請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙 | zh_TW |
| dc.contributor.advisor | Hsiu-Hsi Chen | en |
| dc.contributor.author | 毛嘉苡 | zh_TW |
| dc.contributor.author | Jia-Yi Mao | en |
| dc.date.accessioned | 2025-09-18T16:11:16Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-05 | - |
| dc.identifier.citation | Altman, D. G., Vergouwe, Y., Royston, P., & Moons, K. G. M. (2009). Prognosis and prognostic research: validating a prognostic model. BMJ, 338, b605. https://doi.org/10.1136/bmj.b605
Cahn, A., Shoshan, A., Sagiv, T., Yesharim, R., Goshen, R., Shalev, V., & Raz, I. (2020). Prediction of progression from pre-diabetes to diabetes: Development and validation of a machine learning model. Diabetes/Metabolism Research and Reviews, 36(2), e3252. https://doi.org/10.1002/dmrr.3252 Chang, H.-J., Kuo, H.-S., Tung, T.-H., Chou, P., & Chen, T. H.-H. (2000). Evaluation of a Population-Based Screening for Type 2 Diabetes: A Community-Based Screening Project in Puli, Taiwan. Preventive Medicine, 31(4), 396-402. https://doi.org/10.1006/pmed.2000.0728 Chen, L., Magliano, D. J., Balkau, B., Colagiuri, S., Zimmet, P. Z., Tonkin, A. M., Mitchell, P., Phillips, P. J., & Shaw, J. E. (2010). AUSDRISK: an Australian Type 2 Diabetes Risk Assessment Tool based on demographic, lifestyle and simple anthropometric measures. Medical Journal of Australia, 192(4), 197-202. https://doi.org/10.5694/j.1326-5377.2010.tb03478.x Chen, T. H.-H., Chiu, Y.-H., Luh, D.-L., Yen, M.-F., Wu, H.-M., Chen, L.-S., Tung, T.-H., Huang, C.-C., Chan, C.-C., Shiu, M.-N., Yeh, Y.-P., Liou, H.-H., Liao, C.-S., Lai, H.-C., Chiang, C.-P., Peng, H.-L., Tseng, C.-D., Yen, M.-S., Hsu, W.-C., & Chen, C.-H. (2004). Community-based multiple screening model. Cancer, 100(8), 1734-1743. https://doi.org/10.1002/cncr.20171 Chen, T. H.-H., Yen, M.-F., & Tung, T.-H. (2001). A computer simulation model for cost–effectiveness analysis of mass screening for Type 2 diabetes mellitus. Diabetes Research and Clinical Practice, 54, 37-42. https://doi.org/10.1016/S0168-8227(01)00307-2 Chung, R. H., Chuang, S. Y., Chen, Y. E., Li, G. H., Hsieh, C. H., Chiou, H. Y., & Hsiung, C. A. (2023). Prevalence and predictive modeling of undiagnosed diabetes and impaired fasting glucose in Taiwan: a Taiwan Biobank study. BMJ Open Diabetes Res Care, 11(3). https://doi.org/10.1136/bmjdrc-2023-003423 Collett, D. (2014). Modelling Survival Data in Medical Research (3rd ed.). Chapman and Hall/CRC. https://doi.org/10.1201/b18041 Committee, A. D. A. P. P. (2024). 2. Diagnosis and Classification of Diabetes: Standards of Care in Diabetes—2025. Diabetes Care, 48(Supplement_1), S27-S49. https://doi.org/10.2337/dc25-S002 De Silva, N. M. G., Borges, M. C., Hingorani, A. D., Engmann, J., Shah, T., Zhang, X., Luan, J. a., Langenberg, C., Wong, A., Kuh, D., Chambers, J. C., Zhang, W., Jarvelin, M.-R., Sebert, S., Auvinen, J., consortium, U., Gaunt, T. R., & Lawlor, D. A. (2019). Liver Function and Risk of Type 2 Diabetes: Bidirectional Mendelian Randomization Study. Diabetes, 68(8), 1681-1691. https://doi.org/10.2337/db18-1048 Diaz-Santana, M. V., O’Brien, K. M., Park, Y.-M. M., Sandler, D. P., & Weinberg, C. R. (2022). Persistence of Risk for Type 2 Diabetes After Gestational Diabetes Mellitus. Diabetes Care, 45(4), 864-870. https://doi.org/10.2337/dc21-1430 Færch, K., Borch-Johnsen, K., Holst, J. J., & Vaag, A. (2009). Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia, 52(9), 1714-1723. https://doi.org/10.1007/s00125-009-1443-3 Giovannucci, E., Harlan, D. M., Archer, M. C., Bergenstal, R. M., Gapstur, S. M., Habel, L. A., Pollak, M., Regensteiner, J. G., & Yee, D. (2010). Diabetes and Cancer: A Consensus Report. CA: A Cancer Journal for Clinicians, 60(4), 207-221. https://doi.org/10.3322/caac.20078 Glümer, C., Jørgensen, T., & Borch-Johnsen, K. (2003). Prevalences of Diabetes and Impaired Glucose Regulation in a Danish Population: The Inter99 study. Diabetes Care, 26(8), 2335-2340. https://doi.org/10.2337/diacare.26.8.2335 Gong, Q., Zhang, P., Wang, J., Ma, J., An, Y., Chen, Y., Zhang, B., Feng, X., Li, H., Chen, X., Cheng, Y. J., Gregg, E. W., Hu, Y., Bennett, P. H., & Li, G. (2019). Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol, 7(6), 452-461. https://doi.org/10.1016/s2213-8587(19)30093-2 Gray, L. J., Taub, N. A., Khunti, K., Gardiner, E., Hiles, S., Webb, D. R., Srinivasan, B. T., & Davies, M. J. (2010). The Leicester Risk Assessment score for detecting undiagnosed Type 2 diabetes and impaired glucose regulation for use in a multiethnic UK setting. Diabetic Medicine, 27(8), 887-895. https://doi.org/10.1111/j.1464-5491.2010.03037.x Ha, K. H., Lee, Y.-h., Song, S. O., Lee, J.-w., Kim, D. W., Cho, K.-h., & Kim, D. J. (2018). Development and Validation of the Korean Diabetes Risk Score: A 10-Year National Cohort Study. Diabetes Metab J, 42(5), 402-414. https://doi.org/10.4093/dmj.2018.0014 Hippisley-Cox, J., Coupland, C., Robson, J., Sheikh, A., & Brindle, P. (2009). Predicting risk of type 2 diabetes in England and Wales: prospective derivation and validation of QDScore. BMJ, 338, b880. https://doi.org/10.1136/bmj.b880 Hostalek, U. (2019). Global epidemiology of prediabetes - present and future perspectives. Clinical Diabetes and Endocrinology, 5(1), 5. https://doi.org/10.1186/s40842-019-0080-0 Hruby, A., Ma, J., Rogers, G., Meigs, J. B., & Jacques, P. F. (2017). Associations of Dairy Intake with Incident Prediabetes or Diabetes in Middle-Aged Adults Vary by Both Dairy Type and Glycemic Status. The Journal of Nutrition, 147(9), 1764-1775. https://doi.org/10.3945/jn.117.253401 Ishikawa-Takata, K., Ohta, T., Moritaki, K., Gotou, T., & Inoue, S. (2002). Obesity, weight change and risks for hypertension, diabetes and hypercholesterolemia in Japanese men. European Journal of Clinical Nutrition, 56(7), 601-607. https://doi.org/10.1038/sj.ejcn.1601364 Ismail, L., Materwala, H., & Al Kaabi, J. (2021). Association of risk factors with type 2 diabetes: A systematic review. Computational and Structural Biotechnology Journal, 19, 1759-1785. https://doi.org/10.1016/j.csbj.2021.03.003 James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning: with applications in R. Springer. Jiang, L., Xia, Z., Zhu, R., Gong, H., Wang, J., Li, J., & Wang, L. (2023). Diabetes risk prediction model based on community follow-up data using machine learning. Prev Med Rep, 35, 102358. https://doi.org/10.1016/j.pmedr.2023.102358 Kaur, R., Kaur, M., & Singh, J. (2018). Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: molecular insights and therapeutic strategies. Cardiovascular Diabetology, 17(1), 121. https://doi.org/10.1186/s12933-018-0763-3 Lascar, N., Brown, J., Pattison, H., Barnett, A. H., Bailey, C. J., & Bellary, S. (2018). Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol, 6(1), 69-80. https://doi.org/10.1016/s2213-8587(17)30186-9 Li, H., Zha, X., Zhu, Y., Liu, M., Guo, R., & Wen, Y. (2016). An Invert U-Shaped Curve: Relationship Between Fasting Plasma Glucose and Serum Uric Acid Concentration in a Large Health Check-Up Population in China. Medicine, 95(16), e3456. https://doi.org/10.1097/md.0000000000003456 Li, T., Sang, M., Wang, J., Sun, Z., Wang, D., Xie, C., Huang, W., Rayner, C. K., Horowitz, M., Qiu, S., & Wu, T. (2024). Dark tea consumption is associated with a reduced risk of dysglycaemia and increased urinary glucose and sodium excretion in Chinese adults. Diabetes, Obesity and Metabolism, 26(10), 4705-4712. https://doi.org/10.1111/dom.15839 Lindström, J., & Tuomilehto, J. (2003). The Diabetes Risk Score: A practical tool to predict type 2 diabetes risk. Diabetes Care, 26(3), 725-731. https://doi.org/10.2337/diacare.26.3.725 Liu, X., Xu, W., Cai, H., Gao, Y.-T., Li, H., Ji, B.-T., Shu, X., Wang, T., Gerszten, R. E., Zheng, W., Xiang, Y.-B., & Shu, X.-O. (2018). Green tea consumption and risk of type 2 diabetes in Chinese adults: the Shanghai Women’s Health Study and the Shanghai Men’s Health Study. International Journal of Epidemiology, 47(6), 1887-1896. https://doi.org/10.1093/ije/dyy173 Ma, M., Liu, H., Yu, J., He, S., Li, P., Ma, C., Zhang, H., Xu, L., Ping, F., Li, W., Sun, Q., & Li, Y. (2020). Triglyceride is independently correlated with insulin resistance and islet beta cell function: a study in population with different glucose and lipid metabolism states. Lipids in Health and Disease, 19(1), 121. https://doi.org/10.1186/s12944-020-01303-w Mauvais-Jarvis, F. (2015). Sex differences in metabolic homeostasis, diabetes, and obesity. Biology of Sex Differences, 6(1), 14. https://doi.org/10.1186/s13293-015-0033-y Meyer, C., Pimenta, W., Woerle, H. J., Van Haeften, T., Szoke, E., Mitrakou, A., & Gerich, J. (2006). Different Mechanisms for Impaired Fasting Glucose and Impaired Postprandial Glucose Tolerance in Humans. Diabetes Care, 29(8), 1909-1914. https://doi.org/10.2337/dc06-0438 Narayan, K. M. V., Kondal, D., Chang, H. H., Mohan, D., Gujral, U. P., Anjana, R. M., Staimez, L. R., Patel, S. A., Ali, M. K., Prabhakaran, D., Tandon, N., & Mohan, V. (2024). Natural History of Type 2 Diabetes in Indians: Time to Progression. Diabetes Care, 47(5), 858-863. https://doi.org/10.2337/dc23-1514 Nathan, D. M., Davidson, M. B., DeFronzo, R. A., Heine, R. J., Henry, R. R., Pratley, R., & Zinman, B. (2007). Impaired Fasting Glucose and Impaired Glucose Tolerance: Implications for care. Diabetes Care, 30(3), 753-759. https://doi.org/10.2337/dc07-9920 Nazari, M., Hashemi Nazari, S., Zayeri, F., Gholampour Dehaki, M., & Akbarzadeh Baghban, A. (2018). Estimating transition probability of different states of type 2 diabetes and its associated factors using Markov model. Primary Care Diabetes, 12(3), 245-253. https://doi.org/10.1016/j.pcd.2018.01.004 Pan, X.-R., Li, G.-W., Hu, Y.-H., Wang, J.-X., Yang, W.-Y., An, Z.-X., Hu, Z.-X., Juan-Lin, Xiao, J.-Z., Cao, H.-B., Liu, P.-A., Jiang, X.-G., Jiang, Y.-Y., Wang, J.-P., Zheng, H., Zhang, H., Bennett, P. H., & Howard, B. V. (1997). Effects of Diet and Exercise in Preventing NIDDM in People With Impaired Glucose Tolerance: The Da Qing IGT and Diabetes Study. Diabetes Care, 20(4), 537-544. https://doi.org/10.2337/diacare.20.4.537 Ravaut, M., Harish, V., Sadeghi, H., Leung, K. K., Volkovs, M., Kornas, K., Watson, T., Poutanen, T., & Rosella, L. C. (2021). Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes. JAMA Network Open, 4(5), e2111315-e2111315. https://doi.org/10.1001/jamanetworkopen.2021.11315 Sallar, A., & Dagogo-Jack, S. (2020). Regression from prediabetes to normal glucose regulation: State of the science. Exp Biol Med (Maywood), 245(10), 889-896. https://doi.org/10.1177/1535370220915644 Schmidt, M. I. s., Duncan, B. B., Bang, H., Pankow, J. S., Ballantyne, C. M., Golden, S. H., Folsom, A. R., Chambless, L. E., & Investigators, f. t. A. R. i. C. (2005). Identifying Individuals at High Risk for Diabetes: The Atherosclerosis Risk in Communities study. Diabetes Care, 28(8), 2013-2018. https://doi.org/10.2337/diacare.28.8.2013 Schwatka, N. V., Smith, D. E., Golden, A., Tran, M., Newman, L. S., & Cragle, D. (2021). Development and validation of a diabetes risk score among two populations. PLOS ONE, 16(1), e0245716. https://doi.org/10.1371/journal.pone.0245716 Sharafi, M., Mohsenpour, M. A., Afrashteh, S., Eftekhari, M. H., Dehghan, A., Farhadi, A., Jafarnezhad, A., Zakeri, A., & Looha, M. A. (2024). Factors affecting the survival of prediabetic patients: comparison of Cox proportional hazards model and random survival forest method. BMC Medical Informatics and Decision Making, 24(1), 246. https://doi.org/10.1186/s12911-024-02648-3 Sheng, B., Pushpanathan, K., Guan, Z., Lim, Q. H., Lim, Z. W., Yew, S. M. E., Goh, J. H. L., Bee, Y. M., Sabanayagam, C., Sevdalis, N., Lim, C. C., Lim, C. T., Shaw, J., Jia, W., Ekinci, E. I., Simó, R., Lim, L.-L., Li, H., & Tham, Y.-C. (2024). Artificial intelligence for diabetes care: current and future prospects. The Lancet Diabetes & Endocrinology, 12(8), 569-595. https://doi.org/10.1016/S2213-8587(24)00154-2 Siddiqui, S., Zainal, H., Harun, S. N., Sheikh Ghadzi, S. M., & Ghafoor, S. (2020). Gender differences in the modifiable risk factors associated with the presence of prediabetes: A systematic review. Diabetes Metab Syndr, 14(5), 1243-1252. https://doi.org/10.1016/j.dsx.2020.06.069 Silva, K., Lee, W. K., Forbes, A., Demmer, R. T., Barton, C., & Enticott, J. (2020). Use and performance of machine learning models for type 2 diabetes prediction in community settings: A systematic review and meta-analysis. Int J Med Inform, 143, 104268. https://doi.org/10.1016/j.ijmedinf.2020.104268 Slopien, R., Wender-Ozegowska, E., Rogowicz-Frontczak, A., Meczekalski, B., Zozulinska-Ziolkiewicz, D., Jaremek, J. D., Cano, A., Chedraui, P., Goulis, D. G., Lopes, P., Mishra, G., Mueck, A., Rees, M., Senturk, L. M., Simoncini, T., Stevenson, J. C., Stute, P., Tuomikoski, P., Paschou, S. A., . . . Lambrinoudaki, I. (2018). Menopause and diabetes: EMAS clinical guide. Maturitas, 117, 6-10. https://doi.org/10.1016/j.maturitas.2018.08.009 Su, H., Liu, T., Li, Y., Fan, Y., Wang, B., Liu, M., Hu, G., Meng, Z., & Zhang, Q. (2021). Serum uric acid and its change with the risk of type 2 diabetes: A prospective study in China. Primary Care Diabetes, 15(6), 1002-1006. https://doi.org/10.1016/j.pcd.2021.06.010 Tseng, C.-D., Yen, A. M.-F., Chiu, S. Y.-H., Chen, L.-S., Chen, H.-H., & Chang, S.-H. (2012). A Predictive Model for Risk of Prehypertension and Hypertension and Expected Benefit After Population-Based Life-Style Modification (KCIS No. 24). American Journal of Hypertension, 25(2), 171-179. https://doi.org/10.1038/ajh.2011.122 van der Schaft, N., Brahimaj, A., Wen, K.-x., Franco, O. H., & Dehghan, A. (2017). The association between serum uric acid and the incidence of prediabetes and type 2 diabetes mellitus: The Rotterdam Study. PLOS ONE, 12(6), e0179482. https://doi.org/10.1371/journal.pone.0179482 White, S. L., Ayman, G., Bakhai, C., Hillier, T. A., & Magee, L. A. (2023). Screening and diagnosis of gestational diabetes. BMJ, 381, e071920. https://doi.org/10.1136/bmj-2022-071920 Wilson, P. W. F., Meigs, J. B., Sullivan, L., Fox, C. S., Nathan, D. M., & D’Agostino, R. B., Sr. (2007). Prediction of Incident Diabetes Mellitus in Middle-aged Adults: The Framingham Offspring Study. Archives of Internal Medicine, 167(10), 1068-1074. https://doi.org/10.1001/archinte.167.10.1068 Wu, Y. Y., Yen, M. F., Yu, C. P., & Chen, H. H. (2013). Individually tailored screening of breast cancer with genes, tumour phenotypes, clinical attributes, and conventional risk factors. British Journal of Cancer, 108(11), 2241-2249. https://doi.org/10.1038/bjc.2013.202 Wu, Y., Ding, Y., Tanaka, Y., & Zhang, W. (2014). Risk Factors Contributing to Type 2 Diabetes and Recent Advances in the Treatment and Prevention [Review]. International Journal of Medical Sciences, 11(11), 1185-1200. https://doi.org/10.7150/ijms.10001 Wu, Y.-Y., Yen, M.-F., Yu, C.-P., & Chen, H.-H. (2014). Risk Assessment of Multistate Progression of Breast Tumor with State-Dependent Genetic and Environmental Covariates. Risk Analysis, 34(2), 367-379. https://doi.org/10.1111/risa.12116 Yeh, Y.-P., Hu, T.-H., Cho, P.-Y., Chen, H.-H., Yen, A. M.-F., Chen, S. L.-S., Chiu, S. Y.-H., Fann, J. C.-Y., Su, W.-W., Fang, Y.-J., Chen, S.-T., San, H.-C., Chen, H.-P., Liao, C.-S., & Group, C. C.-B. A. U. S. (2014). Evaluation of Abdominal Ultrasonography Mass Screening for Hepatocellular Carcinoma in Taiwan. Hepatology, 59(5), 1840-1849. https://doi.org/10.1002/hep.26703 Yen, A. M.-F., & Chen, T. H.-H. (2011). Kinetic epidemiological model for elucidating sexual difference of hypertension (KCIS no.20). Journal of Evaluation in Clinical Practice, 17(1), 130-135. https://doi.org/10.1111/j.1365-2753.2010.01379.x Zhang, Y., Bian, Z., Lu, H., Wang, L., Xu, J., & Wang, C. (2023). Association between tea consumption and glucose metabolism and insulin secretion in the Shanghai High-risk Diabetic Screen (SHiDS) study. BMJ Open Diabetes Res Care, 11(2). https://doi.org/10.1136/bmjdrc-2022-003266 Zueger, T., Schallmoser, S., Kraus, M., Saar-Tsechansky, M., Feuerriegel, S., & Stettler, C. (2022). Machine Learning for Predicting the Risk of Transition from Prediabetes to Diabetes. Diabetes Technology & Therapeutics, 24(11), 842-847. https://doi.org/10.1089/dia.2022.0210 衛生福利部國民健康署. (2023). 國民營養健康調查(106-109年). 取自. https://www.hpa.gov.tw/Pages/List.aspx?nodeid=3998 衛生福利部統計處. (2024). 112年死因統計結果分析. 取自. https://www.mohw.gov.tw/cp-16-79055-1.html 國際糖尿病聯盟. (2025). 國際糖尿病聯盟糖尿病圖譜(第11版). 取自. https://diabetesatlas.org/ | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99847 | - |
| dc.description.abstract | 2024年全球成人糖尿病盛行率已達11.1%,約影響5.89億人,預估2050年將上升至13%。我國2017至2020年糖尿病盛行率為10.3%,糖尿病前期盛行率則估計達25.5%。透過早期篩檢與生活介入有助於延緩病程與降低併發症風險,然而多數疾病自然史模型未納入糖尿病前期,無法完整了解病程。本研究將糖尿病前期納入分析,以完整描述第二型糖尿病自然史。研究目的為運用社區篩檢資料,結合流行病學與機器學習,建構糖尿病前期與第二型糖尿病之風險預測模型。資料來自2005至2018年彰化社區整合式篩檢計畫 (CHCIS),共納入123,713位年滿30歲且具完整健康檢查紀錄之參與者。分析共涵蓋34個變項,包括人口學特徵、生理量測、生化指標、生活習慣與家族病史。依據美國糖尿病學會空腹血糖標準,將參與者分為正常血糖、糖尿病前期與第二型糖尿病三類。使用羅吉斯迴歸、Cox比例風險模型與隨機森林辨識風險因子,並以AUC評估其效能。同時建立連續時間馬可夫模型,估算轉移機率並模擬長期血糖變化過程。結果顯示,正常至糖尿病前期、糖尿病前期至無臨床糖尿病、無臨床至臨床糖尿病之轉移速率分別為0.0328、0.1764與0.0988/人年。風險因子的部分,BMI與年齡為所有階段之顯著風險因子,三酸甘油酯主要影響早期階段,而丙胺酸轉胺酶與尿酸則與後期進展相關。模型效能方面,三種模型預測正常血糖進展至糖尿病前期之AUC相對較低,顯示早期風險辨識仍具挑戰。個人化風險分層發現,極低風險族群20年後逾八成仍為正常血糖;中度風險族群中,約有一半維持正常血糖,另有19.2%發展為無臨床症狀第二型糖尿病,17.7%則發展為臨床第二型糖尿病;極高風險族群中,僅有一成維持正常血糖,54.1%則已發展為臨床第二型糖尿病。本研究結果有助於了解糖尿病前期與第二型糖尿病在風險因子與病程表現上的差異,強化早期預測與個人化介入之實務應用,為未來社區健康促進與公共衛生策略提供實證基礎。 | zh_TW |
| dc.description.abstract | Introduction
Diabetes affects approximately 589 million adults globally, with a prevalence of 11.1% projected to rise to 13% by 2050. In Taiwan, diabetes prevalence reached 10.3% between 2017 and 2020, mirroring global trends. Prediabetes prevalence estimates vary widely across countries; in Taiwan, it is estimated at 25.5%. Early screening and lifestyle interventions are critical for arresting disease progression and reducing complications. However, prediabetes is often excluded from natural history models, precluding us from elucidating disease trajectories. This study aims to address this gap by explicitly incorporating prediabetes transitions to better characterize the natural history of diabetes. Aim This study aimed to develop risk prediction models for prediabetes and type 2 diabetes mellitus using community-based screening data, integrating epidemiological and machine learning approaches. Methods Data were drawn from the Changhua Community-based Integrated Screening (CHCIS) program (2005–2018), comprising 123,713 participants aged 30 years and older with complete health examination records. Thirty-four variables—including demographic characteristics, anthropometric measures, biochemical markers, health behaviors, and family history—were analyzed using logistic regression, Cox proportional hazards models, and random forest. A continuous-time Markov model was employed to estimate disease progression probabilities and simulate long-term transitions between glycemic states. Participants were classified as normoglycemic, prediabetic, or diabetic based on American Diabetes Association (ADA) fasting plasma glucose criteria. Results Estimated transition rates were 0.0328/person-year from normoglycemia to prediabetes, 0.1764/person-year from prediabetes to asymptomatic diabetes, and 0.0988/person-year from asymptomatic to clinical diabetes. BMI and age were significant risk factors across all stages, with triglycerides prominent in early stages and alanine aminotransferase (ALT) and uric acid in later stages. In terms of model performance, all three models yielded relatively lower AUCs in predicting the progression from normoglycemia to prediabetes, indicating that early risk identification remains a significant challenge. Personalized risk stratification showed over 80% of the very low-risk group remained normoglycemic after 20 years, indicating slow disease progression. In the moderate-risk group, about half maintained normal glucose levels, while 19.2% progressed to preclinical diabetes and 17.7% developed clinical type 2 diabetes. Conversely, only 10% of the very high-risk group remained normoglycemic, with 54.1% progressing to clinical diabetes, indicating a rapid disease trajectory. Conclusion The findings of this study contribute to a better understanding of the differences in risk factors and disease progression between prediabetes and type 2 diabetes. These insights enhance the practical application of early prediction and personalized intervention, providing an evidence-based foundation for future community health promotion and public health strategies. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:11:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:11:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 ix 第一章、緒論 1 第一節、研究背景 1 第二節、研究動機 1 第三節、研究目的 2 第二章、文獻探討 3 第一節、第二型前期及糖尿病流行病學 3 一、全球疾病負擔 3 二、疾病分類與病理機轉 3 三、風險因子 4 第二節、第二型糖尿病自然史 5 第三節、第二型糖尿病風險評估與預測模型 6 一、傳統統計模型 6 二、機器學習 13 三、馬可夫模型 16 第三章、材料與方法 18 第一節、資料庫來源 18 第二節、研究設計 18 第三節、研究變項與定義 19 第四節、資料處理與統計分析 22 一、資料前處理 22 二、描述性流行病學 24 三、羅吉斯迴歸 25 四、Cox比例風險模型 26 五、隨機森林 27 六、預測效能 27 七、馬可夫模型 28 第四章、結果 30 第一節、研究對象基本人口學 30 第二節、疾病負擔 36 一、盛行率與發生率 36 二、平均滯留期 39 第三節、四階段第二型糖尿病自然史 39 第四節、風險因子 40 一、羅吉斯迴歸 40 二、Cox比例風險模型 57 三、隨機森林 72 四、變項重要性比較 76 第五節、個人化疾病進展模型 80 第五章、討論 83 第一節、第二型前期及糖尿病社區流行病學 83 第二節、四階段第二型糖尿病風險因子組成差異 83 第三節、三個模型預測能力的差異 86 第四節、個人化模型 86 第五節、研究貢獻 87 第六節、研究限制 88 第六章、結論 89 參考文獻 90 附錄一、34個變項重要性比較 97 附錄二、調整隨機森林超參數 105 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 空腹血糖 | zh_TW |
| dc.subject | 糖尿病前期 | zh_TW |
| dc.subject | 第二型糖尿病 | zh_TW |
| dc.subject | 風險分數 | zh_TW |
| dc.subject | 社區篩檢 | zh_TW |
| dc.subject | 預防性健康照護 | zh_TW |
| dc.subject | Prediabetes | en |
| dc.subject | Fasting Plasma Glucose | en |
| dc.subject | Community Screening | en |
| dc.subject | Preventive Health Care | en |
| dc.subject | Type 2 Diabetes Mellitus | en |
| dc.subject | Risk Score | en |
| dc.title | 個人化第二型前期及糖尿病風險預測模型 | zh_TW |
| dc.title | Personalized Risk Prediction Model for Prediabetes and Type 2 Diabetes Mellitus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳祈玲;賴台軒;嚴明芳 | zh_TW |
| dc.contributor.oralexamcommittee | Chi-Ling Chen;Tai-Shuan Lai;Ming-Fang Yen | en |
| dc.subject.keyword | 空腹血糖,糖尿病前期,第二型糖尿病,風險分數,社區篩檢,預防性健康照護, | zh_TW |
| dc.subject.keyword | Fasting Plasma Glucose,Prediabetes,Type 2 Diabetes Mellitus,Risk Score,Community Screening,Preventive Health Care, | en |
| dc.relation.page | 106 | - |
| dc.identifier.doi | 10.6342/NTU202503825 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| dc.date.embargo-lift | 2025-09-19 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
