Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9985
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 張正琪(Cheng-Chi Chang) | |
dc.contributor.author | Yu-Jen Yang | en |
dc.contributor.author | 楊宇仁 | zh_TW |
dc.date.accessioned | 2021-05-20T20:53:54Z | - |
dc.date.available | 2013-10-03 | |
dc.date.available | 2021-05-20T20:53:54Z | - |
dc.date.copyright | 2011-10-03 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-02 | |
dc.identifier.citation | 1.Chen YJ, Chang JT, Liao CT, Wang HM, Yen TC, Chiu CC, et al.Head and neck cancer in the betel quid chewing area: recent advances in molecular carcinogenesis. Cancer Sci(2008);99(8): 1507-1514.
2. Zygogianni AG, Kyrgias G, Karakitsos P, Psyrri A, Kouvaris J, Kelekis N, et al.Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head Neck Oncol(2011);3(2. 3. Haddad RI, Shin DM.Recent advances in head and neck cancer. N Engl J Med(2008);359(11): 1143-1154. 4. Warnakulasuriya S.Global epidemiology of oral and oropharyngeal cancer. Oral Oncol(2009);45(4-5): 309-316. 5. Bagan JV, Scully C.Recent advances in Oral Oncology 2007: epidemiology, aetiopathogenesis, diagnosis and prognostication. Oral Oncol(2008);44(2): 103-108. 6. Bagan J, Sarrion G, Jimenez Y.Oral cancer: clinical features. Oral Oncol(2010);46(6): 414-417. 7. Kowalski LP, Sanabria A.Elective neck dissection in oral carcinoma: a critical review of the evidence. Acta Otorhinolaryngol Ital(2007);27(3): 113-117. 8. Huntzinger E, Izaurralde E.Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet(2011);12(2): 99-110. 9. Farazi TA, Spitzer JI, Morozov P, Tuschl T.miRNAs in human cancer. J Pathol(2011);223(2): 102-115. 10. Griffiths-Jones S.miRBase: the microRNA sequence database. Methods Mol Biol(2006);342(129-138. 11. Inui M, Martello G, Piccolo S.MicroRNA control of signal transduction. Nat Rev Mol Cell Biol(2010);11(4): 252-263. 12. Esquela-Kerscher A, Slack FJ.Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer(2006);6(4): 259-269. 13. Krutovskikh VA, Herceg Z.Oncogenic microRNAs (OncomiRs) as a new class of cancer biomarkers. Bioessays(2010);32(10): 894-904. 14. Baranwal S, Alahari SK.miRNA control of tumor cell invasion and metastasis. Int J Cancer(2010);126(6): 1283-1290. 15. Dykxhoorn DM.MicroRNAs and metastasis: little RNAs go a long way. Cancer Res(2010);70(16): 6401-6406. 16. Wu B-h, Xiong X-p, Jia J, Zhang W-f.MicroRNAs: New actors in the oral cancer scene. Oral Oncol(In Press, Corrected Proof 17. Gomes CC, Gomez RS.MicroRNA and oral cancer: future perspectives. Oral Oncol(2008);44(10): 910-914. 18. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, et al.Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res(2004);64(9): 3087-3095. 19. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, et al.A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res(2005);65(21): 9628-9632. 20. Tanzer A, Stadler PF.Molecular evolution of a microRNA cluster. J Mol Biol(2004);339(2): 327-335. 21. Mendell JT.miRiad roles for the miR-17-92 cluster in development and disease. Cell(2008);133(2): 217-222. 22. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al.A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A(2006);103(7): 2257-2261. 23. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al.microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A(2006);103(24): 9136-9141. 24. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al.E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell(2008);13(3): 272-286. 25. Yu Z, Willmarth NE, Zhou J, Katiyar S, Wang M, Liu Y, et al.microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling. Proc Natl Acad Sci U S A(2010);107(18): 8231-8236. 26. Danen EHJ, Sonnenberg A.Integrins in regulation of tissue development and function. 27. Hynes RO.The emergence of integrins: a personal and historical perspective. Matrix Biol(2004);23(6): 333-340. 28. Takada Y, Ye X, Simon S.The integrins. Genome Biol(2007);8(5): 215. 29. Culhane AC, Quackenbush J.Confounding effects in 'A six-gene signature predicting breast cancer lung metastasis'. Cancer Res(2009);69(18): 7480-7485. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9985 | - |
dc.description.abstract | 口腔癌之普及率在全球常見癌症中排名第八位,且經行政院衛生署公布之統計資料,民國九十八年與九十九年的十大癌症死因中,口腔癌是唯一排名上升的惡性腫瘤(第六升至第五),足以顯現口腔癌在台灣的盛行率與研究潛力。約有九成的癌症病患最後死於癌症轉移的發生,為了提升癌症病患的存活機率,關於癌症轉移的研究已經成為刻不容緩的議題。本實驗室為了釐清口腔癌發生轉移的相關分子機制,利用了miRNA的微陣列對TW2.6與TW2.6 MS-10進行分析,發現一個miRNA群簇-miR-17-92 cluster,在移行能力較高的TW2.6 MS-10細胞株中有下降的現象。於是我們進一步分析常見口腔癌細胞株的miR-17-92 cluster表現量,發現其表現量與各細胞間的移行能力呈現負相關。為了確認miR-17-92 cluster是否能影響細胞移行能力,我們將miR-17-92 cluster在TW2.6 MS-10與SAS中過量表現,發現其確實能降低此兩細胞株的移行能力。而為了瞭在此cluster中,何者扮演主要調控者的角色,我們又分別在TW2.6 MS-10與SAS中分別過量表現miR-17、miR-19b、miR-20a與miR-92a,結果發現只有miR-17與miR-20a對兩株癌細胞具有明顯的移行抑制能力。而從病人的數據也顯示,在高期數與發生淋巴轉移的病人,miR-17與miR-20a有比較低的表現量。從臨床檢體與細胞實驗中顯示,在口腔癌中miR-17與miR-20a似乎扮演著重要角色。為了釐清miR-17與miR-20a抑制細胞移行能力的分子機制,我們先以生物資訊軟體TargetScan與Microcosm進行下游標的的預測,並且利用Ingenuity Pathway Analysis (IPA) 對預測標的進行功能性的分析,篩選出同時是miR-17與miR-20a的下游標的,且對細胞移行能力有影響的目標基因-ITGβ8。經由RT-PCR發現,在TW2.6 MS-10細胞中ITGβ8比TW2.6有較高的表現量,但由暫時轉染各個miRNA的數據顯示,ITGβ8才是miR-17與miR-20a可能的下游基因。而為了確定ITGβ8在口腔癌中的功能,我們利用shRNA的方式抑制TW2.6 MS-10細胞中ITGβ8的表現,發現細胞移行能力隨著ITGβ8表現量下降而降低。接下來我們構築了野生型與突變型的ITGβ8 3’UTR來證明ITGβ8真的為miR-17與miR-20a的直接下游。實驗結果顯示,ITGβ8的確是miR-17與miR-20a的下游調控基因。綜合以上實驗結果顯示,miR-17-92 cluster確實有抑制口腔癌移行能力的功能,而其中又以miR-17與miR-20a為主要調控者,乃藉由種源序列與ITGβ8的3’UTR結合,使ITGβ8的mRNA進行降解而達到抑制細胞移行能力的效果。 | zh_TW |
dc.description.abstract | Metastasis is always an important concern in oral squamous cell carcinoma (OSCC) treatment, and migration is the first and crucial step in this process. To investigate this issue, we established a more aggressive cell line-TW2.6 MS-10 by transwell selection from low-migration ability oral cancer cell line: TW2.6. To better understand the effect of microRNAs (miRNA) profile in OSCC metastasis, the miRNA microarray analysis between TW2.6 and TW2.6 MS-10 was performed. According to the array data, a miRNA cluster miR-17-92, including miR-17, miR19b, miR-20a, miR-92a, was significantly down-regulated in TW2.6 MS-10 compare to the parental cells. To further confirm whether this cluster directly regulates the migration ability in OSCC cells, miR-17-92 cluster was over-expressed in TW2.6 MS-10 and SAS cells. The results showed that the migration abilities were remarkably suppressed compared to control vector clones (P < 0.01, P < 0.01, respectively). In order to figure out which miRNA(s) in this cluster is the dominant regulator(s) in OSCC migration instruction, we cloned miR17, miR19b, miR-20a and miR92 separately and found that miR-17 and miR-20a of miR-17-92 cluster seemed to play a key role in this migration regulation (P < 0.01).The clinical data also supported this finding. Cross matching by TargetScan and Microcosm to predict the suspicious downstream target(s) of miR-17 and mir-20a in this system, a possible downstream target ITGβ8 was found. Taken together, here we first defined a new pathological role of miR-17-92 cluster as a tumor suppressor miRNA in OSCC migration regulation machinery. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:53:54Z (GMT). No. of bitstreams: 1 ntu-100-R98450017-1.pdf: 2168326 bytes, checksum: a2a527fe6f11f70d23b7627a47abc839 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | CONTENTS
INTRODUCTION……………………………….1 MATERIALS AND METHODS………………..5 RESULTS………………………………………...9 1.miR-17-92 cluster expression negatively correlated with migration ability in oral squamous cell carcinoma……9 2.miR-17-92 cluster down-regulated migration ability in OSCC cell lines…………………………10 3.Migration ability was predominantly suppressed by miR-17 and miR-20a………………………………10 4.miR-17 and miR-20a expression level negatively correlated with TNM stage in oral cancer patients…………11 5.miR-17 and miR-20a regulated OSSS migration ability through inhibited their downstream target ITGβ8……12 6.ITGβ8 was a direct downstream target of miR-17 and miR-20a……………………………………………14 DISCUSSION……………………………………16 FIGURES………………………………………20 REFERENCES…………………………………32 | |
dc.language.iso | en | |
dc.title | 探討微小核醣核酸17-92群簇對人類口腔鱗狀上皮細胞癌移行能力之影響 | zh_TW |
dc.title | The Effect of miR-17-92 cluster on Tumor Migration in Human Oral Squamous Cell Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭彥彬(Mark Yen-Pin Kuo),林本仁(Ben-Ren Lin),鄭永銘(Yung-Ming Jeng) | |
dc.subject.keyword | 癌症移行,微小核醣核酸17-92群簇, | zh_TW |
dc.subject.keyword | cancer migration,miR-17-92 cluster, | en |
dc.relation.page | 37 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2011-08-02 | |
dc.contributor.author-college | 牙醫專業學院 | zh_TW |
dc.contributor.author-dept | 口腔生物科學研究所 | zh_TW |
Appears in Collections: | 口腔生物科學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-100-1.pdf | 2.12 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.