請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99843完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 方啓泰 | zh_TW |
| dc.contributor.advisor | Chi-Tai Fang | en |
| dc.contributor.author | 蔡瑱諭 | zh_TW |
| dc.contributor.author | Tien-Yu Tsai | en |
| dc.date.accessioned | 2025-09-18T16:10:27Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-03 | - |
| dc.identifier.citation | Arend, S. M., & van Soolingen, D. (2018). Performance of Xpert MTB/RIF Ultra: a matter of dead or alive. The Lancet Infectious Diseases, 18(1), 8-10.
Asare, K. K., Azumah, D. E., Adu-Gyamfi, C. O., Opoku, Y. K., Adela, E. M., Afful, P., Abotsi, G. K., Abban, E. A., Duntu, P. E., & Anyamful, A. (2024). Comparison of microscopic and xpert MTB diagnoses of presumptive mycobacteria tuberculosis infection: retrospective analysis of routine diagnosis at Cape Coast Teaching Hospital. BMC infectious diseases, 24(1), 660. Berhanu Rebecca, H., David, A., da Silva, P., Shearer, K., Sanne, I., Stevens, W., & Scott, L. (2018). Performance of Xpert MTB/RIF, Xpert Ultra, and Abbott RealTime MTB for Diagnosis of Pulmonary Tuberculosis in a High-HIV-Burden Setting. Journal of Clinical Microbiology, 56(12), 10.1128/jcm.00560-00518. https://doi.org/10.1128/jcm.00560-18 Boehme, C. C., Nabeta, P., Hillemann, D., Nicol, M. P., Shenai, S., Krapp, F., Allen, J., Tahirli, R., Blakemore, R., & Rustomjee, R. (2010). Rapid molecular detection of tuberculosis and rifampin resistance. New England Journal of Medicine, 363(11), 1005-1015. Chilukutu, L., Mwanza, W., Kerkhoff, A., Somwe, P., Kagujje, M., & Muyoyeta, M. (2022). Prevalence and interpretation of Xpert® Ultra trace results among presumptive TB patients. Public Health Action, 12(1), 28-33. Centers for Disease Control and Prevention (CDC). (2009). Updated guidelines for the use of nucleic acid amplification tests in the diagnosis of tuberculosis. MMWR. Morbidity and Mortality Weekly Report, 58(1), 7–10. Dorman, S. E., Schumacher, S. G., Alland, D., Nabeta, P., Armstrong, D. T., King, B., Hall, S. L., Chakravorty, S., Cirillo, D. M., Tukvadze, N., Bablishvili, N., Stevens, W., Scott, L., Rodrigues, C., Kazi, M. I., Joloba, M., Nakiyingi, L., Nicol, M. P., Ghebrekristos, Y.,…Denkinger, C. M. (2018). Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosis and rifampicin resistance: a prospective multicentre diagnostic accuracy study. Lancet Infect Dis, 18(1), 76-84. https://doi.org/10.1016/s1473-3099(17)30691-6 Dowling, W. B., Whitelaw, A., & Nel, P. (2022). Tracing TB: Are there predictors for active TB disease in patients with Xpert Ultra trace results? International Journal of Infectious Diseases, 114, 115-123. Falzon, D., Schünemann, H. J., Harausz, E., González-Angulo, L., Lienhardt, C., Jaramillo, E., & Weyer, K. (2017). World Health Organization treatment guidelines for drug-resistant tuberculosis, 2016 update. European Respiratory Journal, 49(3), 1602308. https://doi.org/10.1183/13993003.02308-2016 Feng, J.-Y., Lin, C.-J., Wang, J.-Y., Chien, S.-T., Lin, C.-B., Huang, W.-C., Lee, C.-H., Shu, C.-C., Yu, M.-C., & Lee, J.-J. (2022). Nucleic acid amplification tests reduce delayed diagnosis and misdiagnosis of pulmonary tuberculosis. Scientific Reports, 12(1), 12064. Gagneux, S. (2018). Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews Microbiology, 16(4), 202-213. Huang, W.-C., Lin, C.-B., Chien, S.-T., Wang, J.-Y., Lin, C.-J., Feng, J.-Y., Lee, C.-H., Shu, C.-C., Yu, M.-C., & Lee, J.-J. (2022). Performance of nucleic acid amplification tests in patients with presumptive pulmonary tuberculosis in Taiwan. Infectious Diseases and Therapy, 11(2), 871-885. Kenaope, L., Ferreira, H., Seedat, F., Otwombe, K., Martinson, N. A., & Variava, E. (2020). Sputum culture and drug sensitivity testing outcome among X-pert Mycobacterium tuberculosis/rifampicin-positive, rifampicin-resistant sputum: A retrospective study—Not all rifampicin resistance is multi-drug resistant. Journal of Global Antimicrobial Resistance, 21, 434-438. Kim, J. H., Kim, Y. J., Ki, C.-S., Kim, J.-Y., & Lee, N. Y. (2011). Evaluation of Cobas TaqMan MTB PCR for detection of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 49(1), 173-176. Lawn, S. D., & Nicol, M. P. (2011). Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future microbiology, 6(9), 1067-1082. Lee, M. R., Chung, K. P., Wang, H. C., Lin, C. B., Yu, C. J., Lee, J. J., & Hsueh, P. R. (2013). Evaluation of the Cobas TaqMan MTB real-time PCR assay for direct detection of Mycobacterium tuberculosis in respiratory specimens. J Med Microbiol, 62(Pt 8), 1160-1164. https://doi.org/10.1099/jmm.0.052043-0 Liu, C.-J., Lee, M.-R., Shao, P.-L., Wang, J.-Y., & Ko, J.-C. (2021). Performance of Xpert MTB/RIF Assay for Detection of Mycobacterium Tuberculosis in Respiratory Specimens and Its Effect on Reducing TB Diagnosis Delay: A Single Center Experience. 胸腔醫學, 36(1), 28-34. Moore, D. F., Guzman, J. A., & Mikhail, L. T. (2005). Reduction in turnaround time for laboratory diagnosis of pulmonary tuberculosis by routine use of a nucleic acid amplification test. Diagnostic microbiology and infectious disease, 52(3), 247-254. Opota, O., Mazza-Stalder, J., Greub, G., & Jaton, K. (2019). The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clinical Microbiology and Infection, 25(11), 1370-1376. Organization, W. H. (2017). WHO meeting report of a technical expert consultation: non-inferiority analysis of Xpert MTB/RIF Ultra compared to Xpert MTB/RIF. Pai, M., Behr, M., Dowdy, D., Dheda, K., Divangahi, M., Boehme, C., Ginsberg, A., Swaminathan, S., Spigelman, M., & Getahun, H. (2016). Tuberculosis. nature reviews disease primers 2 16076. In: DOI. Patel, J., Upadhyay, M., Kundnani, V., Merchant, Z., Jain, S., & Kire, N. (2020). Diagnostic efficacy, sensitivity, and specificity of Xpert MTB/RIF assay for spinal tuberculosis and rifampicin resistance. Spine, 45(3), 163-169. Scherer, L. C., Sperhacke, R. D., Ruffino-Netto, A., Rossetti, M. L., Vater, C., Klatser, P., & Kritski, A. L. (2009). Cost-effectiveness analysis of PCR for the rapid diagnosis of pulmonary tuberculosis. BMC infectious diseases, 9, 1-11. Wang, J. Y., Lee, M. C., Chang, J. H., Yu, M. C., Wu, V. C., Huang, K. L., Su, C. P., Chao, K. M., & Lee, C. H. (2015). M ycobacterium tuberculosis nucleic acid amplification tests reduce nosocomial tuberculosis exposure in intensive care units: A nationwide cohort study. Respirology, 20(8), 1233-1240. World Health Organization. (2021). WHO consolidated guidelines on tuberculosis. Module 2: screening-systematic screening for tuberculosis disease. World Health Organization. World Health Organization. (2024a). Tuberculosis. overview. Retrieved December 11 from https://www.who.int/health-topics/tuberculosis#tab=tab_1 World Health Organization. (2024b). WHO consolidated guidelines on tuberculosis. Module 3: diagnosis–rapid diagnostics for tuberculosis detection. World Health Organization. Xie, Y. L., Eichberg, C., Hapeela, N., Nakabugo, E., Anyango, I., Arora, K., Korte, J. E., Odero, R., van Heerden, J., & Zemanay, W. (2024). Xpert MTB/RIF Ultra versus mycobacterial growth indicator tube liquid culture for detection of Mycobacterium tuberculosis in symptomatic adults: a diagnostic accuracy study. The Lancet Microbe, 5(6), e520-e528. Yang, Y.-J., Pan, S.-C., Lee, M.-R., Chung, C.-L., Ku, C.-P., Liao, C.-Y., Tsai, T.-Y., Wang, J.-Y., Fang, C.-T., & Chen, Y.-C. (2024). Quantifying the contribution of smear-negative, culture-positive pulmonary tuberculosis to nosocomial transmission. American Journal of Infection Control, 52(7), 807-812. 衛生福利部中央健康保險署. (2024). 全民健康保險醫療服務給付項目及支付標準. 支付標準. Retrieved December 11 from https://info.nhi.gov.tw/INAE5000/INAE5001S02 衛生福利部疾病管制署. (2023). 結核病診治指引. 結核病重要指引及教材. Retrieved September 22 from https://www.cdc.gov.tw/File/Get/VSe9FA6KFGI5IcCemIOeQQ 衛生福利部疾病管制署. (2024). 傳染病統計資料查詢系統. 結核病. Retrieved November 17 from https://nidss.cdc.gov.tw/nndss/disease?id=061 衛生福利部疾病管制署. (2025a). 2025年結核病流病政策簡報. 結核病. Retrieved May 30 from https://www.cdc.gov.tw/Category/MPage/YpPM4PxFx3b_6FKuMDYjew 衛生福利部疾病管制署. (2025b). 結核病病例定義. 結核病. Retrieved June 8 from https://www.cdc.gov.tw/File/Get/u9_mICGcjgec3R7Bu7GqqA 盧珉如, 許建邦, 李政益, 黃彥芳, & 陳昶勳. (2014). 應用快速分子檢測於結核菌檢驗之成本效益初步分析. 疫情報導, 30(6), 123-129. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99843 | - |
| dc.description.abstract | 背景:結核病為全球主要傳染病死因之一,2023年全球約有125萬人死於結核病,其中包含16.7萬名愛滋病毒感染者,結核病很可能已重新成為全球最致命的傳染病。臺灣屬結核病中度負擔國家,2024年新案發生率為每十萬人口26例,結核病防治,仍是疾病管制署之重點。近年來疾病管制署陸續推動多項落實第一線使用結核菌核酸增幅檢驗(Nucleic Acid Amplification Test,以下簡稱NAAT)的政策,希望能夠早期診斷結核病。本醫學中心收治個案多為免疫不全且疾病複雜度高,診斷開放性肺結核不易,近五年內歷經三種 NAAT 廠牌之更替,包括Cobas TaqMan MTB PCR assay(Roche Diagnostics, Basel, Switzerland;以下簡稱 Cobas)、2021年9月起改用Xpert MTB/RIF assay(Cepheid, Sunnyvale, CA, USA;以下簡稱 Xpert),2022年3月再轉為Xpert MTB/RIF Ultra assay(Cepheid, Sunnyvale, CA, USA;以下簡稱 Ultra)。本研究回顧2020至2024年間接受痰液檢體 NAAT 之個案,探討三種 NAAT 廠牌在診斷開放性肺結核之敏感性、特異性,並分析NAA test作為第一線診斷工具的使用比例是否隨政策與感染管制宣導而提升。此外,亦探討 Ultra 檢驗結果於結核病中度負擔國家之應用經驗,綜合分析其診斷效能與限制,以提供臨床實務及後續政策推動之參考。
研究目的:本研究欲探討:1)三種 NAAT 工具在傳染性結核病之診斷效能與 Ultra 檢驗的限制;2)NAAT 作為第一線結核病診斷的比例有沒有增加。 方法:本研究為一病例回溯性研究(retrospective study) ,資料由國立臺灣大學醫學院附設醫院之感染指標監測資料庫提供,撈取2020年至2024年間臺大總院及新竹分院的痰檢體,以檢測 NAAT 同一時期之細菌培養結果作為黃金標準,使用 SAS 9.4 進行 NAAT 相關統計分析。 結果:本研究共納入 6,549 份痰液樣本進行 NAAT 檢測,包括 Cobas(1,174 件) 、Xpert(1,177 件) 與 Ultra(4,198 件)。臺大總院資料顯示,Ultra 在各菌量層級中具良好診斷效能,於塗片陰性檢體中敏感性達 54.6%。相較下,新竹分院 Ultra 表現較差,偽陰性個案中外籍移工佔 35.7%,多無臨床症狀,可能因檢體品質不佳或病灶菌量偏低,影響檢測結果的敏感性。建議臨床影像高度懷疑肺結核,但無臨床症狀者,考慮重複採檢或安排支氣管鏡。此外,Ultra trace 結果偽陽性風險與結核病或糖尿病病史有關,臨床解讀應審慎評估。NAAT 作為第一線結核病診斷部分,自 2021 年 9 月起導入 Xpert 系列後,NAAT 使用比例持續上升,至 2024 年第 4 季達 24.1%,但仍有進步的空間。 結論:本研究回顧分析三種 NAAT 工具在診斷開放性肺結核的表現,整體結果顯示,目前使用的 Ultra 在高菌量檢體中表現出良好的敏感性與特異性,符合目前國際間對其作為第一線結核病診斷工具的期待。隨著政策推廣與感染管制宣導,NAAT 在臨床上的應用比例逐年提升,顯示政策與宣導對於改變臨床行為、加速診斷流程具有正面影響。然而,trace 結果的解讀是一項挑戰,臨床上遇到具有結核過去病史的病人,應該特別注意 Ultra 可能會有較高的偽陽性。臨床醫師在決策時應結合病史、影像、重複檢體等多面向資訊,以提升診斷精確度,且避免過度醫療產生。 | zh_TW |
| dc.description.abstract | Background: Tuberculosis (TB) remains one of the leading causes of death from infectious diseases worldwide. In 2023, an estimated 1.25 million people died from TB, including 167,000 individuals living with HIV, suggesting TB has likely reclaimed its status as the most lethal infectious disease globally. Taiwan is classified as a moderate TB burden country, with a reported incidence of 26 cases per 100,000 population in 2024. TB control remains a priority of the Taiwan Centers for Disease Control (CDC), which has implemented policies to promote the frontline use of nucleic acid amplification tests (NAATs) for early TB diagnosis. At our tertiary medical center, which serves a high proportion of immunocompromised and clinically complex patients, the diagnosis of pulmonary TB is particularly challenging. Over the past five years, our institution transitioned through three NAAT platforms: Cobas TaqMan MTB PCR assay (Roche Diagnostics, Basel, Switzerland), followed by Xpert MTB/RIF assay (Cepheid, Sunnyvale, CA, USA) in September 2021, and later Xpert MTB/RIF Ultra assay (Cepheid, Sunnyvale, CA, USA) in March 2022. This study retrospectively analyzed NAAT data from sputum specimens collected between 2020 and 2024, comparing the diagnostic performance of these three platforms for active pulmonary TB. Additionally, we evaluated whether the adoption of NAAT as a frontline diagnostic tool increased following national policy changes and infection control initiatives, and we further assessed the clinical implications and limitations of Ultra testing in a moderate TB burden setting.
Objectives: This study aimed to: (1) compare the diagnostic performance of three NAAT platforms (Cobas, Xpert, Ultra) in detecting infectious pulmonary TB and identify limitations of Ultra; and (2) assess trends in the frontline use of NAATs over time. Methods: We conducted a retrospective study using data from the infection surveillance database of National Taiwan University Hospital (NTUH) and its Hsinchu Branch. All sputum specimens submitted for NAAT between 2020 and 2024 were included. Mycobacterial culture served as the reference standard. Statistical analyses were performed using SAS 9.4. Results: A total of 6,549 sputum samples underwent NAAT, including Cobas (1,174), Xpert (1,177), and Ultra (4,198). At the NTUH main campus, Ultra showed good diagnostic performance, with 54.6% sensitivity in smear-negative specimens. In contrast, performance at the Hsinchu Branch was lower; 35.7% of false-negative cases were foreign migrant workers, most without symptoms, suggesting possible issues with specimen quality or low bacterial load. For patients with high radiographic suspicion but few symptoms, repeat sampling or bronchoscopy is advised. Ultra trace results were more likely to be false positives in those with prior TB or diabetes, highlighting the need for cautious interpretation. Since Xpert’s introduction in September 2021, NAAT use has increased to 24.1% by Q4 2024, though further uptake is needed Conclusions: This study provides a comparative assessment of three NAAT platforms for the diagnosis of pulmonary TB in a real-world setting. Ultra demonstrated strong sensitivity and specificity in high-bacillary-load specimens and aligns with global expectations for frontline TB diagnostics. The increasing use of NAATs over the study period reflects the positive impact of national policy and infection control efforts on clinical practice and diagnostic efficiency. However, trace result interpretation remains a clinical challenge. In patients with prior TB history, Ultra is more prone to false positives. Clinicians are advised to interpret NAAT results in the context of clinical presentation, imaging, and, when necessary, repeat specimen testing to enhance diagnostic accuracy and avoid overtreatment. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:10:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:10:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract vi 圖次 x 表次 xi 第一章 導論 1 第一節 實習單位特色與簡介 1 第二節 研究架構與假設 4 第三節 文獻回顧 6 一、結核病診斷之檢驗工具 6 二、結核病背景與核酸增幅檢驗的角色 6 三、加速結核病之診斷 7 四、成本效益分析 9 五、結核病中度負擔地區中核酸增幅檢驗之診斷表現 10 六、Trace 結果的診斷困境與臨床詮釋挑戰 10 第四節 研究動機與目的 12 一、研究動機 12 二、研究目的 14 第一節 研究目標(Endpoints) 15 第二節 研究設計 15 一、資料整理與樣本篩選 15 二、檢體篩檢條件與定義 16 三、變項定義與分類 16 第三節 研究地點:國立台灣大學醫學院附設醫院 17 第四節 執行方法: 描述性統計 17 第五節 統計分析方法 17 第三章 結果 19 第一節 研究樣本之基本特性 19 第二節 臺大總院 NAAT 在痰液塗片耐酸性染色分層(Stratification) 19 的診斷效能 19 第三節 新竹分院 NAAT 在痰液塗片耐酸性染色分層(Stratification) 20 的診斷效能 20 第四節 不同解釋策略下 Trace 結果之分析 21 第五節 Ultra 檢驗偽陰性結果個案之描述性統計分析 23 第六節 Ultra 檢驗偽陽性結果個案之描述性統計分析 23 第七節 Ultra 檢驗結果為 trace個案之原因分析 24 第八節 NAAT 作為傳染性結核病第一線診斷工具之比例 24 第四章 討論與研究限制 26 第一節 討論 26 一、NAAT 作為傳染性結核病第一線診斷工具之比例上升 26 二、NAAT在痰液檢體的診斷效能 28 第二節 研究限制 30 第三節 總結 31 附錄 36 圖次 圖 1 感染管制中心組織架構圖 35 圖 2 感染管制中心組織架構圖 36 圖 3 NAAT 推動歷程 37 圖 4 研究架構 38 圖 5 NAAT 作為傳染性結核病第一線診斷工具之比例 39 圖 6 在塗片耐酸性染色陽性個案中,NAAT作為傳染性結核病第一線診斷工具之比例 40 表次 表 1 兩所醫院收集之痰液檢體數量及 NAAT 結果統計 41 表 2 臺大總院三種NAAT檢測方法之診斷效能 42 表 3 新竹分院三種NAAT檢測方法之診斷效能 43 表 4 新竹分院 Ultra 檢驗偽陰性個案分析 44 表 5 臺大總院針對Xpert Ultra「Trace」結果採用不同判讀標準對結核病診斷效能之影響 45 表 6 新竹分院針對Xpert Ultra「Trace」結果採用不同判讀標準對結核病診斷效能之影響 46 表7 Xpert/Ultra 檢驗偽陰性個案分析 47 表 8 Xpert/Ultra 檢驗偽陽性個案分析 48 表 9 Ultra 檢驗 trace 個案分析 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 核酸增幅檢驗 | zh_TW |
| dc.subject | 結核病 | zh_TW |
| dc.subject | 偽陽性 | zh_TW |
| dc.subject | 快速診斷 | zh_TW |
| dc.subject | 診斷表現 | zh_TW |
| dc.subject | diagnostic performance | en |
| dc.subject | rapid tuberculosis diagnosis | en |
| dc.subject | false-positive | en |
| dc.subject | nucleic acid amplification test | en |
| dc.subject | Tuberculosis | en |
| dc.title | 結核分枝桿菌核酸增幅檢驗在真實世界之診斷表現:北部某醫學中心的經驗 | zh_TW |
| dc.title | Real-World Diagnostic Performance of Nucleic Acid Amplification Tests for Mycobacterium tuberculosis: Experiences from a Medical Center in Northern Taiwan. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王振源;李孟叡;施惟量 | zh_TW |
| dc.contributor.oralexamcommittee | Jann-Yuan Wang;Meng-Rui Lee;Wei-Liang Shih | en |
| dc.subject.keyword | 結核病,核酸增幅檢驗,診斷表現,快速診斷,偽陽性, | zh_TW |
| dc.subject.keyword | Tuberculosis,nucleic acid amplification test,diagnostic performance,rapid tuberculosis diagnosis,false-positive, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202503496 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-04 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.3 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
