Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99825Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 黃心豪 | zh_TW |
| dc.contributor.advisor | Hsin-Haou Huang | en |
| dc.contributor.author | 謝銘哲 | zh_TW |
| dc.contributor.author | Mine-Che Hsieh | en |
| dc.date.accessioned | 2025-09-18T16:07:15Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | [1] R. M. Walser, "Electromagnetic metamaterials." pp. 1-15.
[2] J. D. Baena, R. Marqués, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical review B, vol. 69, no. 1, pp. 014402, 2004. [3] D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” science, vol. 305, no. 5685, pp. 788-792, 2004. [4] S. A. Ramakrishna, “Physics of negative refractive index materials,” Reports on progress in physics, vol. 68, no. 2, pp. 449, 2005. [5] N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” science, vol. 308, no. 5721, pp. 534-537, 2005. [6] L. Fok, M. Ambati, and X. Zhang, “Acoustic metamaterials,” MRS bulletin, vol. 33, no. 10, pp. 931-934, 2008. [7] N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, “Ultrasonic metamaterials with negative modulus,” Nature materials, vol. 5, no. 6, pp. 452-456, 2006. [8] H. Huang, and C. Sun, “Theoretical investigation of the behavior of an acoustic metamaterial with extreme Young's modulus,” Journal of the Mechanics and Physics of Solids, vol. 59, no. 10, pp. 2070-2081, 2011. [9] Z. Xi-Xi, X. Yong, W. Ji-Hong, and Y. Dian-Long, “Flexural wave band gaps and vibration reduction properties of a locally resonant stiffened plate,” Acta Physica Sinica, vol. 65, no. 17, 2016. [10] Y. Li, B. Liang, X.-y. Zou, and J.-c. Cheng, “Extraordinary acoustic transmission through ultrathin acoustic metamaterials by coiling up space,” Applied Physics Letters, vol. 103, no. 6, 2013. [11] J. Jiu-Long, Y. Hong, D. Jun, Z. Jing-Bo, and D. Tao, “Low frequency band gap characteristics of double-split Helmholtz locally resonant periodic structures,” Acta Physica Sinica, vol. 66, no. 6, 2017. [12] D.-L. Yu, H.-J. Shen, J.-W. Liu, J.-F. Yin, Z.-F. Zhang, and J.-H. Wen, “Propagation of acoustic waves in a fluid-filled pipe with periodic elastic Helmholtz resonators,” Chinese Physics B, vol. 27, no. 6, pp. 064301, 2018. [13] Y. Li, T. Chen, X. Wang, K. Yu, and R. Song, “Band structures in two-dimensional phononic crystals with periodic Jerusalem cross slot,” Physica B: Condensed Matter, vol. 456, pp. 261-266, 2015. [14] T. Wang, M.-p. Sheng, H. Wang, and Q.-H. Qin, “Band structures in two-dimensional phononic crystals with periodic S-shaped slot,” Acoustics Australia, vol. 43, pp. 275-281, 2015. [15] X. Man, Z. Luo, J. Liu, and B. Xia, “Hilbert fractal acoustic metamaterials with negative mass density and bulk modulus on subwavelength scale,” Materials & design, vol. 180, pp. 107911, 2019. [16] S. Brûlé, E. Javelaud, S. Enoch, and S. Guenneau, “Experiments on seismic metamaterials: molding surface waves,” Physical review letters, vol. 112, no. 13, pp. 133901, 2014. [17] R. Aznavourian, T. M. Puvirajesinghe, S. Brulé, S. Enoch, and S. Guenneau, “Spanning the scales of mechanical metamaterials using time domain simulations in transformed crystals graphene flakes and structured soils,” Journal of Physics Condensed Matter, vol. 29, no. 43, 2017. [18] Q. J. Du, Y. Zeng, Y. Xu, H. W. Yang, and Z. X. Zeng, “H-fractal seismic metamaterial with broadband low-frequency bandgaps,” Journal of Physics D-Applied Physics, vol. 51, no. 10, pp. 105104, Mar 14, 2018. [19] Y. Zeng, S. Y. Zhang, H. T. Zhou, Y. F. Wang, L. Y. Cao, Y. F. Zhu, Q. J. Du, B. Assouar, and Y. S. Wang, “Broadband inverted T-shaped seismic metamaterial,” Materials & Design, vol. 208, pp. 109906, Oct, 2021. [20] L. Guo, J. Liu, N. Gao, Q. Huang, G. Pan, and B. Song, “Wave propagation behaviors of a low-symmetry reentrant chiral structure with mass inclusion in a single material,” European Journal of Mechanics-A/Solids, vol. 99, pp. 104951, 2023. [21] M. Yang, S. Zhang, Y. Ding, and Z. Fu, “A combined seismic metamaterial in layered soils,” Applied Physics A, vol. 130, no. 8, pp. 586, 2024. [22] S. Brûlé, S. Enoch, and S. J. P. L. A. Guenneau, “Emergence of seismic metamaterials: Current state and future perspectives,” vol. 384, no. 1, pp. 126034, 2020. [23] S. Brûlé, E. Javelaud, S. Guenneau, S. Enoch, and D. Komatitsch, "Seismic metamaterials." [24] S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Flat lens effect on seismic waves propagation in the subsoil,” Scientific Reports, vol. 7, no. 1, 2017. [25] Y. Achaoui, T. Antonakakis, S. Brûlé, R. Craster, S. Enoch, and S. Guenneau, “Clamped seismic metamaterials: ultra-low frequency stop bands,” New Journal of Physics, vol. 19, no. 6, pp. 063022, 2017. [26] A. Diatta, Y. Achaoui, S. Brûlé, S. Enoch, and S. Guenneau, “Control of Rayleigh-like waves in thick plate Willis metamaterials,” AIP Advances, vol. 6, no. 12, 2016. [27] J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” science, vol. 312, no. 5781, pp. 1780-1782, 2006. [28] M. Miniaci, A. Krushynska, F. Bosia, and N. M. Pugno, “Large scale mechanical metamaterials as seismic shields,” New Journal of Physics, vol. 18, no. 8, pp. 083041, 2016. [29] S. Krödel, N. Thomé, and C. J. E. M. L. Daraio, “Wide band-gap seismic metastructures,” vol. 4, pp. 111-117, 2015. [30] Y. Achaoui, B. Ungureanu, S. Enoch, S. Brûlé, and S. Guenneau, “Seismic waves damping with arrays of inertial resonators,” Extreme Mechanics Letters, vol. 8, pp. 30-37, 2016. [31] G. Finocchio, O. Casablanca, G. Ricciardi, U. Alibrandi, F. Garesci, M. Chiappini, and B. Azzerboni, “Seismic metamaterials based on isochronous mechanical oscillators,” Applied Physics Letters, vol. 104, no. 19, pp. 191903, May 12, 2014. [32] G. W. Milton, and J. R. Willis, “On modifications of Newton's second law and linear continuum elastodynamics,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 463, no. 2079, pp. 855-880, 2007. [33] S. Brûlé, S. Enoch, and S. Guenneau, “Sols structurés sous sollicitation dynamique: des métamatériaux en géotechnique,” Revue française de Géotechnique, no. 151, pp. 4, 2017. [34] A. Colombi, P. Roux, S. Guenneau, P. Gueguen, and R. V. Craster, “Forests as a natural seismic metamaterial: Rayleigh wave bandgaps induced by local resonances,” Scientific Reports, vol. 6, no. 1, pp. 1-7, Jan 11, 2016. [35] A. Colombi, D. Colquitt, P. Roux, S. Guenneau, and R. V. Craster, “A seismic metamaterial: The resonant metawedge,” Scientific reports, vol. 6, no. 1, pp. 27717, 2016. [36] A. Maurel, J.-J. Marigo, K. Pham, and S. Guenneau, “Conversion of Love waves in a forest of trees,” Physical Review B, vol. 98, no. 13, pp. 134311, 2018. [37] A. Palermo, and A. Marzani, “Control of Love waves by resonant metasurfaces,” Scientific reports, vol. 8, no. 1, pp. 1-8, 2018. [38] A. Wirgin, “Computational parameter retrieval approach to the dynamic homogenization of a periodic array of rigid rectangular blocks,” arXiv preprint arXiv:1803.04717, 2018. [39] A. A. Saddek, T.-K. Lin, W.-K. Chang, C.-H. Chen, and K.-C. Chang, “Metamaterials of Auxetic Geometry for Seismic Energy Absorption,” Materials, vol. 16, no. 15, pp. 5499, 2023. [40] L. D’Alessandro, V. Zega, R. Ardito, and A. Corigliano, “3D auxetic single material periodic structure with ultra-wide tunable bandgap,” Scientific reports, vol. 8, no. 1, pp. 2262, 2018. [41] D. Mu, H. S. Shu, L. Zhao, and S. W. An, “A Review of Research on Seismic Metamaterials,” Advanced Engineering Materials, vol. 22, no. 4, pp. 1901148, Apr, 2020. [42] A. O. Krushynska, M. Miniaci, F. Bosia, and N. M. Pugno, “Coupling local resonance with Bragg band gaps in single-phase mechanical metamaterials,” Extreme Mechanics Letters, vol. 12, pp. 30-36, Apr, 2017. [43] Z. Liu, X. Zhang, Y. Mao, Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, “Locally resonant sonic materials,” science, vol. 289, no. 5485, pp. 1734-1736, 2000. [44] D. Colquitt, A. Colombi, R. Craster, P. Roux, and S. Guenneau, “Seismic metasurfaces: Sub-wavelength resonators and Rayleigh wave interaction,” Journal of the Mechanics and Physics of Solids, vol. 99, pp. 379-393, 2017. [45] A. Palermo, S. Krodel, A. Marzani, and C. Daraio, “Engineered metabarrier as shield from seismic surface waves,” Scientific Reports, vol. 6, no. 1, pp. 1-10, Dec 20, 2016. [46] S. Krödel, N. Thomé, and C. Daraio, “Wide band-gap seismic metastructures,” Extreme Mechanics Letters, vol. 4, pp. 111-117, 2015. [47] G. Finocchio, O. Casablanca, G. Ricciardi, U. Alibrandi, F. Garesci, M. Chiappini, and B. Azzerboni, “Seismic metamaterials based on isochronous mechanical oscillators,” Applied Physics Letters, vol. 104, no. 19, 2014. [48] P.-R. Wagner, V. K. Dertimanis, E. Chatzi, and I. A. Antoniadis, "Design of metamaterials for seismic isolation." pp. 275-287. [49] P.-R. Wagner, V. K. Dertimanis, E. N. Chatzi, and J. L. Beck, “Robust-to-uncertainties optimal design of seismic metamaterials,” Journal of Engineering Mechanics, vol. 144, no. 3, pp. 04017181, 2018. [50] M. Maleki, and M. Khodakarami, “Feasibility analysis of using MetaSoil scatterers on the attenuation of seismic amplification in a site with triangular hill due to SV-waves,” Soil Dynamics and Earthquake Engineering, vol. 100, pp. 169-182, 2017. [51] S.-H. Kim, and M. P. Das, “Seismic waveguide of metamaterials,” Modern Physics Letters B, vol. 26, no. 17, pp. 1250105, 2012. [52] Y. Yan, A. Laskar, Z. Cheng, F. Menq, Y. Tang, Y. Mo, and Z. Shi, “Seismic isolation of two dimensional periodic foundations,” Journal of Applied Physics, vol. 116, no. 4, 2014. [53] O. Casablanca, G. Ventura, F. Garesci, B. Azzerboni, B. Chiaia, M. Chiappini, and G. Finocchio, “Seismic isolation of buildings using composite foundations based on metamaterials,” Journal of Applied Physics, vol. 123, no. 17, 2018. [54] V. La Salandra, M. Wenzel, O. S. Bursi, G. Carta, and A. B. Movchan, “Conception of a 3D metamaterial-based foundation for static and seismic protection of fuel storage tanks,” Frontiers in Materials, vol. 4, pp. 30, 2017. [55] Z. Shi, and J. Huang, “Feasibility of reducing three-dimensional wave energy by introducing periodic foundations,” Soil Dynamics and Earthquake Engineering, vol. 50, pp. 204-212, 2013. [56] Y. Zeng, L. Y. Cao, S. Wan, T. Guo, Y. F. Wang, Q. J. Du, B. Assouar, and Y. S. Wang, “Seismic metamaterials: Generating low-frequency bandgaps induced by inertial amplification,” International Journal of Mechanical Sciences, vol. 221, pp. 107224, May 1, 2022. [57] Y. Zeng, Y. Xu, K. K. Deng, Z. X. Zeng, H. W. Yang, M. Muzamil, and Q. J. Du, “Low-frequency broadband seismic metamaterial using I-shaped pillars in a half-space,” Journal of Applied Physics, vol. 123, no. 21, pp. 214901, Jun 7, 2018. [58] C. Lim, and J. Reddy, “Built-up structural steel sections as seismic metamaterials for surface wave attenuation with low frequency wide bandgap in layered soil medium,” Engineering Structures, vol. 188, pp. 440-451, 2019. [59] H. Torres-Silva, and D. T. Cabezas, “Chiral seismic attenuation with acoustic metamaterials,” 2013. [60] Y. Zeng, Y. Xu, K. K. Deng, P. Peng, H. W. Yang, M. Muzamil, and Q. J. Du, “A broadband seismic metamaterial plate with simple structure and easy realization,” Journal of Applied Physics, vol. 125, no. 22, pp. 224901, Jun 14, 2019. [61] B. B. Alagoz, and S. Alagoz, “Towards earthquake shields: A numerical investigation of earthquake shielding with seismic crystals,” Open Journal of Acoustics, vol. 1, no. 3, pp. 63-69, 2011. [62] S. Brûlé, E. H. Javelaud, S. Enoch, and S. Guenneau, “Flat lens effect on seismic waves propagation in the subsoil,” Scientific reports, vol. 7, no. 1, pp. 18066, 2017. [63] F. Meseguer, M. Holgado, D. Caballero, N. Benaches, J. Sanchez-Dehesa, C. López, and J. Llinares, “Rayleigh-wave attenuation by a semi-infinite two-dimensional elastic-band-gap crystal,” Physical Review B, vol. 59, no. 19, pp. 12169, 1999. [64] Q. Geng, S. Zhu, and K. P. Chong, “Issues in design of one-dimensional metamaterials for seismic protection,” Soil Dynamics and earthquake engineering, vol. 107, pp. 264-278, 2018. [65] J. Bao, Z. Shi, and H. Xiang, “Dynamic responses of a structure with periodic foundations,” Journal of Engineering Mechanics, vol. 138, no. 7, pp. 761-769, 2012. [66] W. Witarto, S. Wang, C. Yang, X. Nie, Y. Mo, K. Chang, Y. Tang, and R. Kassawara, “Seismic isolation of small modular reactors using metamaterials,” AIP Advances, vol. 8, no. 4, 2018. [67] Y. Y. Chen, F. Qian, F. Scarpa, L. Zuo, and X. Y. Zhuang, “Harnessing multi-layered soil to design seismic metamaterials with ultralow frequency band gaps,” Materials & Design, vol. 175, pp. 107813, Aug 5, 2019. [68] C. Yilmaz, G. M. Hulbert, and N. Kikuchi, “Phononic band gaps induced by inertial amplification in periodic media,” Physical Review B, vol. 76, no. 5, pp. 054309, 2007. [69] M. Z. Chen, and Y. Hu, Inerter and its application in vibration control systems: Springer, 2019. [70] M. C. Smith, “Synthesis of mechanical networks: the inerter,” IEEE Transactions on automatic control, vol. 47, no. 10, pp. 1648-1662, 2002. [71] D. De Domenico, N. Impollonia, and G. Ricciardi, “Soil-dependent optimum design of a new passive vibration control system combining seismic base isolation with tuned inerter damper,” Soil Dynamics and Earthquake Engineering, vol. 105, pp. 37-53, 2018. [72] R. Aznavourian, T. M. Puvirajesinghe, S. Brûlé, S. Enoch, and S. Guenneau, “Spanning the scales of mechanical metamaterials using time domain simulations in transformed crystals, graphene flakes and structured soils,” Journal of Physics: Condensed Matter, vol. 29, no. 43, pp. 433004, 2017. [73] A. Khlopotin, P. Olsson, and F. Larsson, “Transformational cloaking from seismic surface waves by micropolar metamaterials with finite couple stiffness,” Wave Motion, vol. 58, pp. 53-67, 2015. [74] A. Colombi, S. Guenneau, P. Roux, and R. V. Craster, “Transformation seismology: composite soil lenses for steering surface elastic Rayleigh waves,” Sci Rep, vol. 6, no. 1, pp. 25320, Apr 29, 2016. [75] Y. M. Luo, C. He, Z. Tao, J. Hao, H. H. Xu, Y. Zhang, F. Zhang, and X. Ren, “A surface-wave seismic metamaterial filled with auxetic foam,” International Journal of Mechanical Sciences, vol. 262, pp. 108715, 2024. [76] G. Wang, C. Wang, C. Liang, Z. Chen, C. Lim, and Z. Shi, “Subwavelength partial-embedded seismic metamaterial with wide working frequency: Numerical simulation and experiment,” Engineering Structures, vol. 332, pp. 120093, 2025. [77] J. Chung, and G. Hulbert, “A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method,” 1993. [78] N. M. Newmark, “A method of computation for structural dynamics,” Journal of the engineering mechanics division, vol. 85, no. 3, pp. 67-94, 1959. [79] H. M. Hilber, T. J. Hughes, and R. L. Taylor, “Improved numerical dissipation for time integration algorithms in structural dynamics,” Earthquake Engineering & Structural Dynamics, vol. 5, no. 3, pp. 283-292, 1977. [80] J. G. Francis, “The QR transformation a unitary analogue to the LR transformation—Part 1,” The Computer Journal, vol. 4, no. 3, pp. 265-271, 1961. [81] L. Fan, Q. J. Du, P. Peng, and F. M. Liu, “Minkowski-like fractal seismic metamaterial with wide low-frequency band gaps on single and layered soil,” Journal of Physics D-Applied Physics, vol. 55, no. 49, pp. 495001, Dec 8, 2022. [82] K. Nakayama, “Remarks on Newton’s second law for variable mass systems,” European Journal of Physics, vol. 39, no. 5, pp. 055002, 2018. [83] R. Goraj, “Transformation of the Navier-Stokes equation to the Cauchy Momentum equation using a novel mathematical notation,” Applied Mathematics, vol. 7, no. 10, pp. 1068-1073, 2016. [84] H. Bhatia, G. Norgard, V. Pascucci, and P.-T. Bremer, “The Helmholtz-Hodge decomposition—a survey,” IEEE Transactions on visualization and computer graphics, vol. 19, no. 8, pp. 1386-1404, 2012. [85] H. Lamb, “On waves in an elastic plate,” Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character, vol. 93, no. 648, pp. 114-128, 1917. [86] Y.-H. Pao, C.-C. Mow, and J. Achenbach, “Diffraction of elastic waves and dynamic stress concentrations,” 1973. [87] K. F. Graff, Wave motion in elastic solids: Courier Corporation, 2012. [88] J. Achenbach, “Lamb waves as thickness vibrations superimposed on a membrane carrier wave,” The Journal of the Acoustical Society of America, vol. 103, no. 5, pp. 2283-2286, 1998. [89] R. Antos, and M. Veis, “Fourier factorization with complex polarization bases in the plane-wave expansion method applied to two-dimensional photonic crystals,” Optics express, vol. 18, no. 26, pp. 27511-27524, 2010. [90] Z.-Y. Li, and L.-L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Physical Review E, vol. 67, no. 4, pp. 046607, 2003. [91] S. van den Boom, F. van Keulen, and A. Aragón, “Fully decoupling geometry from discretization in the Bloch–Floquet finite element analysis of phononic crystals,” Computer Methods in Applied Mechanics and Engineering, vol. 382, pp. 113848, 2021. [92] D. N. Arnold, and M. E. Rognes, “Stability of Lagrange elements for the mixed Laplacian,” Calcolo, vol. 46, no. 4, pp. 245-260, 2009. [93] M. I. Hussein, M. J. Leamy, and M. Ruzzene, “Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook,” Applied Mechanics Reviews, vol. 66, no. 4, pp. 040802, 2014. [94] M. M. Hajjaj, and J. W. Tu, “A seismic metamaterial concept with very short resonators using depleted uranium,” Archive of Applied Mechanics, vol. 91, no. 5, pp. 2279-2300, May, 2021. [95] M. Badreddine Assouar, and M. Oudich, “Dispersion curves of surface acoustic waves in a two-dimensional phononic crystal,” Applied Physics Letters, vol. 99, no. 12, pp. 123505, 2011. [96] X. Fang, J. Lou, Y. M. Chen, J. Wang, M. Xu, and K.-C. Chuang, “Broadband Rayleigh wave attenuation utilizing an inertant seismic metamaterial,” International Journal of Mechanical Sciences, vol. 247, pp. 108182, 2023. [97] H. Sun, H. Hai, C. Zhou, W. Wang, C. Chen, and W. Xu, “Attenuation effects of seismic metamaterials based on local resonance and Rayleigh wave dispersion phenomena,” Mechanics Research Communications, vol. 143, pp. 104367, 2025. [98] Y. Zeng, Y. Xu, H. W. Yang, M. Muzamil, R. Xu, K. K. Deng, P. Peng, and Q. J. Du, “A Matryoshka-like seismic metamaterial with wide band-gap characteristics,” International Journal of Solids and Structures, vol. 185, pp. 334-341, Mar 1, 2020. [99] Y. Xu, R. Xu, P. Peng, H. W. Yang, Y. Zeng, and Q. J. Du, “Broadband H-shaped seismic metamaterial with a rubber coating,” Epl, vol. 127, no. 1, pp. 17002, Jul, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99825 | - |
| dc.description.abstract | 地震防護技術的發展在很大程度上受到減振材料技術不斷精進的驅動。本研究旨在結合仿生學結構設計理念,研發具備減振功能的微結構超材料單元,並應用相應的理論與數值分析工具,以實現對地震波傳播的有效控制與能量耗散。在研究初期,將聚焦於創新超材料單元的設計工作。此階段將涵蓋對國內外文獻的系統性整理與分析,蒐集與超材料相關的最新研究成果,並以此為基礎進行兩種主要設計構型—突出地表面共振子(ASR)與埋入地下共振子(BMR)的初步建模與設計。中期階段的研究將進一步分析所設計的ASR與BMR單元,分別探討其獨立與複合配置下的頻散特性(Band structure analysis),藉由波傳特性與能量穿透率等指標,驗證其在實際工程應用中的可行性與效果。研究後期將著重於超材料單元的排列組合與系統性配置設計,進行不同排列數量下的傳輸與波導效應分析,評估其在地震波隔絕、波傳偏轉等方面的應用潛力。本研究期望藉由此類仿生型地震超材料的研發,為國內重要基礎設施與建築物提供新一代的減振防護技術,進而提升整體社會居住與建築安全,實現建立更安全家園的目標。 | zh_TW |
| dc.description.abstract | The development of earthquake protection technology is largely driven by the continuous improvement of vibration reduction material technology. This study aims to combine the concept of bionic structural design, develop microstructure metamaterial units with vibration reduction functions, and apply corresponding theoretical and numerical analysis tools to achieve effective control of seismic wave propagation and energy dissipation. In the early stage of the study, the focus will be on the design of innovative metamaterial units. This stage will cover the systematic organization and analysis of domestic and foreign literature, collect the latest research results related to metamaterials, and conduct preliminary modeling and design of two main design configurations - protruding surface resonators (ASR) and buried ground resonators (BMR) based on this. The mid-term research will further analyze the designed ASR and BMR units, explore their dispersion characteristics (band structure analysis) under independent and hybrid case, and verify their feasibility and effectiveness in actual engineering applications through indicators such as wave transmission characteristics and energy penetration. The later stage of the study will focus on the arrangement and combination of metamaterial units and the systematic configuration design, conduct transmission and waveguide effect analysis under different arrangement numbers, and evaluate their application potential in seismic wave isolation, wave transmission deflection, etc. This study hopes to provide a new generation of vibration reduction and protection technology for important domestic infrastructure and buildings through the development of this type of bionic earthquake metamaterials, thereby improving the overall social living and building safety and achieving the goal of building a safer home. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:07:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:07:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝Acknowledgements i
中文摘要 ii Abstract iii 目次Table of contents iv 圖次Table of Figures vii 表次Table catalogue xiv 一、研究簡介Introduction 1 1.1 研究背景(Research problem) 1 1.2 動機與目的(Motivation & Objective) 3 1.3 重要性與貢獻(Significance and Contributions) 4 1.4 研究架構與科技樹(Thesis Structure) 6 二、文獻回顧 Literature review 7 2.1 地震超材料歷史沿革與分類 (Seismic Metamaterial history) 7 2.1.1 地震土壤互制超材料(Seismic-Soil Metamaterial, SSM) 10 2.1.2 埋入質量阻尼共振子超材料(Buried Mass-Resonators, BMR) 11 2.1.3 地表面上共振子超材料(Above-Surface Resonators, ASR) 12 2.1.4 拉脹性超材料(Auextic metamaterial, AM) 13 2.2 基於物理機制的地震超材料分類 (Seismic Metamaterial classification) 14 2.2.1局部共振機制的地震超材料(Local Resonance Mechanism) 14 2.2.2布拉格散射機制的地震超材料(Bragg scattering mechanism) 16 2.2.3慣性放大機制(Inertial Amplification Mechanism) 17 2.2.4轉移機制(Transform Mechanism) 18 2.3 文獻總結(Summary) 22 三、研究方法 Research method 23 3.1 研究模擬的工具(Simulation tool) 23 3.1.1 有限元素法的簡介 (FEM introduction) 23 3.1.2 COMSOL時間域分析(Time analysis) 25 3.1.3 COMSOL頻域模態分析(Eigenfrequency Study) 25 3.1.4 COMSOL有限元素穩態與暫態分析 (Steady state and transient analysis) 27 3.1.5 邊界條件說明 (Boundary condition analysis) 30 3.2 本研究方法的流程圖(Flowchart) 33 3.3 地震超材料介質的載波基礎理論 (Seismic medium theory) 35 3.3.1 力平衡方程式(Force equilibrium)與亥姆霍茲(Helmholtz)理論 36 3.3.2 理論縱波波速公式與橫波波速公式(Longitude and transversal wave velocity) 38 3.3.3 地震表面波在等向性地層中的垂直與水平位移形式(Derivation of vertical and horizontal displacements in isotropic layer) 39 3.4 地震超材料的晶格單元模擬的理論Theory of lattice cell simulation 40 3.4.1 以文獻U-level2的超材料週期性單元為例[81] (U-level 2 Metamaterial periodic unitcell) 40 3.4.2 單位週期超材料在水平方向上的頻散圖(x-y平面) (Unitcell in horizontal direction dispersion diagram) 42 3.4.3 單位週期超材料在垂直方向上的頻散圖(x-z平面) (Unitcell in vertical direction dispersion diagram) 50 3.4.4 傳輸頻譜與衰減頻譜(Transmission spectrum, TS) 51 3.4.5 研究模擬結果與文獻相對應之討論 (Discussion the correspondence between the simulation results and the literature) 53 3.4.6 零頻率帶隙、完整帶隙與相對帶隙 (Zero frequency bandgap, full bandgap and relative bandgap) 53 3.5 地震超材料的設計理念與理論 (Seismic metamaterial design idea and theory) 55 3.5.1 基於仿生學架構概念所設計的晶格單元 (Bio-inspired unitcell) 56 3.5.2 研究預期設計的晶格單元材料與預期得到的結果 (Expected material and unitcell setting) 56 3.5.3 傳輸頻譜(Transmission Spectrum)的分析 57 四、研究模擬結果與討論 Research results and discussion 61 4.1 單元設計圖 (Design unitcell diagram) 61 4.1.1單元設計理念(Unitcell design concept) 63 4.2 設計方案說明 (Case description) 63 4.2.1個別共振子的特徵頻率與模態振型 (Eignfrequency and mode shapes of individual resonators) 63 4.2.2突出地表面共振子單元的分析(Above surface resonator, ASR) 64 4.2.3埋入地下共振子單元的分析(Buried mass resonator, BMR) 65 4.2.4單一基樁的情境(Single monopile scenarios) 66 4.3 對於突出地表面共振子單元的材料與尺寸參數掃描所得到的頻散圖(ASR resonator analysis) 68 4.3.1 ASR晶格常數a 69 4.3.2 ASR突出地表高度Ha 71 4.3.3 ASR土體楊氏模數Esoil 74 4.3.4 ASR土體泊松比nusoil 76 4.3.5 ASR土體密度rhosoil 78 4.3.6 ASR的細部參數討論 79 4.4 對於埋入地下共振子單元的材料與尺寸參數掃描所得的頻散圖(BMR resonator analysis) 79 4.4.1 BMR晶格常數a 80 4.4.2 BMR橡膠半徑Rr 82 4.4.3 BMR土體楊氏模數Esoil 87 4.4.4 BMR土體泊松比nusoil 88 4.4.5 BMR土體密度rhosoil 90 4.4.6 BMR共振子數量的討論 92 4.4.7 BMR的細部參數討論 94 4.5 複合式超材料單元的材料與尺寸參數分析(Analysis of material and size parameters of hybrid metamaterial unitcell) 94 4.5.1 複合式超材料單元的晶格常數a 96 4.5.2 複合式超材料單元的橡膠半徑Rr 96 4.5.3 複合式超材料單元的土體楊氏模數Esoil 98 4.5.4 複合式超材料單元的土體柏松比nusoil 98 4.5.5 複合式超材料單元的土體密度rhosoil 99 4.5.6 複合式超材料單元突出地表高度Ha 100 4.5.7 複合式超材料單元的細部參數討論 101 4.6 傳輸頻譜(Transmission Spectrum)的分析 102 4.6.1 邊界條件配置與輸入源形式說明(Boundary condition & input source) 102 4.7半有限域(Semi-finite field)的傳輸頻譜 104 4.7.1 僅具有ASR設計單元的線性層狀排列(Pure ASR Linear layered arrangement) 104 4.7.2 僅具有BMR設計單元的線性層狀排列(Pure BMR Linear layered arrangement) 108 4.7.3 複合式設計超材料單元的線性層狀排列(Linear layered arrangement) 111 4.7.4 複合式超材料的入射源方向的討論 (The study of input source direction) 113 4.7.5 複合式超材料的BMR共振子深度與梯度排列(BMR depth, wedge & inverse wedge arrangement study) 115 4.8 場域與波轉換的討論 (Wave conservation discussion) 121 五、結論與未來計畫 Conclusion and future work 122 5.1 結論 (Conclusion) 122 5.2 未來展望 (Future work) 124 六、參考文獻(Reference) 126 附錄 Appendix 135 道德與利益衝突聲明 Ethics and Conflict of Interest Statement 153 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 減震機制 | zh_TW |
| dc.subject | 地震超材料 | zh_TW |
| dc.subject | 超材料晶格單元 | zh_TW |
| dc.subject | 傳輸頻譜圖 | zh_TW |
| dc.subject | 頻散帶隙 | zh_TW |
| dc.subject | dispersion bandgap | en |
| dc.subject | transmission spectrum | en |
| dc.subject | metamaterial unitcell | en |
| dc.subject | vibration absorption mechanism | en |
| dc.subject | seismic metamaterials | en |
| dc.title | 基於有限元素法對特殊仿生設計的地震超材料其性能的探討與評估 | zh_TW |
| dc.title | Discussion on the performance of bio-inspired design seismic metamaterials based on the finite element method | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李佳翰;宋家驥;周光武 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Han Li;Chia-Chi Sung;Kuang-Wu Chou | en |
| dc.subject.keyword | 地震超材料,減震機制,頻散帶隙,傳輸頻譜圖,超材料晶格單元, | zh_TW |
| dc.subject.keyword | seismic metamaterials,vibration absorption mechanism,dispersion bandgap,transmission spectrum,metamaterial unitcell, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202501657 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2030-07-15 | - |
| Appears in Collections: | 工程科學及海洋工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 12.76 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
