請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99816完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許輔 | zh_TW |
| dc.contributor.advisor | Fuu Sheu | en |
| dc.contributor.author | 陳沅宜 | zh_TW |
| dc.contributor.author | Yuan-I Chen | en |
| dc.date.accessioned | 2025-09-18T16:05:30Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-09-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-30 | - |
| dc.identifier.citation | 胡忠一. 2014. 臺灣農會發展史. 檔案半年刊, 13, 20-33.
陳琦珊、譚鴻仁. 2018. 食物的社會生命: 臺灣鳳梨產業的蛻變與再起. 中國地理學會會刊, 1-24. Albersheim, P., Darvill, A., O'neill, M., Schols, H., & Voragen, A. G. (1996). An hypothesis: The same six polysaccharides are components of the primary cell walls of all higher plants. In Progress in Biotechnology (Vol. 14, pp. 47-55). Elsevier. Andersa, K. N. (2020). Review on the effect of fruit wine quality and fermentation conditions on the quality of wine. Food Science & Nutrition Technology, 5, 2-8. Asopa, V. (2003). Competitiveness in pineapple canning industry. Hawaii International Conference on Business, Honolulu, HI, Azuma, E. (2021). A Trans-Imperial History of Taiwan's Pineapple Industry: Migration and Transfer of Colonial Expertise from US-Controlled Hawaii to Japanese-Ruled Taiwan. NTNU Journal of Taiwan History, 1-47. Bamidele, O. P., & Fasogbon, M. B. (2017). Chemical and antioxidant properties of snake tomato (Trichosanthes cucumerina) juice and Pineapple (Ananas comosus) juice blends and their changes during storage. Food Chemistry, 220, 184-189. Bartolomé, A. P., Rupérez, P., & Fúster, C. (1995). Pineapple fruit: morphological characteristics, chemical composition and sensory analysis of Red Spanish and Smooth Cayenne cultivars. Food Chemistry, 53, 75-79. Bedriñana, R. P., Lobo, A. P., Madrera, R. R., & Valles, B. S. (2020). Characteristics of ice juices and ciders made by cryo-extraction with different cider apple varieties and yeast strains. Food Chemistry, 310, 125831. Belancic, A., Gunata, Z., Vallier, M.J., & Agosin, E. (2003). β-Glucosidase from the grape native yeast Debaryomyces vanrijiae: purification, characterization, and its effect on monoterpene content of a Muscat grape juice. Journal of Agricultural and Food Chemistry, 51, 1453-1459. Beulah, D., Sunitha, E., & Srilakshmi, T. (2015). Production, purification and assay of pectinase enzyme from Aspergillus niger. Helix, 1, 673-U645. Borren, E., & Tian, B. (2020). The important contribution of non-Saccharomyces yeasts to the aroma complexity of wine: A review. Foods, 10, 13. Brent, J., McMartin, K., Phillips, S., Aaron, C., & Kulig, K. (2001). Fomepizole for the treatment of methanol poisoning. New England Journal of Medicine, 344, 424-429. Brummell, D. A., & Harpster, M. H. (2001). Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Cell Walls, 311-340. Calahorra, M., Sánchez, N. S., & Pena, A. (2009). Activation of fermentation by salts in Debaryomyces hansenii. FEMS Yeast Research, 9, 1293-1301. Chanprasartsuk, O.-o., Prakitchaiwattana, C., Sanguandeekul, R., & Fleet, G. H. (2010). Autochthonous yeasts associated with mature pineapple fruits, freshly crushed juice and their ferments; and the chemical changes during natural fermentation. Bioresource Technology, 101, 7500-7509. Chatellier, S., Mugnier, N., Allard, F., Bonnaud, B., Collin, V., van Belkum, A,Emler, S. (2014). Comparison of two approaches for the classification of 16S rRNA gene sequences. Journal of Medical Microbiology, 63, 1311-1315. Carbone, V., Reilly, K., Sang, C., Schofield, L. R., Ronimus, R. S., Kelly, W. J.,…Palevich, N. (2023). Crystal structures of bacterial pectin methylesterases Pme8A and PmeC2 from rumen Butyrivibrio. International Journal of Molecular Sciences, 24, 13738. Chaudhary, V., Kumar, V., Singh, K., Kumar, R., Kumar, V., & Vipul Chaudhary, C. (2019). Pineapple (Ananas cosmosus) product processing: A review. Journal of Pharmacognosy and Phytochemistry, 8, 4642-4652. Chen, X., Xu, Y., Wu, J., Yu, Y., Zou, B., & Li, L. (2023). Effects of pectinase pre-treatment on the physicochemical properties, bioactive compounds, and volatile components of juices from different cultivars of guava. Foods, 12, 330. Christensen, T. M., Nielsen, J. E., Kreiberg, J. D., Rasmussen, P., & Mikkelsen, J. D. (1998). Pectin methyl esterase from orange fruit: characterization and localization by in-situ hybridization and immunohistochemistry. Planta, 206, 493-503. Ciani, M., & Maccarelli, F. (1997). Oenological properties of non-Saccharomyces yeasts associated with wine-making. World Journal of Microbiology and Biotechnology, 14, 199-203. Coton, E., Coton, M., Levert, D., Casaregola, S., & Sohier, D. (2006). Yeast ecology in French cider and black olive natural fermentations. International Journal of Food Microbiology, 108, 130-135. Dashko, S., Zhou, N., Compagno, C., & Piškur, J. (2014). Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Research, 14, 826-832. Dellacassa, E., Trenchs, O., Fariña, L., Debernardis, F., Perez, G., Boido, E., & Carrau, F. (2017). Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora. International Journal of Food Microbiology, 241, 161-167. Delso, C., Ospina, S., Berzosa, A., Raso, J., & Álvarez-Lanzarote, I. (2023). Defining winery processing conditions for the decontamination of must and wine spoilage microbiota by pulsed electric fields (PEF). Innovative Food Science & Emerging Technologies, 89, 103478. Dongowski, G., & Bock, W. (1984). Zum Einfluß molekularer Parameter der Pektinsubstrate auf die Aktivität von Pektinesterasen aus Aspergillus niger und aus höheren Pflanzen. Food/Nahrung, 28, 507-516. Doody, E. E., Groebner, J. L., Walker, J. R., Frizol, B. M., Tuma, D. J., Fernandez, D. J., & Tuma, P. L. (2017). Ethanol metabolism by alcohol dehydrogenase or cytochrome P450 2E1 differentially impairs hepatic protein trafficking and growth hormone signaling. American Journal of Physiology-Gastrointestinal and Liver Physiology, 313, G558-G569. Drusch, S., Eichhorn, M., Heinert, S., Weißbrodt, J., & Morales-Medina, R. (2024). Review on the impact of the molecular structure of pectin on the associative phase separation with proteins. Food Hydrocolloids, 110289. Duvetter, T., Van Loey, A., Smout, C., Verlent, I., Nguyen, B. L., & Hendrickx, M. (2005). Aspergillus aculeatus pectin methylesterase: study of the inactivation by temperature and pressure and the inhibition by pectin methylesterase inhibitor. Enzyme and Microbial Technology, 36, 385-390. Duvetter, T., Fraeye, I., Sila, D. N., Verlent, I., Smout, C., Hendrickx, M., & Van Loey, A. (2006). Mode of de-esterification of alkaline and acidic pectin methyl esterases at different pH conditions. Journal of Agricultural and Food Chemistry, 54, 7825-7831. Fernández-Pacheco, P., García-Béjar, B., Briones Pérez, A., & Arévalo-Villena, M. (2021). Free and immobilised β-glucosidases in oenology: Biotechnological characterisation and its effect on enhancement of wine aroma. Frontiers in Microbiology, 12, 723815. Fleet, G., Prakitchaiwattana, C., Beh, A., & Heard, G. (2002). The yeast ecology of wine grapes. Fleet, G. H. (1990). Growth of yeasts during wine fermentations. Journal of Wine Research, 1, 211-223. Fleet, G. H. (2003). Yeast interactions and wine flavour. International Journal of Food Microbiology, 86, 11-22. Freitas, C. M. P., Coimbra, J. S. R., Souza, V. G. L., & Sousa, R. C. S. (2021). Structure and applications of pectin in food, biomedical, and pharmaceutical industry: A review. Coatings, 11, 922. Frenkel, C., Peters, J. S., Tieman, D. M., Tiznado, M. E., & Handa, A. K. (1998). Pectin methylesterase regulates methanol and ethanol accumulation in ripening tomato (Lycopersicon esculentum) fruit. Journal of Biological Chemistry, 273, 4293-4295. Geetha, M., Saranraj, P., Mahalakshmi, S., & Reetha, D. (2012). Screening of pectinase producing bacteria and fungi for its pectinolytic activity using fruit wastes. Int J Biochem Biotech Sci, 1, 30-42. Gil, J., Mateo, J., Jiménez, M., Pastor, A., & Huerta, T. (1996). Aroma compounds in wine as influenced by apiculate yeasts. Journal of Food Science, 61, 1247-1250. Goldberg, R., Morvan, C., & Roland, J. C. (1986). Composition, properties and localisation of pectins in young and mature cells of the mung bean hypocotyl. Plant and Cell Physiology, 27, 417-429. Gummadi, S. N., Manoj, N., & Kumar, D. S. (2007). Structural and biochemical properties of pectinases. Industrial Enzymes: Structure, Function and Applications, 99-115. Hadfield, K. A., & Bennett, A. B. (1998). Polygalacturonases: many genes in search of a function. Plant Physiology, 117, 337-343. Haile, S., & Ayele, A. (2022). Pectinase from microorganisms and its industrial applications. The Scientific World Journal, 2022, 1881305. Han, W., Meng, Y., Hu, C., Dong, G., Qu, Y., Deng, H., & Guo, Y. (2017). Mathematical model of Ca2+ concentration, pH, pectin concentration and soluble solids (sucrose) on the gelation of low methoxyl pectin. Food Hydrocolloids, 66, 37-48. Han, Y., & Du, J. (2022). Relationship of the methanol production, pectin and pectinase activity during apple wine fermentation and aging. Food Research International, 159, 111645. Han, Y., Du, J., Bao, J., & Wang, W. (2025). Effect of apple texture properties and pectin structure on the methanol production in apple wine. LWT, 216, 117369. Harholt, J., Suttangkakul, A., & Vibe Scheller, H. (2010). Biosynthesis of pectin. Plant Physiology, 153, 384-395. Hasunuma, T., Fukusaki, E.-i., & Kobayashi, A. (2003). Methanol production is enhanced by expression of an Aspergillus niger pectin methylesterase in tobacco cells. Journal of Biotechnology, 106, 45-52. Hodson, G., Wilkes, E., Azevedo, S., & Battaglene, T. (2017). Methanol in wine. In BIO Web of Conferences (Vol. 9, p. 02028). EDP Sciences. Hong, P., & Lee, C. (2017). Roles of Pectin Methylesterases and Pectin Methylesterase Inhibitors in Plant Physiology. Journal of Agricultural, Life and Environmental Sciences, 29, 1-17. Hossain, M. (2016). World pineapple production: An overview. African Journal of Food, Agriculture, Nutrition and Development, 16, 11443-11456. Hou, C. Y., Lin, Y. S., Wang, Y., Jiang, C. M., Lin, K., & Wu, M. C. (2008). Addition of phenolic acids on the reduction of methanol content in wine. Journal of Food Science, 73, C432-C437. IPCS, W. (1997). Environmental Health Criteria 196–Methanol. World Health Organization (WHO), International Programme on Chemical Safety (IPCS), Geneva, Switzerland. http://www. inchem. org/documents/ehc/ehc/ehc196. htm. Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology, 45, 2761-2764. Jankura, E., Piknová, L. u., & Lopašovská, J. (2020). Identification and technological characteristics of yeast strains from vineyards in Slovakia. Jayani, R. S., Saxena, S., & Gupta, R. (2005). Microbial pectinolytic enzymes: a review. Process Biochemistry, 40, 2931-2944. Jensen, J. K., Sørensen, S. O., Harholt, J., Geshi, N., Sakuragi, Y., Møller, I., Sørensen, C. (2008). Identification of a xylogalacturonan xylosyltransferase involved in pectin biosynthesis in Arabidopsis. The Plant Cell, 20, 1289-1302. Jeong, J., Yun, K., Mun, S., Chung, W.-H., Choi, S.-Y., Nam, Y.-d., Ahn, Y. J. (2021). The effect of taxonomic classification by full-length 16S rRNA sequencing with a synthetic long-read technology. Scientific Reports, 11, 1727. Jiang, X., Lu, Y., & Liu, S. Q. (2020). Effects of pectinase treatment on the physicochemical and oenological properties of red dragon fruit wine fermented with Torulaspora delbrueckii. LWT, 132, 109929. Johansson, K., El-Ahmad, M., Friemann, R., Jörnvall, H., Markovič, O., & Eklund, H. (2002). Crystal structure of plant pectin methylesterase. Febs Letters, 514, 243-249. Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14, 215-237. Kaczmarska, A., Pieczywek, P. M., Cybulska, J., & Zdunek, A. (2022). Structure and functionality of Rhamnogalacturonan I in the cell wall and in solution: A review. Carbohydrate Polymers, 278, 118909. Kansakar, U., Trimarco, V., Manzi, M. V., Cervi, E., Mone, P., & Santulli, G. (2024). Exploring the therapeutic potential of bromelain: Applications, benefits, and mechanisms. Nutrients, 16, 2060. Karam, N., & Belarbi, A. (1995). Detection of polygalacturonases and pectin esterases in lactic acid bacteria. World Journal of Microbiology and Biotechnology, 11, 559-563. Kertesz, Z. I. (1951). The pectic substances (Vol. 1). Interscience Publishers New York. Kohli, P., Kalia, M., & Gupta, R. (2015). Pectin methylesterases: a review. J Bioprocess Biotech, 5. Kohn, R., Dongowski, G., & Bock, W. (1985). The distribution of free and esterified carboxyl groups within the pectin molecule after the action of pectin esterase from Aspergillus niger and oranges. Die Nahrung, 29, 75-85. Krauss, B. H. (1948). Anatomy of the vegetative organs of the pineapple, Ananas comosus (L.) Merr Merr. I. Introduction, organography, the stem, and the lateral branch or axillary buds. Botanical Gazette, 110, 159-217. Kraut, J. A., & Kurtz, I. (2008). Toxic alcohol ingestions: clinical features, diagnosis, and management. Clinical Journal of the American Society of Nephrology, 3, 208-225. Kumar, R., Meghwanshi, G. K., Marcianò, D., Ullah, S. F., Bulone, V., Toffolatti, S. L., & Srivastava, V. (2023). Sequence, structure and functionality of pectin methylesterases and their use in sustainable carbohydrate bioproducts: a review. International Journal of Biological Macromolecules, 244, 125385. Lehninger, A. L. (2004). Lehninger Principles of Biochemistry: David L. Nelson, Michael M. Cox. Recording for the Blind & Dyslexic New York. Li, F., Xia, X., Li, L., Song, L., Ye, Y., Jiang, Y., & Liu, H. (2024). Elucidation of pineapple softening based on cell wall polysaccharides degradation during storage. Frontiers in Plant Science, 15, 1492575. Liu, D., Liu, X., Liu, J., Jermendi, É., Bi, J., & Schols, H. A. (2023). A wide diversity exists in pectin structure from thirteen apple cultivars. International Journal of Biological Macromolecules, 244, 125410. Liu, J., Yang, W., Lv, Z., Liu, H., Zhang, C., & Jiao, Z. (2020). Effects of different pretreatments on physicochemical properties and phenolic compounds of hawthorn wine. CyTA-Journal of Food, 18, 518-526. Liu, L., Zhao, P. T., Hu, C. Y., Tian, D., Deng, H., & Meng, Y. H. (2022). Screening low-methanol and high-aroma produced yeasts for cider fermentation by transcriptive characterization. Frontiers in Microbiology, 13, 1042613. Maicas, S. (2020). The role of yeasts in fermentation processes. In (Vol. 8, pp. 1142): MDPI. Makebe, C. W., Desobgo, Z. S. C., Ambindei, W. A., Billu, A., Nso, E. J., & Nisha, P. (2020). Optimization of pectinase‐assisted extraction of Annona muricata L. juice and the effect of liquefaction on its pectin structure. Journal of the Science of Food and Agriculture, 100, 5487-5497. Martín, M. C., López, O. V., Ciolino, A. E., Morata, V. I., Villar, M. A., & Ninago, M. D. (2019). Immobilization of enological pectinase in calcium alginate hydrogels: A potential biocatalyst for winemaking. Biocatalysis and Agricultural Biotechnology, 18, 101091. Matei, F. (2017). Technical guide for fruit wine production. In Science and Technology of Fruit Wine Production (pp. 663-703). Elsevier. Matsunaga, T., Ishii, T., Matsumoto, S., Higuchi, M., Darvill, A., Albersheim, P., & O'Neill, M. A. (2004). Occurrence of the primary cell wall polysaccharide rhamnogalacturonan II in pteridophytes, lycophytes, and bryophytes. Implications for the evolution of vascular plants. Plant Physiology, 134, 339-351. Maughan, H., & Van der Auwera, G. (2011). Bacillus taxonomy in the genomic era finds phenotypes to be essential though often misleading. Infection, Genetics and Evolution, 11, 789-797. Miljić, U., Puškaš, V., & Vučurović, V. (2016). Investigation of technological approaches for reduction of methanol formation in plum wines. Journal of the Institute of Brewing, 122, 635-643. Miljić, U. D., & Puškaš, V. S. (2014). Influence of fermentation conditions on production of plum (Prunus domestica L.) wine: A response surface methodology approach. Hemijska Industrija, 68, 199-206. Miller, B. (1986). JN An introduction to pectins. Chemistry and functions of pectins. Washington, DC: American Chemical Society, 85-97. Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion in Plant Biology, 11, 266-277. Moreno-Arribas, M. V., & Polo, M. C. (2005). Winemaking biochemistry and microbiology: current knowledge and future trends. Critical Reviews in Food Science and Nutrition, 45, 265-286. Morrissey, W., Davenport, B., Querol, A., & Dobson, A. (2004). The role of indigenous yeasts in traditional Irish cider fermentations. Journal of Applied Microbiology, 97, 647-655. Motarjemi, Y. (2002). Impact of small scale fermentation technology on food safety in developing countries. International Journal of Food Microbiology, 75, 213-229. Nakagawa, T., Miyaji, T., Yurimoto, H., Sakai, Y., Kato, N., & Tomizuka, N. (2000). A methylotrophic pathway participates in pectin utilization by Candida boidinii. Applied and Environmental Microbiology, 66, 4253-4257. Nakagawa, T., Yamada, K., Fujimura, S., Ito, T., Miyaji, T., & Tomizuka, N. (2005). Pectin utilization by the methylotrophic yeast Pichia methanolica. Microbiology, 151, 2047-2052. Naqash, F., Masoodi, F., Gani, A., Nazir, S., & Jhan, F. (2021). Pectin recovery from apple pomace: physico‐chemical and functional variation based on methyl‐esterification. International Journal of Food Science & Technology, 56, 4669-4679. Naqash, F., Masoodi, F., Rather, S. A., Wani, S., & Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers, 168, 227-239. O'Neill, M. A., Ishii, T., Albersheim, P., & Darvill, A. G. (2004). Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu. Rev. Plant Biol., 55, 109-139. Ohimain, E. I. (2016). Methanol contamination in traditionally fermented alcoholic beverages: the microbial dimension. Springerplus, 5, 1607. Okimoto, M. C. (1948). Anatomy and histology of the pineapple inflorescence and fruit. Botanical Gazette, 110, 217-231. Onetto, C. A., Ward, C., Varela, C., Hale, L., Schmidt, S. A., & Borneman, A. (2025). Genetic and phenotypic diversity of wine-associated Hanseniaspora species. FEMS Yeast Research, foaf031. Organization, W. H. (2020). Alcohol pricing in the WHO European Region: Update report on the evidence and recommended policy actions. In Alcohol pricing in the WHO European Region: update report on the evidence and recommended policy actions. Osborne, D. (2004). Advances in pectin and pectinase research. Voragen F, Schols H and Visser R. eds. 2003. The Netherlands: Kluwer Academic Publishers. Oumer, O.-J., & Abate, D. (2018). Screening and molecular identification of pectinase producing microbes from coffee pulp. BioMed Research International, 2018, 2961767. In. Paine, A., & Dayan, A. (2001). Defining a tolerable concentration of methanol in alcoholic drinks. Human & Experimental Toxicology, 20, 563-568. Pavlović, M., Margetić, A., Leonardi, A., Križaj, I., Kojić, M., Vujčić, Z., & Slavić, M. Š. (2024). Improvement of fruit juice quality: novel endo-polygalacturonase II from Aspergillus tubingensis FAT 43 for enhanced liquefaction, clarification, and antioxidant potential. Food & Function, 15, 2906-2919. Pelloux, J., Rustérucci, C., & Mellerowicz, E. J. (2007). New insights into pectin methylesterase structure and function. Trends in Plant Science, 12, 267-277. Pina, C., Santos, C., Couto, J. A., & Hogg, T. (2004). Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiology, 21, 439-447. Pires-Cabral, P., Da Fonseca, M., & Ferreira-Dias, S. (2010). Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate. Biochemical Engineering Journal, 48, 246-252. Prathyusha, K., & Suneetha, V. (2011). Bacterial pectinases and their potent biotechnological application in fruit processing/juice production industry: a review. Journal of Phytology, 3. Pressman, P., Clemens, R., Sahu, S., & Hayes, A. W. (2020). A review of methanol poisoning: a crisis beyond ocular toxicology. Cutaneous and Ocular Toxicology, 39, 173-179. Qi, N., Ma, L., Li, L., Gong, X., & Ye, J. (2017). Production and quality evaluation of pineapple fruit wine. IOP Conference Series: Earth and Environmental Science, Revilla, I., & González-SanJosé, M. L. (1998). Methanol release during fermentation of red grapes treated with pectolytic enzymes. Food Chemistry, 63, 307-312. Ribeiro, D. S., Henrique, S. M., Oliveira, L. S., Macedo, G. A., & Fleuri, L. F. (2010). Enzymes in juice processing: a review. International Journal of Food Science and Technology, 45, 635-641. Rombouts, F., & Pilnik, W. (1986). Pectinases and other cell-wall degrading enzymes of industrial importance. Symbiosis (Philadelphia, PA), 2, 79-90. Samanta, S. (2019). Microbial pectinases: a review on molecular and biotechnological perspectives. The Journal of Microbiology, Biotechnology and Food Sciences, 9, 248. Sandri, I. G., & Silveira, M. M. d. (2018). Production and application of pectinases from Aspergillus niger obtained in solid state cultivation. Beverages, 4, 48. Shahin, L., Zhang, L., Mohnen, D., & Urbanowicz, B. R. (2023). Insights into pectin O-acetylation in the plant cell wall: structure, synthesis, and modification. The Cell Surface, 9, 100099. Sharma, N., Rathore, M., & Sharma, M. (2013). Microbial pectinase: sources, characterization and applications. Reviews in Environmental Science and Bio/Technology, 12, 45-60. Sieiro, C., da Silva, A. F., García-Fraga, B., López-Seijas, J., & Villa, T. G. (2012). Microbial pectic enzymes in the food and wine industry. INTECH Open Access Publisher Rijeka. Stanbury, P. F. (2000). Fermentation technology. Molecular Biology and Biotechnology. The Royal Society of Chemistry, London, 1-24. Stegink, L. D., Brummel, M., Filer, L., & Baker, G. (1983). Blood methanol concentrations in one-year-old infants administered graded doses of aspartame. The Journal of Nutrition, 113, 1600-1606. Sullivan-Mee, M., & Solis, K. (1998). Methanol-induced vision loss [Article]. Journal of the American Optometric Association, 69, 57-65. Tephly, T. R. (1991). The toxicity of methanol. Life Sciences, 48, 1031-1041. Teschke, R., & Gellert, J. (1986). Hepatic microsomal ethanol‐oxidizing system (MEOS): Metabolic aspects and clinical implications. Alcoholism: Clinical and Experimental Research, 10, 20S-32S. Thakur, B. R., Singh, R. K., Handa, A. K., & Rao, M. (1997). Chemistry and uses of pectin—A review. Critical Reviews in Food Science & Nutrition, 37, 47-73. Voragen, A. G., Coenen, G.-J., Verhoef, R. P., & Schols, H. A. (2009). Pectin, a versatile polysaccharide present in plant cell walls. Structural Chemistry, 20, 263-275. Wagh, V., Patel, H., Patel, N., Vamkudoth, K. R., & Ajmera, S. (2022). Pectinase production by Aspergillus niger and its applications in fruit juice clarification. Journal of Pure & Applied Microbiology, 16, 2724-2737. Wei, X., Francoise, U., Qin, M., Chen, Q., Li, Y., Sun, X., & Fang, Y.-L. (2020). Effects of different fermentation and storage conditions on methanol content in Chinese spine grape (Vitis davidii Foex) wine. CyTA-Journal of Food, 18, 367-374. Wei, X., Hao, J., Xiong, K., Guo, H., Xue, S., Dai, Y.,…Zhang, S. (2024). Effect of pectinase produced by Bacillus velezensis W17-6 on methanol content and overall quality of kiwifruit wine. Food Bioscience, 59, 104180. Whitaker, J. R. (1990). Microbial pectolytic enzymes. In Microbial enzymes and biotechnology. Springer, 133–176. Wilson, D. F., & Matschinsky, F. M. (2020). Ethanol metabolism: The good, the bad, and the ugly. Medical Hypotheses, 140, 109638. Wibowo, D., Eschenbruch, R., Davis, C., Fleet, G., & Lee, T. (1985). Occurrence and growth of lactic acid bacteria in wine: a review. American Journal of Enology and Viticulture, 36, 302-313. Won, S. Y., Seo, J. S., Kwak, H. S., Lee, Y., Kim, M., Shim, H.-S., & Jeong, Y. (2015). Quality characteristics and quantification of acetaldehyde and methanol in apple wine fermentation by various pre-treatments of mash. Preventive Nutrition and Food Science, 20, 292. Yadav, P., Singh, V., Yadav, S., Yadav, K., & Yadav, D. (2009). In silico analysis of pectin lyase and pectinase sequences. Biochemistry (Moscow), 74, 1049-1055. Yücel, Y., Demir, C., Dizge, N., & Keskinler, B. (2011). Lipase immobilization and production of fatty acid methyl esters from canola oil using immobilized lipase. Biomass and Bioenergy, 35, 1496-1501. Zandleven, J., Sørensen, S. O., Harholt, J., Beldman, G., Schols, H. A., Scheller, H. V., & Voragen, A. J. (2007). Xylogalacturonan exists in cell walls from various tissues of Arabidopsis thaliana. Phytochemistry, 68, 1219-1226. Zbinden, A., Köhler, N., & Bloemberg, G. (2011). recA-based PCR assay for accurate differentiation of Streptococcus pneumoniae from other viridans streptococci. Journal of Clinical Microbiology, 49, 523-527. Zdunek, A., Pieczywek, P. M., & Cybulska, J. (2021). The primary, secondary, and structures of higher levels of pectin polysaccharides. Comprehensive Reviews in Food Science and Food Safety, 20(1), 1101-1117. Zeni, J., Cence, K., Grando, C. E., Tiggermann, L., Colet, R., Lerin, L. A., Valduga, E. (2011). Screening of pectinase-producing microorganisms with polygalacturonase activity. Applied Biochemistry and Biotechnology, 163, 383-392. Zhang, H., Woodams, E. E., & Hang, Y. D. (2012). Factors affecting the methanol content and yield of plum brandy. Journal of Food Science, 77, T79-T82. Ziegler, S. (1922). Ocular menace of wood alcohol. The Journal of Nervous and Mental Disease, 56, 639-640. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99816 | - |
| dc.description.abstract | 甲醇具毒性,過量攝取會導致頭痛、失明甚至死亡,是水果酒安全監控的重要指標。在發酵過程中,甲醇由果膠在果膠甲基酯酶 (pectin methylesterase, PME) 作用下產生,其生成量受果膠含量、甲基酯化程度及 PME 活性影響,但目前尚未釐清哪一項為關鍵因素。本研究以鳳梨為材料,探討發酵期間果膠含量、甲基酯化度與甲醇生成之關聯,並以不同處理模擬植物與微生物PME的貢獻,搭配高通量定序 (NGS) 分析微生物群落變化與甲醇及乙醇濃度之關聯性。首先以台農2號與台農17號兩品種鳳梨之自然發酵特性,追蹤果膠、甲醇與乙醇含量變化。台農2號與台農17號初始果膠含量相近,但台農2號的甲基酯化度 (24.23%) 較台農17號 (13.97%) 高。發酵28天後,最終甲醇含量分別為台農2號64.43 ppm、台農17號68.18 ppm。乙醇濃度約4% 和 5%,換算成純乙醇基準的甲醇含量分別為1208.6 ppm與1499.5 ppm,均低於法定上限4000 ppm ,此結果顯示鳳梨的果膠含量並非決定鳳梨酒甲醇產量的唯一因素。為排除品種間差異,使用不同成熟度之台農17號進行實驗。在成熟度比較中,控制組 (C) 果膠初始含量與甲基酯化度較高,但其最終甲醇約50 ppm,而過熟組 (OR) 甲醇則高達96 ppm,乙醇濃度C組約5%,OR組約2%,換算成純乙醇基準後 OR 組甲醇濃度為4808.3 ppm,已超過法定上限,因此鳳梨酒中甲醇生成差異可能主要受到PME活性所致,而非原料之果膠含量及其甲基酯化程度。為釐清PME來源對甲醇生成的影響,模擬實驗結果顯示,微生物組 (59.74 ppm) 甲醇含量高於殺菁組 (41.06 ppm) 與植物組 (45.95 ppm) ,微生物來源之 PME 在發酵過程中對於甲醇生成具較高貢獻,菌落組成亦可能為關鍵因素。NGS 分析顯示,發酵初期 C 組真菌群落多樣性較高,隨發酵進行逐漸由 Hanseniaspora 成為優勢菌屬。OR 組則持續維持高度多樣性,最終以 Debaryomyces 為優勢菌,兩組菌相變化趨勢不同,此差異不僅造成最終乙醇濃度分別為5% 與 2%,亦可能影響微生物所產生之PME活性差異。為進一步驗證微生物對甲醇生成之影響,設計混合組 (CR),將 C 組微生物接種至已去除微生物之 OR 果汁中。結果顯示,CR組鳳梨酒之甲醇含量45.73 ppm,接近C組鳳梨酒之 41.2 ppm,低於OR組鳳梨酒之63.73 ppm,再次印證發酵過的微生物組成對鳳梨酒的甲醇生成具關鍵性影響。本研究指出果膠含量與其酯化度對甲醇生成影響有限,微生物組成及其PME活性才是關鍵。此外,乙醇濃度不僅參與發酵穩定性,更是法規中甲醇換算基準,過低時會導致換算值超標,增加食品安全風險。未來若能進一步釐清微生物代謝特性,並透過功能性菌株選擇與發酵管理優化,可以控制發酵過程中的甲醇生成,建立更安全、穩定的水果酒製程。 | zh_TW |
| dc.description.abstract | Methanol is toxic to human, and excessive intake can lead to headaches, blindness, or even death. Therefore, methanol concentration is a critical indicator for fruit wine safety monitoring. Methanol is produced through the demethylation of pectin catalyzed by pectin methylesterase (PME) during fermentation. Its production is influenced by the pectin content, degree of methyl esterification, and the source and activity of PME. The precise contributions of each factor have not yet been fully elucidated. This study selects pineapple (Ananas comosus) as the experimental material and focus on investigating the relationship among pectin content, degree of methyl esterification, PME activity, and methanol production during fermentation. Accordingly, different treatments were applied to assess the contributions of plant- and microbe-derived PME, and changes in the microbial community, along with their correlations to methanol and ethanol concentrations, were analyzed using high-throughput sequencing (NGS). The spontaneous fermentation of two pineapple cultivars, Tainung 2 and Tainung 17, was monitored to track the changes in pectin, methanol, and ethanol contents. Although the initial pectin contents of Tainung 2 and Tainung 17 were similar, the degree of methyl esterification in Tainung 2 (24.23%) was higher than that of Tainung 17 (13.97%). After 28 days of fermentation, the final methanol contents were 64.43 ppm for Tainung 2 and 68.18 ppm for Tainung 17. Ethanol concentrations were 4% and 5%, respectively. When expressed on a pure ethanol basis, methanol levels were 1208.6 ppm and 1499.5 ppm, respectively, both falling below the legal limit of 4000 ppm. These results indicate that pectin content is not the major factor influencing methanol production during pineapple wine fermentation. To exclude the varietal differences, fermentation experiments were conducted using only Tainung 17 pineapples at different ripening stages. In this comparison, the control group (C), with higher initial pectin content and degree of methyl esterification, produced 50 ppm of methanol, while the overripe group (OR) yielded 96 ppm. Ethanol concentrations were 5% in C and 2% in OR. Based on pure ethanol equivalence, the methanol concentration in the OR group reached 4808.3 ppm, which exceeded the legal limit. This result suggested the methanol production was primarily driven by PME activity rather than by pectin content or degree of methyl esterification. To further elucidate the contributions of PME sources, simulated fermentation experiments were performed. Methanol levels were higher in the microbial group (59.74 ppm) than those in the blanching (41.06 ppm) and plant (45.95 ppm) groups, suggesting a more significant contribution of microbe-derived PME to the methanol production. The composition of the microbial community likely also played a critical role. NGS revealed that the fungal community in C wines rapidly shifted to Hanseniaspora dominance, whereas OR ones maintained high diversity before becoming dominated by Debaryomyces. These distinct succession patterns were associated with different final ethanol concentrations, with 5% in C and 2% in OR wines and might reflect variation in PME activity associated with microbial community structure. To further confirm the role of microorganisms in methanol production, a composite group (CR) was created by introducing microbiota from the C into sterilized OR juice. The methanol concentration in the CR group (45.73 ppm) was similar to that of the C group (41.2 ppm) and significantly lower than in the OR group (63.73 ppm), highlighting the crucial influence of microbial composition on methanol generation. This study demonstrates that pectin content and degree of methyl esterification have limited impact on methanol production, whereas microbial composition and PME activity are the primary factors. Ethanol concentration affects fermentation stability and serves as a basis for regulatory methanol limits. Low ethanol levels may cause methanol concentrations to exceed legal limits after adjustment, posing safety risks. Future research should focus on the microbial metabolism and fermentation optimization, including the selection of functional strains, to better control methanol formation and ensure safer, more consistent fruit wine production. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:05:30Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-18T16:05:30Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
致謝 I 摘要 III ABSTRACT V 目次 VII 表次 XI 圖次 XII 一、 前言 1 1. 水果酒 1 1.1 水果酒中甲醇產生的原因 1 1.2 各國水果酒中甲醇的法規與安全性 2 1.3 降低水果酒中甲醇的加工方法 3 2. 甲醇 4 2.1 甲醇在人體內的代謝途徑以及毒理機制 4 2.2 甲醇與乙醇的代謝競爭及影響 5 3. 果膠 6 3.1 果膠類型 6 3.2 果膠的結構與組成 7 3.2.1 同型半乳糖醛酸聚糖: 8 3.2.2 具取代或支鏈修飾的 HG 類結構 9 3.3 果膠應用於食品工業 9 4. 果膠酶 10 4.1 果膠酶的種類與功能 10 4.2 果膠甲基酯酶的催化機制 11 4.3 果膠酶的應用 12 5. 食品加工的微生物 13 5.1 微生物在水果酒中主要的功用 14 5.2 微生物與甲醇的關聯 14 6. 鳳梨與鳳梨加工 15 6.1 臺灣的鳳梨產業 16 6.2 鳳梨的加工與應用 17 7. 研究動機與目的 18 二、 材料與方法 20 1. 藥品 20 2. 器材 20 3. 實驗設計 21 3.1. 鳳梨酒製作 21 3.2. 不同品種鳳梨酒之實驗設計 21 3.3. 不同成熟度鳳梨酒之實驗設計 21 3.4. 果膠甲基酯酶來源差異對甲醇生成之實驗設計 22 3.5. 微生物組成在鳳梨汁發酵過程中對甲醇生成的貢獻 22 4. 理化特性測定 22 4.1 可溶性固形物 22 4.2 總糖 23 4.3 還原糖 23 4.4 酸鹼值 23 4.5 可滴定酸 23 4.6 總果膠 23 4.7 酒精不溶物 24 4.8 水溶性果膠 24 4.9 果膠甲基酯化度 24 4.10 甲醇 24 4.11 乙醇 25 5. DNA 萃取與微生物菌相分析 25 5.1 DNA萃取 25 5.2 次世代定序 (NGS) 26 5.3 菌相資料處理與分析 26 5.3.1 真菌ITS序列分析流程 26 5.3.2 細菌16S 序列分析流程 27 三、 實驗結果 28 1. 果膠含量在甲醇產生中的貢獻 28 1.1 調查不同鳳梨品種之理化特性 28 1.2 不同品種鳳梨酒發酵期間之理化特性 28 1.3 不同品種鳳梨酒發酵期間總果膠含量變化 29 1.4 不同品種鳳梨酒發酵期間甲醇與乙醇含量分析 30 2. 果膠甲基酯化程度與甲醇生成之關聯 30 2.1 不同成熟度鳳梨酒發酵期間之理化特性 31 2.2 不同成熟度鳳梨酒發酵期間總果膠含量變化 32 2.3 不同成熟度鳳梨酒發酵期間甲醇與乙醇含量分析 32 3. 釐清果膠甲基酯酶來源及其與微生物群落在甲醇生成中的關聯性 33 3.1 不同條件處理對甲醇生成的影響 33 3.2 鳳梨酒中微生物DNA定序 34 3.3 微生物群落組成分析 35 3.3.1 Alpha 多樣性 35 3.3.2 Beta 多樣性 37 3.3.3 微生物群落的相對豐度 38 3.4 微生物組成在鳳梨汁發酵過程中對甲醇生成的貢獻 42 四、 討論 44 1. 鳳梨酒發酵過程中果膠結構對甲醇生成之影響 44 2. 鳳梨酒發酵過程中影響甲醇生成的主要原因 45 3. 微生物群落分類層級之解析度與應用探討 47 4. 鳳梨酒發酵過程中主要的菌群與甲醇生成之關聯 48 5. 鳳梨酒發酵過程中主要的菌群與酒精生成之關聯性 50 五、 結論 54 參考文獻 55 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 果膠 | zh_TW |
| dc.subject | 菌相 | zh_TW |
| dc.subject | 鳳梨酒 | zh_TW |
| dc.subject | 甲基酯化程度 | zh_TW |
| dc.subject | 果膠甲基酯酶 | zh_TW |
| dc.subject | pectin methylesterase | en |
| dc.subject | degree of methyl esterification | en |
| dc.subject | pineapple wine | en |
| dc.subject | pectin | en |
| dc.subject | microbial community | en |
| dc.title | 鳳梨酒發酵過程中之微生物組成對其甲醇與乙醇 生成的影響 | zh_TW |
| dc.title | Influence of Microbial Community Composition on the Methanol and Ethanol Production during the Spontaneous Fermentation of Pineapple Brew | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蘇南維;周志輝 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Wei Su;Chi-Fai Chau | en |
| dc.subject.keyword | 菌相,果膠,果膠甲基酯酶,甲基酯化程度,鳳梨酒, | zh_TW |
| dc.subject.keyword | microbial community,pectin,pectin methylesterase,degree of methyl esterification,pineapple wine, | en |
| dc.relation.page | 89 | - |
| dc.identifier.doi | 10.6342/NTU202502577 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.4 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
