Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99828Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 賴育英 | zh_TW |
| dc.contributor.advisor | Yu-Ying Lai | en |
| dc.contributor.author | 鐘國峰 | zh_TW |
| dc.contributor.author | Kuo-Feng Chung | en |
| dc.date.accessioned | 2025-09-18T16:07:47Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | (1) H. Ritchie, M. R. a. P. R. CO₂ and Greenhouse Gas Emissions. OurWorldinData.org., 2025. https://ourworldindata.org/co2-and-greenhouse-gas-emissions (accessed 2025 July 8).
(2) Zhao, W.; Ge, Q.; Li, H.; Jiang, N.; Chen, S.; Yang, S.; Cong, H. Organic polymer facilitated CO2 photoreduction: a minireview. Polymer Chemistry 2023, 14, 4877–4889. (3) Wu, Q. J.; Liang, J.; Huang, Y. B.; Cao, R. Thermo-, Electro-, and Photocatalytic CO(2) Conversion to Value-Added Products over Porous Metal/Covalent Organic Frameworks. Acc Chem Res 2022, 55, 2978–2997. (4) Kang, X.; Wang, B.; Hu, K.; Lyu, K.; Han, X.; Spencer, B. F.; Frogley, M. D.; Tuna, F.; McInnes, E. J. L.; Dryfe, R. A. W.; et al. Quantitative Electro-Reduction of CO(2) to Liquid Fuel over Electro-Synthesized Metal-Organic Frameworks. J Am Chem Soc 2020, 142, 17384–17392. (5) Li, J.; Jing, X.; Li, Q.; Li, S.; Gao, X.; Feng, X.; Wang, B. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem Soc Rev 2020, 49, 3565–3604. (6) Xue, Y.; Zhao, G.; Yang, R.; Chu, F.; Chen, J.; Wang, L.; Huang, X. 2D metal-organic framework-based materials for electrocatalytic, photocatalytic and thermocatalytic applications. Nanoscale 2021, 13, 3911–3936. (7) Raines, C. A. The Calvin cycle revisited. Photosynthesis research 2003, 75, 1–10. (8) Hammarström, L. Catalyst: Chemistry’s Role in Providing Clean and Affordable Energy for All. Chem 2016, 1, 515–518. (9) Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238, 37–38. (10) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. nature 1979, 277, 637–638. (11) Reguero, M.; Claver, C.; Carrilho, R. M. B.; Masdeu‐Bultó, A. M. Immobilized Molecular Catalysts for CO2 Photoreduction. Advanced Sustainable Systems 2022, 6. (12) Dalle, K. E.; Warnan, J.; Leung, J. J.; Reuillard, B.; Karmel, I. S.; Reisner, E. Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chem Rev 2019, 119, 2752–2875. (13) Hassaan, M. A.; El-Nemr, M. A.; Elkatory, M. R.; Ragab, S.; Niculescu, V. C.; El Nemr, A. Principles of Photocatalysts and Their Different Applications: A Review. Top Curr Chem (Cham) 2023, 381, 31. (14) Li, G.; Wei, Z.; Shi, Y.; Zhang, R.; Kong, X.; Ren, R.; Wang, Y.; Li, S.; Wei, Y.; Zhang, J. Recent Advances in polyoxometalates for photocatalytic carbon dioxide reduction. EES Solar 2025. (15) Liao, G.; Ding, G.; Yang, B.; Li, C. Challenges in Photocatalytic Carbon Dioxide Reduction. Precis Chem 2024, 2, 49–56. (16) Koizumi, H.; Chiba, H.; Sugihara, A.; Iwamura, M.; Nozaki, K.; Ishitani, O. CO(2) capture by Mn(i) and Re(i) complexes with a deprotonated triethanolamine ligand. Chem Sci 2019, 10, 3080–3088. (17) Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. CO2 capture by a rhenium(I) complex with the aid of triethanolamine. J Am Chem Soc 2013, 135, 16825–16828. (18) Isegawa, M.; Sharma, A. K. Photochemical conversion of CO(2) to CO by a Re complex: theoretical insights into the formation of CO and HCO(3) (-) from an experimentally detected monoalkyl carbonate complex. RSC Adv 2021, 11, 37713–37725. (19) Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic Reduction of Low Concentration of CO(2). J Am Chem Soc 2016, 138, 13818–13821. (20) Qiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; He, L.-N. A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO2 reduction. Green Chemistry 2020, 22, 8614–8622. (21) Sun, K.; Qian, Y.; Jiang, H. L. Metal-Organic Frameworks for Photocatalytic Water Splitting and CO(2) Reduction. Angew Chem Int Ed Engl 2023, 62, e202217565. (22) Lei, K.; Wang, D.; Ye, L.; Kou, M.; Deng, Y.; Ma, Z.; Wang, L.; Kong, Y. A Metal-Free Donor-Acceptor Covalent Organic Framework Photocatalyst for Visible-Light-Driven Reduction of CO(2) with H(2) O. ChemSusChem 2020, 13, 1725–1729. (23) Cancelliere, A. M.; Puntoriero, F.; Serroni, S.; Campagna, S.; Tamaki, Y.; Saito, D.; Ishitani, O. Efficient trinuclear Ru(ii)-Re(i) supramolecular photocatalysts for CO(2) reduction based on a new tris-chelating bridging ligand built around a central aromatic ring. Chem Sci 2020, 11, 1556–1563. (24) Yamazaki, Y.; Ohkubo, K.; Saito, D.; Yatsu, T.; Tamaki, Y.; Tanaka, S.; Koike, K.; Onda, K.; Ishitani, O. Kinetics and Mechanism of Intramolecular Electron Transfer in Ru(II)-Re(I) Supramolecular CO(2)-Reduction Photocatalysts: Effects of Bridging Ligands. Inorg Chem 2019, 58, 11480–11492. (25) Kamogawa, K.; Santoro, A.; Cancelliere, A. M.; Shimoda, Y.; Miyata, K.; Onda, K.; Puntoriero, F.; Campagna, S.; Tamaki, Y.; Ishitani, O. Highly Efficient Supramolecular Photocatalysts for CO2 Reduction with Eight Carbon–Carbon Bonds between a Ru(II) Photosensitizer and a Re(I) Catalyst Unit. ACS Catalysis 2023, 13, 9025–9032. (26) Dai, C.; Liu, B. Conjugated polymers for visible-light-driven photocatalysis. Energy & Environmental Science 2020, 13, 24–52. (27) Fu, Z.; Vogel, A.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Photocatalytic syngas production using conjugated organic polymers. Journal of Materials Chemistry A 2021, 9, 4291–4296. (28) Li, L.; Cai, Z.; Wu, Q.; Lo, W. Y.; Zhang, N.; Chen, L. X.; Yu, L. Rational Design of Porous Conjugated Polymers and Roles of Residual Palladium for Photocatalytic Hydrogen Production. J Am Chem Soc 2016, 138, 7681–7686. (29) Nakada, A.; Miyakawa, R.; Itagaki, R.; Kato, K.; Takashima, C.; Saeki, A.; Yamakata, A.; Abe, R.; Nakai, H.; Chang, H.-C. Photoexcited charge manipulation in conjugated polymers bearing a Ru(ii) complex catalyst for visible-light CO2 reduction. Journal of Materials Chemistry A 2022, 10, 19821–19828. (30) Ishihara, K.; Nakada, A.; Suzuki, H.; Tomita, O.; Nozawa, S.; Saeki, A.; Abe, R. Bifunctional conjugated polymer photocatalysts for visible light water oxidation and CO2 reduction: function- and site-selective hybridisation of Ru(ii) complex catalysts. Journal of Materials Chemistry A 2024, 12, 30279–30288. (31) Benson, E. E.; Kubiak, C. P. Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)3Cl. Chem Commun (Camb) 2012, 48, 7374–7376. (32) Riplinger, C.; Sampson, M. D.; Ritzmann, A. M.; Kubiak, C. P.; Carter, E. A. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. J Am Chem Soc 2014, 136, 16285–16298. (33) Louis, H.; Akakuru, O. U.; Monday, P.; Funmilayo, O. O. A review on the state-of-the-art advances for CO2 electro-chemical reduction using metal complex molecular catalysts. Eclética Química Journal 2019, 44. (34) Liang, W.; Church, T. L.; Zheng, S.; Zhou, C.; Haynes, B. S.; D'Alessandro, D. M. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Chemistry 2015, 21, 18576–18579. (35) Spring, A. M.; Yu, F.; Qiu, F.; Yamamoto, K.; Yokoyama, S. The preparation of well-controlled poly(N-cyclohexyl-exo-norbornene-5,6-dicarboximide) polymers. Polymer Journal 2014, 46, 576–583. (36) You, Z.; Gao, D.; Jin, O.; He, X.; Xie, M. High dielectric performance of tactic polynorbornene derivatives synthesized by ring‐opening metathesis polymerization. Journal of Polymer Science Part A: Polymer Chemistry 2012, 51, 1292–1301. (37) Chen, J.; Zhou, Y.; Huang, X.; Yu, C.; Han, D.; Wang, A.; Zhu, Y.; Shi, K.; Kang, Q.; Li, P.; et al. Ladderphane copolymers for high-temperature capacitive energy storage. Nature 2023, 615, 62–66. (38) Rahimi, F. A.; Dey, S.; Verma, P.; Maji, T. K. Photocatalytic CO2 Reduction Based on a Re(I)-Integrated Conjugated Microporous Polymer: Role of a Sacrificial Electron Donor in Product Selectivity and Efficiency. ACS Catalysis 2023, 13, 5969–5978. (39) Liu, J.; Li, J.; Lin, Z.; Ye, S.; Lin, W.; Yang, X.; Gao, S. Y.; Cao, R. In Situ Integration of Metallic Catalytic Sites and Photosensitive Centers within Covalent Organic Frameworks for the Enhanced Photocatalytic Reduction of CO(2). Small 2025, 21, e2411315. (40) Portenkirchner, E.; Schlager, S.; Apaydin, D.; Oppelt, K.; Himmelsbach, M.; Egbe, D. A. M.; Neugebauer, H.; Knör, G.; Yoshida, T.; Sariciftci, N. S. Using the Alkynyl-Substituted Rhenium(I) Complex (4,4′-Bisphenyl-Ethynyl-2,2′-Bipyridyl)Re(CO)3Cl as Catalyst for CO2 Reduction—Synthesis, Characterization, and Application. Electrocatalysis 2014, 6, 185–197. (41) Ley, K.; Schanze, K. Photophysics of metal-organic π-conjugated polymers. Coordination Chemistry Reviews 1998, 171, 287–307. (42) Lin, S. H.; Wu, F. I.; Liu, R. S. Synthesis, photophysical properties and color tuning of highly fluorescent 9,10-disubstituted-2,3,6,7-tetraphenylanthracene. Chem Commun (Camb) 2009, 6961–6963. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99828 | - |
| dc.description.abstract | 本研究成功合成兩類含聯吡啶配位基的高分子材料,並藉由聯吡啶基團與Re金屬中心配位,應用於光還原二氧化碳反應。分別為以降冰片烯為主鏈的P1與P2,以及線性共軛高分子P3與P4,利用核磁共振光譜學、紅外線衰減全反射光譜學、X射線光電子能譜學與掃描式電子顯微鏡搭配X射線能量散布分析儀確認化學結構與Re金屬的成功螯合。熱重分析顯示這些高分子展現優異的熱穩定性,熱裂解溫度皆超過300 °C,並具備良好的光吸收特性,特別是P4因共軛結構延伸而表現出更強的可見光吸收與最低的光學能隙。電化學分析顯示,這些高分子具有適合光驅動CO2還原的最高佔據分子軌域與最低未占分子軌域能階,光響應電流的結果亦與光催化效率正相關。在光催化CO2還原實驗中,P4展現最高初始活性,CO產率2.36 mmol g⁻¹ h⁻¹,催化轉換數達17.64,P1則展現最佳穩定性,其經三次循環照光實驗後仍保有80%活性,顯示空間隔離結構有助於抑制Re雙金屬副產物形成,維持催化性能。控制實驗則交叉驗證CO產生來自CO2光還原反應,且照光結果顯示1,3-二甲基-2-苯基-2,3-二氫-1H-苯並[d]咪唑與三乙醇胺具協同作用,能大幅提升效率。整體而言,本研究展示分子設計對光催化劑性能的影響,提供高分子型光催化劑未來設計的參考方向。 | zh_TW |
| dc.description.abstract | This study has successfully synthesized two types of polymers containing bipyridine ligands, which coordinate to Re metal centers for application in photocatalytic CO2 reduction. The polymers include P1 and P2 with a norbornene-based backbone, and linear conjugated polymers P3 and P4. Their structures and Re coordination have been confirmed by nuclear magnetic resonance spectroscopy, attenuated total reflectance Fourier-Transform infrared spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy with energy-dispersive X-ray spectroscopy. Thermogravimetric analysis shows that these polymers exhibit excellent thermal stability, with decomposition temperatures exceeding 300 °C, and good light absorption properties, particularly P4, which, due to its extended conjugation, shows stronger visible light absorption and the smallest optical bandgap. Electrochemical analysis indicates that these polymers possess suitable highest occupied molecular orbital and lowest unoccupied molecular orbital levels for driving CO2 reduction, and their photocurrent responses show a positive correlation with photocatalytic efficiency. In photocatalytic CO2 reduction experiments, P4 shows the highest initial activity, with a CO production rate of 2.36 mmol g⁻¹ h⁻¹ and a turnover number of 17.64, while P1 demonstrates the best stability, retaining 80% of its activity after three reaction cycles, indicating that its spatial isolation structure helps suppress the formation of catalytically inactive Re bimetallic byproducts and maintain catalytic performance. Control experiments verify that the generated CO originates from CO2 photoreduction and confirm that 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole and triethanolamine exhibit a synergistic effect that significantly enhances efficiency. Overall, this study demonstrates the influence of molecular design on the performance of photocatalysts and provides guidance for the future development of polymer-based photocatalysts. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:07:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:07:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii 英文摘要 iv 目次 vi 圖次 ix 表次 xii 第一章 緒論 1 1-1 光催化二氧化碳還原 1 1-1-1背景 1 1-1-2光催化反應原理 2 1-1-3犧牲試劑在光催化反應中的角色與機制 4 1-2 各類光催化劑介紹 7 1-2-1金屬有機框架 7 1-2-2 共價有機框架 8 1-2-3 超分子光催化劑 10 1-2-4共軛高分子 11 1-2-5有機金屬共軛高分子 14 1-2-6分子催化劑 16 1-3研究動機 18 第二章 結果與討論 20 2-1合成 20 2-2 高分子結構鑑定 24 2-3 X射線光電子能譜儀 32 2-4 材料之熱性質分析 35 2-5吸收光譜 36 2-6高分子金屬含量分析 39 2-7 掃描式電子顯微鏡 41 2-8光催化二氧化碳還原 42 2-8-1 檢量線 42 2-8-2光催化二氧化碳還原反應 43 2-9電化學性質分析 48 2-9-1循環伏安法 48 2-9-2光響應電流 51 2-10 理論計算 52 第三章 結論 54 第四章 實驗方法 56 4-1 化學溶劑與藥品名稱 56 4-2 實驗合成步驟 58 4-3 實驗儀器 71 4-3-1 核磁共振儀 (Nuclear Magnetic Resonance Spectrometer, NMR) 71 4-3-2 紅外線衰減全反射光譜學(Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy, ATR-FTIR) 71 4-3-3 X射線光電子能譜學 (X-ray Photoelectron Spectroscopy, XPS) 72 4-3-4 熱重分析儀 (Thermogravimetric Analyzer, TGA) 72 4-3-5 紫外-可見光光譜儀 (UV-visible spectrophotometer) 72 4-3-6 感應耦合電漿質譜儀 (Inductively Coupled Plasma-Mass Spectrometer, ICP-MS) 72 4-3-7 氣相層析儀 (Gas Chromatography, GC) 73 4-3-8 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 73 4-3-9 循環伏安法(Cyclic Voltammetry, CV) 73 4-3-10 電化學阻抗圖譜 (Electrochemical Impedance Spectroscopy, EIS) 74 4-3-11瞬態光電流 (Transient Photocurrent) 74 4-4二氧化碳還原實驗 74 參考文獻 75 附錄 82 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 聯吡啶配位基 | zh_TW |
| dc.subject | 降冰片烯 | zh_TW |
| dc.subject | 光催化二氧化碳還原 | zh_TW |
| dc.subject | 分子設計 | zh_TW |
| dc.subject | Re金屬中心 | zh_TW |
| dc.subject | rhenium metal center | en |
| dc.subject | molecular design | en |
| dc.subject | photocatalytic carbon dioxide reduction | en |
| dc.subject | bipyridine ligand | en |
| dc.subject | norbornene | en |
| dc.title | 含錸聯吡啶錯合物之高分子合成與其在二氧化碳光還原反應中的應用 | zh_TW |
| dc.title | Synthesis of Polymers Containing Rhenium–Bipyridine Complexes and Their Application in CO2 Photoreduction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 康敦彥;林靖衛 | zh_TW |
| dc.contributor.oralexamcommittee | Dun-Yen Kang;Ching-Wei Lin | en |
| dc.subject.keyword | 降冰片烯,聯吡啶配位基,Re金屬中心,分子設計,光催化二氧化碳還原, | zh_TW |
| dc.subject.keyword | norbornene,bipyridine ligand,rhenium metal center,molecular design,photocatalytic carbon dioxide reduction, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202502969 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-31 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-30 | - |
| Appears in Collections: | 高分子科學與工程學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 2.99 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
