Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9984
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王萬波
dc.contributor.authorWen-Wen Wangen
dc.contributor.author王玟文zh_TW
dc.date.accessioned2021-05-20T20:53:50Z-
dc.date.available2016-10-07
dc.date.available2021-05-20T20:53:50Z-
dc.date.copyright2011-10-07
dc.date.issued2011
dc.date.submitted2011-08-02
dc.identifier.citationAad, G., B. Abbott, et al. (2011). 'Measurement of Dijet Azimuthal Decorrelations in pp Collisions at sqrt[s]=7 TeV.' Phys Rev Lett 106(17): 172002.
Biswas, S. K. and D. P. Nayak (1994). 'Mutational analysis of the conserved motifs of influenza A virus polymerase basic protein 1.' J Virol 68(3): 1819-1826.
Carstens, R. P., W. L. McKeehan, et al. (1998). 'An intronic sequence element mediates both activation and repression of rat fibroblast growth factor receptor 2 pre-mRNA splicing.' Mol Cell Biol 18(4): 2205-2217.
Das, K., J. M. Aramini, et al. (2010). 'Structures of influenza A proteins and insights into antiviral drug targets.' Nat Struct Mol Biol 17(5): 530-538.
Datar, K. V., G. Dreyfuss, et al. (1993). 'The human hnRNP M proteins: identification of a methionine/arginine-rich repeat motif in ribonucleoproteins.' Nucleic Acids Res 21(3): 439-446.
Deng, T., J. Sharps, et al. (2005). 'In vitro assembly of PB2 with a PB1-PA dimer supports a new model of assembly of influenza A virus polymerase subunits into a functional trimeric complex.' J Virol 79(13): 8669-8674.
Dias, A., D. Bouvier, et al. (2009). 'The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.' Nature 458(7240): 914-918.
Fechter, P., L. Mingay, et al. (2003). 'Two aromatic residues in the PB2 subunit of influenza A RNA polymerase are crucial for cap binding.' J Biol Chem 278(22): 20381-20388.
Ferre, F. (1992). 'Quantitative or semi-quantitative PCR: reality versus myth.' PCR Methods Appl 2(1): 1-9.
Fodor, E., M. Crow, et al. (2002). 'A single amino acid mutation in the PA subunit of the influenza virus RNA polymerase inhibits endonucleolytic cleavage of capped RNAs.' J Virol 76(18): 8989-9001.
Fodor, E., L. Devenish, et al. (1999). 'Rescue of influenza A virus from recombinant DNA.' J Virol 73(11): 9679-9682.
Fouchier, R. A., V. Munster, et al. (2005). 'Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls.' J Virol 79(5): 2814-2822.
Gaush, C. R. and T. F. Smith (1968). 'Replication and plaque assay of influenza virus in an established line of canine kidney cells.' Appl Microbiol 16(4): 588-594.
Graham, F. L., J. Smiley, et al. (1977). 'Characteristics of a human cell line transformed by DNA from human adenovirus type 5.' J Gen Virol 36(1): 59-74.
Guu, T. S., L. Dong, et al. (2008). 'Mapping the domain structure of the influenza A virus polymerase acidic protein (PA) and its interaction with the basic protein 1 (PB1) subunit.' Virology 379(1): 135-142.
Hara, K., F. I. Schmidt, et al. (2006). 'Amino acid residues in the N-terminal region of the PA subunit of influenza A virus RNA polymerase play a critical role in protein stability, endonuclease activity, cap binding, and virion RNA promoter binding.' J Virol 80(16): 7789-7798.
Hara, K., M. Shiota, et al. (2001). 'Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site.' Genes Cells 6(2): 87-97.
Hovhannisyan, R. H. and R. P. Carstens (2007). 'Heterogeneous ribonucleoprotein m is a splicing regulatory protein that can enhance or silence splicing of alternatively spliced exons.' J Biol Chem 282(50): 36265-36274.
Huarte, M., A. Falcon, et al. (2003). 'Threonine 157 of influenza virus PA polymerase subunit modulates RNA replication in infectious viruses.' J Virol 77(10): 6007-6013.
Huarte, M., J. J. Sanz-Ezquerro, et al. (2001). 'PA subunit from influenza virus polymerase complex interacts with a cellular protein with homology to a family of transcriptional activators.' J Virol 75(18): 8597-8604.
Hulse-Post, D. J., J. Franks, et al. (2007). 'Molecular changes in the polymerase genes (PA and PB1) associated with high pathogenicity of H5N1 influenza virus in mallard ducks.' J Virol 81(16): 8515-8524.
Ish-Horowicz, D. and J. F. Burke (1981). 'Rapid and efficient cosmid cloning.' Nucleic Acids Res 9(13): 2989-2998.
Jain, R. A. and E. R. Gavis (2008). 'The Drosophila hnRNP M homolog Rumpelstiltskin regulates nanos mRNA localization.' Development 135(5): 973-982.
Jorba, N., S. Juarez, et al. (2008). 'Analysis of the interaction of influenza virus polymerase complex with human cell factors.' Proteomics 8(10): 2077-2088.
Kawaguchi, A. and K. Nagata (2007). 'De novo replication of the influenza virus RNA genome is regulated by DNA replicative helicase, MCM.' EMBO J 26(21): 4566-4575.
Lamb, R. A. and P. W. Choppin (1983). 'The gene structure and replication of influenza virus.' Annu Rev Biochem 52: 467-506.
Lleres, D., M. Denegri, et al. (2010). 'Direct interaction between hnRNP-M and CDC5L/PLRG1 proteins affects alternative splice site choice.' EMBO Rep 11(6): 445-451.
Luytjes, W., M. Krystal, et al. (1989). 'Amplification, expression, and packaging of foreign gene by influenza virus.' Cell 59(6): 1107-1113.
Maier, H. J., T. Kashiwagi, et al. (2008). 'Differential role of the influenza A virus polymerase PA subunit for vRNA and cRNA promoter binding.' Virology 370(1): 194-204.
Marko, M., M. Leichter, et al. (2010). 'hnRNP M interacts with PSF and p54(nrb) and co-localizes within defined nuclear structures.' Exp Cell Res 316(3): 390-400.
Naffakh, N., P. Massin, et al. (2001). 'The transcription/replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit.' Virology 285(2): 244-252.
Nayak, D. P., R. A. Balogun, et al. (2009). 'Influenza virus morphogenesis and budding.' Virus Res 143(2): 147-161.
Nayak, D. P., E. K. Hui, et al. (2004). 'Assembly and budding of influenza virus.' Virus Res 106(2): 147-165.
Neubauer, G., A. King, et al. (1998). 'Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex.' Nat Genet 20(1): 46-50.
Neumann, G., M. T. Hughes, et al. (2000). 'Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction with hCRM1.' EMBO J 19(24): 6751-6758.
Newcomb, L. L., R. L. Kuo, et al. (2009). 'Interaction of the influenza a virus nucleocapsid protein with the viral RNA polymerase potentiates unprimed viral RNA replication.' J Virol 83(1): 29-36.
Noda, T. and Y. Kawaoka (2010). 'Structure of influenza virus ribonucleoprotein complexes and their packaging into virions.' Rev Med Virol 20(6): 380-391.
Perales, B., J. J. Sanz-Ezquerro, et al. (2000). 'The replication activity of influenza virus polymerase is linked to the capacity of the PA subunit to induce proteolysis.' J Virol 74(3): 1307-1312.
Pinto, L. H. and R. A. Lamb (2006). 'Influenza virus proton channels.' Photochem Photobiol Sci 5(6): 629-632.
Pleschka, S., R. Jaskunas, et al. (1996). 'A plasmid-based reverse genetics system for influenza A virus.' J Virol 70(6): 4188-4192.
Plotch, S. J., M. Bouloy, et al. (1981). 'A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription.' Cell 23(3): 847-858.
Regan, J. F., Y. Liang, et al. (2006). 'Defective assembly of influenza A virus due to a mutation in the polymerase subunit PA.' J Virol 80(1): 252-261.
Rodriguez, A., A. Perez-Gonzalez, et al. (2007). 'Influenza virus infection causes specific degradation of the largest subunit of cellular RNA polymerase II.' J Virol 81(10): 5315-5324.
Skehel, J. J. and D. C. Wiley (2000). 'Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.' Annu Rev Biochem 69: 531-569.
Ulmanen, I., B. A. Broni, et al. (1981). 'Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription.' Proc Natl Acad Sci U S A 78(12): 7355-7359.
Webster, R. G. (2001). 'Virology. A molecular whodunit.' Science 293(5536): 1773-1775.
Webster, R. G., W. J. Bean, et al. (1992). 'Evolution and ecology of influenza A viruses.' Microbiol Rev 56(1): 152-179.
Wu, W. W. and N. Pante (2009). 'The directionality of the nuclear transport of the influenza A genome is driven by selective exposure of nuclear localization sequences on nucleoprotein.' Virol J 6: 68.
Yuan, P., M. Bartlam, et al. (2009). 'Crystal structure of an avian influenza polymerase PA(N) reveals an endonuclease active site.' Nature 458(7240): 909-913.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9984-
dc.description.abstract流感病毒的PA、PB1及PB2蛋白質構成了病毒特有的RNA-dependent RNA polymerase (RdRp),參與病毒複製轉錄的過程,在病毒生活史扮演重要的角色。本實驗室為了更了解病毒複製轉錄的機制,挑選PA進行更進一步的研究。首先,以PA為餌,利用酵母菌雙雜合系統(yeast two-hybrid system)篩選Hela細胞的cDNA資料庫,找出八個可能與PA有交互作用的細胞蛋白質,並對其中的HNRPM進行更深入探討。
我們利用帶有tag的PA與HNRPM蛋白質進行免疫共沉澱法(Co-IP)以及GST pull-down assay,確認兩者之間具有交互作用;在RNase A的作用下,也證實兩者之間並非透過RNA而結合。接著,我們將PA及HNRPM分別分成多個片段,再以免疫共沉澱法找尋彼此間交互作用的區域。實驗結果顯示,PA與HNRPM皆是用本身的N端與對方進行交互作用。最後,我們利用免疫螢光分析的技術,在螢光顯微鏡下看到PA與HNRPM共同定位在細胞核中,再一次驗證兩者具有交互作用的可能性。
我們接著想了解此交互作用對病毒或宿主有甚麼生理意義。首先,使用FGFR2 minigene系統,將其送到293T細胞中,再利用semi-quantitative PCR (semi-qPCR)來觀察splicing的產物。結果發現PA的多寡並不會影響HNRPM調控alternative splicing的功能。而在能夠測試病毒聚合酶複製及轉錄功能的螢光酶報導系統實驗中,發現在細胞中過量表現HNRPM會有抑制病毒聚合酶功能的效果。以上結果顯示,PA與HNRPM的交互作用可能會引導HNRPM負向調控病毒複製轉錄的功能,其中的詳細機制需要透過更多的實驗才能證實。
zh_TW
dc.description.abstractInfluenza A virus contains an RNA-dependent RNA polymerase(RdRp) which consists of viral proteins PA, PB1 and PB2. It plays an important role in influenza viral transcription and replication. PA had been shown to be involved in vRNA synthesis and to activate viral mRNA synthesis by regulating the ‘cap-snatching’ process. To further investigate the role of PA protein in virus life cycle, our lab used yeast two-hybrid system to identify cellular factors that may interact with PA protein. We found that hnRNP M, an mRNA splicing factor, is one of the candidates of PA-interacting cellular proteins. To further confirm the interaction between PA and hnRNP M, co-immunoprecipitation (co-IP) and GST pull-down assays were performed. The results demonstrated that PA did specifically interact with hnRNP M. The interaction between PA and hnRNP M (both are RNA-binding proteins) was not mediated through RNA because RNase A treatment did not abolish their interaction. The immunofluorescence assay (IFA) also indicated that PA and hnRNP M co-localized in the nucleus, further confirming the interaction between these two proteins. Next, we used PA and hnRNP M deletion mutants to map the interaction regions on each protein. Our data indicated that both PA and hnRNP M use their N-terminal regions to interact with each other. Knowing the interaction between PA and hnRNP M, we then tested whether PA would affect hnRNP M’s alternative splicing activity. hnRNP M is known to promote alternative splicing of the FGFR2 minigene. By quantifying the splicing products of the FGFR2 minigene in the presence or absence of PA, we found that PA did not affect hnRNP M’s activity on alternative splicing. We then tested whether hnRNP M would affect influenza A viral replication. An influenza replication-reporter system was used to measure the transcription and replication activity of viral RdRp. It turned out that overexpression of hnRNP M reduced the activity of RdRp. Further investigation is required to clarify the role of hnRNP M in viral transcription and replication.en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:53:50Z (GMT). No. of bitstreams: 1
ntu-100-R98445123-1.pdf: 3017818 bytes, checksum: e0e814cbd533643022a54268aa6a0c03 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents中文摘要……………………………………………………………………………… i
Abstract………………………………………………………………………………. ii
目錄………………………………………………………………………………….. iii
圖目錄……………………………………………………………………………….. vi
緒論…………………………………………………………………………………... 1
研究目的……………………………………………………………………………... 7
材料與方法…………………………………………………………………………... 8
◆ 實驗材料………………………………………………………………………..... 8
一、化學藥品及試劑………………………………………………………………… 8
二、套組試劑……………………………………………………………………….. 11
三、抗體……………………………………………………………………………. 12
四、酵素……………………………………………………………………………. 12
五、其它……………………………………………………………………………. 13
六、細胞株 (Cell line)……………………………………………………………… 13
七、質體 (Plasmid)………………………………………………………………… 14
◆ 實驗方法………………………………………………………………………... 17
一、質體建構 (Construction)……………………………………………………… 17
二、細菌轉形 (Transformation)…………………………………………………… 18
三、勝任細胞的製備 (Preparation of competent cells)…………………………… 18
四、小量質體製備 (Mini-preparation)…………………………………………….. 19
五、大量質體製備 (Large-scale plasmid isolation) ………………………………. 20
六、質體轉染 (Transfection)………………………………………………………. 22
七、慢病毒製備 (Preparation of Lentivirus)………………………………………. 24
八、慢病毒定量 (quantification of Lentivirus) ………………………………........ 25
九、慢病毒感染 (Lentivirus infection)……………………………………………. 26
十、細胞核糖核酸萃取 (RNA extraction)………………………………………… 27
十一、反轉錄反應 (Reverse transcription)………………………………………… 27
十二、即時聚合酶鏈鎖反應 (Real-time PCR) …………………………………... 28
十三、半定量聚合酶鏈鎖反應 (semi-quantitative PCR)………………………… 29
十四、螢光酶分析 (Luciferase assay)…………………………………………….. 30
十五、細胞全蛋白質之收取………………………………………………………. 30
十六、蛋白質定量…………………………………………………………………. 30
十七、西方墨點法 (Western blot)………………………………………………… 31
十八、流感病毒感染及增殖 (Influenza virus infection and amplification)……… 31
十九、流感病毒之溶斑分析法 (Plaque assay of Influenza virus)………………… 32
二十、Glutathione S-transferase (GST) pull-down 分析………………………….. 33
二十一、免疫共沈澱法 (Co-Immunoprecipitation)………………………………. 35
二十二、免疫螢光分析 (Immunofluorescence assay, IFA)……………………….. 36
實驗結果……………………………………………………………………………. 37
一、利用酵母菌雙雜合篩選(yeast two-hybrid system) 確認病毒蛋白質PA與細胞因子HNRPM的交互作用……………………………………………………... 37
二、透過免疫共沈澱(Co-immunoprecipitation)與GST pull-down assay確認PA蛋白質與HNRPM蛋白質之間有交互作用…………………………………….. 37
三、PA蛋白質與HNRPM蛋白質之間的交互作用並非透過RNA…………….. 38
四、利用免疫螢光分析(IFA)法觀察到PA蛋白質與HNRPM蛋白質共同位於(co-localize)細胞核中………………………………………………………….. 38
五、利用免疫共沈澱法確認PA蛋白質與HNRPM蛋白質之間的結合片段…… 39
六、PA不會影響HNRPM的alternative splicing功能…………………………... 39
七、在NPC-TW04細胞中過量表現HNRPM蛋白質會抑制流感病毒螢光酶報導系統的表現…………………………………………………………………….. 40
討論…………………………………………………………………………………. 42
附圖…………………………………………………………………………………. 46
附表…………………………………………………………………………………. 59
參考文獻……………………………………………………………………………. 61
圖目錄
圖一、A型流行性感冒病毒結構圖……………………………………………….. 46
圖二、A型流感病毒的生活史…………………………………………………….. 47
圖三、酵母菌雙雜合系統顯示PA與HNRPM有交互作用……………………….. 48
圖四、利用免疫共沉澱法確認PA與HNRPM的交互作用……………………….. 49
圖五、GST pull-down分析也顯示PA與HNRPM在in vitro下有交互作用……….. 50
圖六、PA與HNRPM之間的交互作用並非透過RNA……………………………... 51
圖七、PA蛋白質與HNRPM蛋白質共同位於(co-localize)細胞核中…………….. 52
圖八、以免疫共沉澱法找出PA蛋白質上與HNRPM蛋白質結合的片段………… 53
圖九、以免疫共沉澱法找出HNRPM蛋白質上與PA蛋白質結合的片段………… 54
圖十、PA不會影響HNRPM的alternative splicing功能............................................ 55
圖十一、細胞過量表現HNRPM蛋白質會抑制流感病毒螢光酶報導系統的表現. 57
dc.language.isozh-TW
dc.titleA型流行性感冒病毒PA蛋白質與細胞蛋白質hnRNP M之交互作用zh_TW
dc.titleThe interaction between Influenza A viral PA protein and cellular protein hnRNP Men
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,施信如,楊宏志
dc.subject.keyword流行性感冒病毒,PA蛋白質,HNRPM,流感病毒轉錄與複製,zh_TW
dc.subject.keywordInfluenza virus,PA,HNRPM,influenza viral transcription and replication,en
dc.relation.page64
dc.rights.note同意授權(全球公開)
dc.date.accepted2011-08-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept微生物學研究所zh_TW
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf2.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved