohort between December 2023 and May 2025 at two medical centers in Taipei. Heart rate data were collected using fingertip photoplethysmography (PPG) during the earliest treatment session, with consecutive recording from one minute before stimulation start to session end. Depression severity was assessed at baseline and post-treatment using the Montgomery-Åsberg Depression Rating Scale (MADRS), 17-item Hamilton Depression Rating Scale (HAM-D-17), or Beck Depression Inventory-II (BDI-II). Baseline demographics and clinical features were also recorded for each participant. Logistic regression (crude and adjusted for age and sex) was used to evaluate these heart rate profile indicators measured in various period combinations in relation to response and remission, defined as meeting criteria on any of the above three depression severity scales. Receiver operating characteristic (ROC) analysis was conducted to evaluate the predictive performance of physiological changes and to identify candidate indicators of target engagement.
Results: A total of 47 participants, including 34 females and 13males with a mean age of 41.51 years old (SD = 13.28), were enrolled in the study. The results showed that depression rating scales significantly decreased after the completion of stimulation treatment sessions, with an overall response rate of 57.45%. The low-frequency to high-frequency power ratio of HRV (LF/HF ratio) at 15–60s combination periods in age- and sex-adjusted model achieved the highest AUC (0.69, 95% CI: 0.52–0.85, p < 0.05), with a sensitivity of 0.56, specificity of 0.89, and positive predictive value (PPV) of 0.88.
Conclusions: Heart rate profile indicators calculated by heart rate data may aid as biomarkers in predicting rTMS treatment response, offering potential for individualized target engagement and refining the development of more efficient and clinically feasible rTMS protocols.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-19T16:07:33Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-19T16:07:33Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
中文摘要 iii
ABSTRACT v
Abbreviation List vii
CONTENTS x
LIST OF FIGURES xiii
LIST OF TABLES xiv
Chapter 1 Introduction 1
1.1 Clinical Features and Treatments of Major Depressive Disorder (MDD) 1
1.2 Public Health Impact of Major Depressive Disorder and Known Risk Factors 4
1.3 Innovative Neuromodulation Treatment Development of Major Depressive Disorder (MDD)/Treatment-Resistant Depression (TRD) 5
1.4 Specifics of Transcranial Magnetic Stimulation (TMS) and Theta Burst Stimulation (TBS) Protocols 8
1.5 Heart Rate Profile for Major Depressive Disorder (MDD) as a Potential Biomarker for Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment Outcomes 11
1.6 Research Gaps and Corresponding Research Questions 13
1.7 Study Aims 14
Chapter 2 Materials and Methods 15
2.1 Study Setting and Study Participants 15
2.2 Treatment Protocols 17
2.3 Assessment and Outcome Measurements 20
2.3.1 Heart Rate Data Collection 20
2.3.2 Clinical Assessment and Outcome Measures 20
2.4 Statistical Analysis 22
2.4.1 Demographic and Descriptive Analysis 22
2.4.2 Depression Severity Assessment Analysis 22
2.4.3 HR Data Processing and HRV Feature Extraction 23
2.4.4 Performance of Treatment Outcome Prediction by Receiver Operating Characteristic (ROC) Curves 24
Chapter 3 Results 27
3.1 Participant Characteristics 27
3.2 Treatment Outcomes 31
3.2.1 Changes in Depression Severity Scores 31
3.2.2 Response and Remission Rates 32
3.2.3 Pre-Post Treatment Alterations in HR and HRV Indicators 34
3.3 Predictive Analysis 41
3.3.1 Receiver Operating Characteristic (ROC) Curve Analysis for Alteration of HRV Indicators Based on Absolute Changes 41
3.3.2 Receiver Operating Characteristic (ROC) Curve Analysis for Alteration of HRV Indicators Based on Relative Ratio 57
Chapter 4 Discussion 73
4.1 Summary of Main Results 73
4.2 Comparison to Previous Studies and Clinical Implications 74
4.3 Advantages and Limitations 76
4.4 Conclusions and Future Direction of Research 78
REFERENCE 79
APPENDIX 85
APPENDIX 1 Baseline Clinical Data Collection Checklist 85
-
dc.language.isoen-
dc.subject重複經顱磁刺激zh_TW
dc.subject心率變異性zh_TW
dc.subject重度憂鬱症zh_TW
dc.subject難治型憂鬱症zh_TW
dc.subject預測生物指標zh_TW
dc.subjectRepetitive transcranial magnetic stimulationen
dc.subjectmajor depressive disorderen
dc.subjecttreatment-resistant disorderen
dc.subjectpredictive biomarkeren
dc.subjectheart rate variabilityen
dc.title心率指標用於重度憂鬱症患者接受重複經顱磁刺激治療療效預測生物指標之潛在角色zh_TW
dc.titlePotential Roles of Heart Rate Profile as Predictive Biomarkers for Efficacy of Repetitive Transcranial Magnetic Stimulation (rTMS) in Patients with Major Depressive Disorderen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳娟瑜;王睿zh_TW
dc.contributor.oralexamcommitteeChuan-Yu Chen;Jui Wangen
dc.subject.keyword重複經顱磁刺激,心率變異性,重度憂鬱症,難治型憂鬱症,預測生物指標,zh_TW
dc.subject.keywordRepetitive transcranial magnetic stimulation,heart rate variability,major depressive disorder,treatment-resistant disorder,predictive biomarker,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202502222-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-07-24-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
dc.date.embargo-lift2026-08-01-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2026-08-01
1.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved