Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余家斌zh_TW
dc.contributor.advisorChia-Pin Yuen
dc.contributor.author吳顯堂zh_TW
dc.contributor.authorHsain-Tang Wuen
dc.date.accessioned2025-09-18T16:05:14Z-
dc.date.available2025-09-19-
dc.date.copyright2025-09-18-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citationAhola, j. M., heikkilä, t., raitila, j., sipola, t., & tenhunen, j. (2021). Estimation of breast height diameter and trunk curvature with linear and single-photon lidars. Annals of forest science, 78(3), article 79. https://doi.org/10.1007/s13595-021-01100-0
Brack, c., schaefer, m., jovanovic, t., & crawford, d. (2020). Comparing terrestrial laser scanners' ability to measure tree height and diameter in a managed forest environment. Australian forestry, 83(3), 161-171. https://doi.org/10.1080/00049158.2020.1807097
Çakir, g. Y., post, c. J., mikhailova, e. A., & schlautman, m. A. (2021). 3d lidar scanning of urban forest structure using a consumer tablet. Urban science, 5(4), article 88. https://doi.org/10.3390/urbansci5040088
Chudá, j., hunčaga, m., tuček, j., & mokroš, m. (2020). The handheld mobile laser scanners as a tool for accurate positioning under forest canopy. Int. Arch. Photogramm. Remote sens. Spatial inf. Sci., xliii-b1-2020, 211-218. https://doi.org/10.5194/isprs-archives-xliii-b1-2020-211-2020
Chudá, j., kadlečík, r., mokroš, m., mikita, t., tuček, j., & chudý, f. (2022). Slam and ins based positional accuracy assessment of natural and artificial objects under the forest canopy. Int. Arch. Photogramm. Remote sens. Spatial inf. Sci., xliii-b1-2022, 197-205. https://doi.org/10.5194/isprs-archives-xliii-b1-2022-197-2022
Clark, m. L., clark, d. B., & roberts, d. A. (2004). Small-footprint lidar estimation of sub-canopy elevation and tree height in a tropical rain forest landscape. Remote sensing of environment, 91(1), 68-89. https://doi.org/10.1016/j.rse.2004.02.008
Donager, j. J., meador, a. J. S., & blackburn, r. C. (2021). Adjudicating perspectives on forest structure: how do airborne, terrestrial, and mobile lidar-derived estimates compare? Remote sensing, 13(12), article 2297. https://doi.org/10.3390/rs13122297
Evans, d. L., roberts, s. D., & parker, r. C. (2006). Lidar - a new tool for forest measurements? Forestry chronicle, 82(2), 211-218. https://doi.org/10.5558/tfc82211-2
Gatziolis, d., fried, j. S., & monleon, v. S. (2010). Challenges to estimating tree height via lidar in closed-canopy forests: a parable from western oregon. Forest science, 56(2), 139-155. <go to isi>://wos:000276590800001
Giannetti, f., passarino, l., aleandri, g., borghi, c., vangi, e., anzilotti, s., raddi, s., chirici, g., travaglini, d., maltoni, a., mariotti, b., bravo-oviedo, a., giambastiani, y., rossi, p., & d'amico, g. (2024). Efficiency of mobile laser scanning for digital marteloscopes for conifer forests in the mediterranean region. Forests, 15(12), article 2202. https://doi.org/10.3390/f15122202
Guan, t. S., shen, y. C., wang, y. K., zhang, p. D., wang, r., & yan, f. (2024). Advancing forest plot surveys: a comparative study of visual vs. Lidar slam technologies. Forests, 15(12), article 2083. https://doi.org/10.3390/f15122083
Hancock, s., lewis, p., foster, m., disney, m., & muller, j. P. (2012). Measuring forests with dual wavelength lidar: a simulation study over topography. Agricultural and forest meteorology, 161, 123-133. https://doi.org/10.1016/j.agrformet.2012.03.014
Herrero-huerta, m., lindenbergh, r., & rodríguez-gonzálvez, p. (2018). Automatic tree parameter extraction by a mobile lidar system in an urban context. Plos one, 13(4), article e0196004. https://doi.org/10.1371/journal.pone.0196004
Huang, h. B., li, z., gong, p., cheng, x. A., clinton, n., cao, c. X., ni, w. J., & wang, l. (2011). Automated methods for measuring dbh and tree heights with a commercial scanning lidar. Photogrammetric engineering and remote sensing, 77(3), 219-227. https://doi.org/10.14358/pers.77.3.219
Hyyppä, e., yu, x. W., kaartinen, h., hakala, t., kukko, a., vastaranta, m., & hyyppä, j. (2020). Comparison of backpack, handheld, under-canopy uav, and above-canopy uav laser scanning for field reference data collection in boreal forests. Remote sensing, 12(20), article 3327. https://doi.org/10.3390/rs12203327
Kwak, d. A., lee, w. K., lee, j. H., biging, g. S., & gong, p. (2007). Detection of individual trees and estimation of tree height using lidar data. Journal of forest research, 12(6), 425-434. https://doi.org/10.1007/s10310-007-0041-9
Liang, x. L., kankare, v., hyyppä, j., wang, y. S., kukko, a., haggrén, h., yu, x. W., kaartinen, h., jaakkola, a., guan, f. Y., holopainen, m., & vastaranta, m. (2016). Terrestrial laser scanning in forest inventories. Isprs journal of photogrammetry and remote sensing, 115, 63-77. https://doi.org/10.1016/j.isprsjprs.2016.01.006
Lim, k., treitz, p., wulder, m., st-onge, b., & flood, m. (2003). Lidar remote sensing of forest structure. Progress in physical geography-earth and environment, 27(1), 88-106. https://doi.org/10.1191/0309133303pp360ra
Popescu, s. C., wynne, r. H., & nelson, r. F. (2002). Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Computers and electronics in agriculture, 37(1-3), 71-95, article pii s0168-1699(02)00121-7. https://doi.org/10.1016/s0168-1699(02)00121-7
Popescu, s. C., wynne, r. H., & nelson, r. F. (2003). Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Canadian journal of remote sensing, 29(5), 564-577. https://doi.org/10.5589/m03-027
Proudman, a., ramezani, m., & fallon, m. (2021). Online estimation of diameter at breast height (dbh) of forest trees using a handheld lidar. Https://doi.org/10.1109/ecmr50962.2021.9568814
Serrano, f. R. L., rubio, e., morote, f. A. G., abellán, m. A., córdoba, m. I. P., saucedo, f. G., garcía, e. M., garcía, j. M. S., innerarity, j. S., lucas, l. C., gonzález, o. G., & gonzález, j. C. G. (2022). Artificial intelligence-based software (aid-forest) for tree detection: a new framework for fast and accurate forest inventorying using lidar point clouds. International journal of applied earth observation and geoinformation, 113, article 103014. https://doi.org/10.1016/j.jag.2022.103014
Srinivasan, s., popescu, s. C., eriksson, m., sheridan, r. D., & ku, n. W. (2015). Terrestrial laser scanning as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote sensing, 7(2), 1877-1896. https://doi.org/10.3390/rs70201877
Tai, h. Y., xia, y. H., yan, m., li, c., & kong, x. L. (2022). Construction of artificial forest point clouds by laser slam technology and estimation of carbon storage. Applied sciences-basel, 12(21), article 10838. https://doi.org/10.3390/app122110838
Teo, t. A., & huang, s. H. (2014). Surface-based registration of airborne and terrestrial mobile lidar point clouds. Remote sensing, 6(12), 12686-12707. https://doi.org/10.3390/rs61212686
Wang, x. C., liang, x. L., campos, m., zhang, j., & wang, y. S. (2024). Benchmarking of laser-based simultaneous localization and mapping methods in forest environments. Ieee transactions on geoscience and remote sensing, 62, article 5706221. https://doi.org/10.1109/tgrs.2024.3439438
Wulder, m. A., bater, c. W., coops, n. C., hilker, t., & white, j. C. (2008). The role of lidar in sustainable forest management. Forestry chronicle, 84(6), 807-826. https://doi.org/10.5558/tfc84807-6
Xie, y. Y., yang, t., wang, x. F., chen, x., pang, s. X., hu, j., wang, a. X., chen, l., & shen, z. H. (2022). Applying a portable backpack lidar to measure and locate trees in a nature forest plot: accuracy and error analyses. Remote sensing, 14(8), article 1806. https://doi.org/10.3390/rs14081806
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99815-
dc.description.abstract隨著都市林木資源調查自動化需求提升,手持式光達(Handheld LiDAR)因具操作靈活、效率高等優勢,逐漸應用於都市林調查領域,惟其量測精度與誤差來源尚待評估。本研究旨在評估手持式光達於都市林木性態調查中的應用可行性及其測量精度表現。研究內容包含三大部分:都市林木調查資料蒐集、手持式光達與傳統人工量測數據之比對分析,以及影響測量誤差因素之探討。研究地點於臺北市文山區元利建設四季莊園二期基地內進行樹木性態調查,針對胸徑(DBH)及樹高(Tree Height)兩項指標進行手持式光達掃描與人工量測,建立對應之資料庫;資料分析採用成對樣本t檢定比較兩種量測方法的差異,並運用單因子變異數分析(ANOVA)及相關性分析探討誤差值與樹木尺寸、林分密度等因子的關聯性,並根據分析結果提出於都市林調查應用手持式光達之實務建議。
研究結果顯示,手持式光達在量測胸徑與樹高時的精確度會受到樹木尺寸及林分密度等因素的影響,隨樹木尺寸增加測量誤差有逐漸增加的趨勢,但胸徑與樹高的誤差解釋力均偏低,顯示除樹木大小外尚存在其他重要影響因子。此外林分密度對測量誤差亦有顯著影響,高密度區(16-20株/400m²)的測量誤差明顯高於低密度區(1-4株/400m²),尤其在樹高量測上表現更明顯,推測與枝葉遮蔽及光束遮斷效應有關。整體而言,手持式光達於林分密度較低、主幹形狀規則且無分枝遮蔽的樹木,配合地面空曠且平坦的環境時,量測精度較高,但即便精度較高仍須進行人工複查。若於高密度或樹木結構複雜的地區,或遇胸高位置遮蔽等特殊情境,仍建議採取人工量測,以提升數據可靠性與調查結果之精確度。
zh_TW
dc.description.abstractThis study aims to evaluate the feasibility and measurement accuracy of handheld LiDAR in urban tree attribute surveys. The research consists of three main components: urban tree data collection, comparative analysis between handheld LiDAR and traditional manual measurements, and the exploration of factors influencing measurement errors. The study was conducted at the Yuanli Construction Four Seasons Manor Phase II, located in Wenshan District, Taipei City. Two key attributes—diameter at breast height (DBH) and tree height—were measured using handheld LiDAR and manual methods to build corresponding datasets. Statistical analyses were conducted to compare error characteristics between the two methods and further investigate the relationship of measurement errors to tree size and stand density. Practical recommendations for applying handheld LiDAR in urban forestry surveys were then proposed based on these findings.
The results indicated that measurement errors of handheld LiDAR for both DBH and tree height exhibited significant yet weak positive correlations with tree size. Specifically, the explanatory power of tree size for DBH measurement error was low, and even lower for tree height, suggesting other significant influencing factors beyond tree size. Additionally, stand density had a significant impact on measurement accuracy; measurement errors were notably greater in high-density plots (16-20 trees per 400 m²) compared to low-density plots (1-4 trees per 400 m²), especially pronounced in tree height measurements, likely due to foliage obstruction and beam interception effects. Overall, handheld LiDAR performed well for measuring trees with medium to low DBH and height, but caution and careful scanning strategies, along with point cloud processing adjustments, are recommended for use with large-diameter, tall trees or high-density environments to enhance measurement accuracy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-18T16:05:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-18T16:05:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 i
Abstract ii
目次 iii
圖次 vi
表次 x
壹、 前言 1
貳、 文獻回顧 1
一. 光達 1
(一) 技術原理與類型 2
(二) 手持式光達之應用與研究回顧 3
(三) 手持式光達應用於森林資源調查 4
(四) 技術挑戰與誤差來源 5
二. 林木性態值 6
(一) 胸徑(DBH) 6
(二) 樹高(Tree Height) 7
參、 材料與方法 7
一. 研究架構與流程 7
二. 研究材料 9
(一) 研究樣區 9
(二) 研究對象 9
三. 研究方法 9
(一) 樣區林分性態值統計 9
(二) 誤差分析方法 12
(三) 探討不同密度對誤差之影響 13
(四) 手持光達資料處理侷限現場異常案例紀錄 14
肆、 結果與討論 14
一. 樣區林分性態值統計 14
(一) 樹木基本資料 14
(二) 樹木空間分布分析 15
(三) 性態值分析 16
二. 測量誤差分析 18
(一) 胸徑 18
(二) 樹高 28
三. 不同密度對於誤差之影響 37
(一) 16-20株樹密度區 37
(二) 12-16株樹密度區 44
(三) 8-12株樹密度區 48
(四) 4-8株樹密度 53
(五) 1-4株樹密度 60
(六) 橫向比較與總結 65
四. 手持光達資料處理侷限現場異常案例分析 68
(一) 資料處理常見侷限與困難 68
(二) 測量困難與解決建議 73
伍、 結論與建議 73
參考文獻 75
-
dc.language.isozh_TW-
dc.subject都市林木調查zh_TW
dc.subject手持式光達zh_TW
dc.subject量測誤差zh_TW
dc.subjectMeasurement erroren
dc.subjectHandheld LiDARen
dc.subjectUrban tree surveyen
dc.title手持光達於都市林胸徑與樹高調查之研究zh_TW
dc.titleA Study on Handheld LiDAR for Diameter at Breast Height and Tree Height Measurement in Urban Forestsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor邱祈榮zh_TW
dc.contributor.coadvisorChyi-Rong Chiouen
dc.contributor.oralexamcommittee林政道;鍾智昕zh_TW
dc.contributor.oralexamcommitteecheng-tao lin;Chih-Hsin Chungen
dc.subject.keyword手持式光達,都市林木調查,量測誤差,zh_TW
dc.subject.keywordHandheld LiDAR,Urban tree survey,Measurement error,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202503353-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-08-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2030-08-01-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-01
15.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved