Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99812Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 潘文涵 | zh_TW |
| dc.contributor.advisor | Wen-Harn Pan | en |
| dc.contributor.author | 周承霖 | zh_TW |
| dc.contributor.author | Cheng-Lin Chou | en |
| dc.date.accessioned | 2025-09-17T16:45:29Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | 1. Tsiftsoglou, A.S., A.I. Tsamadou, and L.C. Papadopoulou, Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacology & Therapeutics, 2006. 111(2): p. 327-345.
2. Webb, K.L., et al., The relationship between hemoglobin and V O2max: A systematic review and meta-analysis. PLoS One, 2023. 18(10): p. e0292835. 3. Jurgens, K.D., et al., Myoglobin: Just an Oxygen Store or Also an Oxygen Transporter? News Physiol Sci, 2000. 15: p. 269-274. 4. Sil, R. and A.S. Chakraborti, Major heme proteins hemoglobin and myoglobin with respect to their roles in oxidative stress - a brief review. Front Chem, 2025. 13: p. 1543455. 5. Jiang, Y., et al., Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun, 2019. 10(1): p. 2935. 6. Ni, S., et al., Iron Metabolism and Immune Regulation. Front Immunol, 2022. 13: p. 816282. 7. Zhang, C., Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell, 2014. 5(10): p. 750-60. 8. Ng Kwan Lim, E., et al., Coordination of cell division and chromosome segregation by iron and a sRNA in Escherichia coli. Front Microbiol, 2024. 15: p. 1493811. 9. Anderson, G.J. and D.M. Frazer, Current understanding of iron homeostasis. Am J Clin Nutr, 2017. 106(Suppl 6): p. 1559S-1566S. 10. Gibson, R.S., Principles of nutritional assessment. 2nd ed. 2005, New York: Oxford University Press. xx, 908 p. 11. Shayeghi, M., et al., Identification of an intestinal heme transporter. Cell, 2005. 122(5): p. 789-801. 12. Rajagopal, A., et al., Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 2008. 453(7198): p. 1127-31. 13. Qiu, L., et al., Mechanism and regulation of iron absorption throughout the life cycle. J Adv Res, 2025. 14. De Domenico, I., et al., Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proc Natl Acad Sci U S A, 2009. 106(10): p. 3800-5. 15. Edison, E.S., A. Bajel, and M. Chandy, Iron homeostasis: new players, newer insights. Eur J Haematol, 2008. 81(6): p. 411-24. 16. Mercadante, C.J., et al., Gastrointestinal iron excretion and reversal of iron excess in a mouse model of inherited iron excess. Haematologica, 2019. 104(4): p. 678-689. 17. Elsayed, M.E., M.U. Sharif, and A.G. Stack, Transferrin Saturation: A Body Iron Biomarker. Adv Clin Chem, 2016. 75: p. 71-97. 18. Roemhild, K., et al., Iron metabolism: pathophysiology and pharmacology. Trends Pharmacol Sci, 2021. 42(8): p. 640-656. 19. Tandara, L. and I. Salamunic, Iron metabolism: current facts and future directions. Biochem Med (Zagreb), 2012. 22(3): p. 311-28. 20. Njoku, F. and V.R. Gordeuk, Best but not perfect: indirect measure of low iron stores. Blood Adv, 2025. 9(7): p. 1642-1643. 21. Phiri, K.S., et al., Improved method for assessing iron stores in the bone marrow. J Clin Pathol, 2009. 62(8): p. 685-9. 22. Shirai, C.L., et al., Validation of an automated iron stain process for use with bone marrow aspirate smear slides. J Hematop, 2024. 17(3): p. 121-128. 23. World Health Organization and Centers for Disease Control and Prevention Technical Consultation, Assessing the iron status of populations: including literature reviews. 2007. 24. Barr, H., et al., Accuracy of reticulocyte hemoglobin for diagnosing iron deficiency in former very preterm infants: a population-based cohort study. Front Pediatr, 2023. 11: p. 1281513. 25. Pfeiffer, C.M. and A.C. Looker, Laboratory methodologies for indicators of iron status: strengths, limitations, and analytical challenges. American Journal of Clinical Nutrition, 2017. 106(6): p. 1606s-1614s. 26. Wicinski, M., et al., Anemia of Chronic Diseases: Wider Diagnostics-Better Treatment? Nutrients, 2020. 12(6). 27. Mizuta, M., et al., Blood hemoglobin levels of the general population residing at low range altitudes. Ann Clin Epidemiol, 2025. 7(1): p. 10-16. 28. Pei, L.X., et al., Baseline Hemoglobin, Hepcidin, Ferritin, and Total Body Iron Stores are Equally Strong Diagnostic Predictors of a Hemoglobin Response to 12 Weeks of Daily Iron Supplementation in Cambodian Women. J Nutr, 2021. 151(8): p. 2255-2263. 29. Daru, J., et al., Serum ferritin as an indicator of iron status: what do we need to know? Am J Clin Nutr, 2017. 106(Suppl 6): p. 1634S-1639S. 30. World Health Organization and Department of Nutrition and Food Safety, Serum ferritin concentrations for the assessment of iron status in individuals and populations: technical brief. 2020. 31. Wang, W., et al., Serum ferritin: Past, present and future. Biochim Biophys Acta, 2010. 1800(8): p. 760-9. 32. Gulhar, R., M.A. Ashraf, and I. Jialal, Physiology, Acute Phase Reactants, in StatPearls. 2025: Treasure Island (FL). 33. Kernan, K.F. and J.A. Carcillo, Hyperferritinemia and inflammation. Int Immunol, 2017. 29(9): p. 401-409. 34. Mahroum, N., et al., Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun, 2022. 126: p. 102778. 35. Government of British Columbia Ministry of Health, High Ferritin and Iron Overload – Investigation and Management. 2021. 36. Song, J., et al., The serum hepcidin and the hepcidin/ferritin ratio in NAFLD: a systematic review and meta-analysis. BMC Gastroenterol, 2025. 25(1): p. 62. 37. Meyer, T.E., et al., Effects of heavy alcohol consumption on serum ferritin concentrations. S Afr Med J, 1984. 66(15): p. 573-5. 38. V, A.K., et al., Correlation between serum ferritin and bone marrow iron stores. Trop Doct, 2017. 47(3): p. 217-221. 39. Lahtiharju, T., et al., Ferritin outperforms other biomarkers in predicting bone marrow iron stores in patients with hematologic disorders. Blood Adv, 2025. 9(7): p. 1608-1617. 40. Lynch, S., et al., Biomarkers of Nutrition for Development (BOND)-Iron Review. J Nutr, 2018. 148(suppl_1): p. 1001S-1067S. 41. Gunther, F., et al., Usefulness of Soluble Transferrin Receptor in the Diagnosis of Iron Deficiency Anemia in Rheumatoid Arthritis Patients in Clinical Practice. Int J Rheumatol, 2022. 2022: p. 7067262. 42. Rohner, F., et al., Adjusting soluble transferrin receptor concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr, 2017. 106(Suppl 1): p. 372S-382S. 43. Braun, J., Erythrocyte zinc protoporphyrin. Kidney Int Suppl, 1999. 69: p. S57-60. 44. Hastka, J., et al., Central role of zinc protoporphyrin in staging iron deficiency. Clin Chem, 1994. 40(5): p. 768-73. 45. Semenova, Y., et al., Iron-related Biomarkers in the Diagnosis and Management of Iron Disorders. Curr Med Chem, 2024. 31(27): p. 4233-4248. 46. Podmore, C., et al., Association of Multiple Biomarkers of Iron Metabolism and Type 2 Diabetes: The EPIC-InterAct Study. Diabetes Care, 2016. 39(4): p. 572-81. 47. Warner, M.J. and M.T. Kamran, Iron Deficiency Anemia, in StatPearls. 2025: Treasure Island (FL). 48. Kane, S.F., C. Roberts, and R. Paulus, Hereditary Hemochromatosis: Rapid Evidence Review. Am Fam Physician, 2021. 104(3): p. 263-270. 49. Ahmed, S., et al., Cardiovascular Manifestations of Hemochromatosis: A Review of Pathophysiology, Mechanisms, and Treatment Options. Cardiol Rev, 2023. 50. Dallman, P.R., Iron deficiency and the immune response. Am J Clin Nutr, 1987. 46(2): p. 329-34. 51. Fonseca-Nunes, A., P. Jakszyn, and A. Agudo, Iron and cancer risk--a systematic review and meta-analysis of the epidemiological evidence. Cancer Epidemiol Biomarkers Prev, 2014. 23(1): p. 12-31. 52. Zeidan, R.S., et al., Iron and cancer: overview of the evidence from population-based studies. Front Oncol, 2024. 14: p. 1393195. 53. Carter, A., S. Racey, and S. Veuger, The Role of Iron in DNA and Genomic Instability in Cancer, a Target for Iron Chelators That Can Induce ROS. Applied Sciences-Basel, 2022. 12(19). 54. McDowell, L.A., et al., Iron Overload, in StatPearls. 2025: Treasure Island (FL). 55. Davies, N.M., M.V. Holmes, and G. Davey Smith, Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ, 2018. 362: p. k601. 56. Boef, A.G., O.M. Dekkers, and S. le Cessie, Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int J Epidemiol, 2015. 44(2): p. 496-511. 57. Sanderson, E., et al., Mendelian randomization. Nat Rev Methods Primers, 2022. 2. 58. Richmond, R.C. and G. Davey Smith, Mendelian Randomization: Concepts and Scope. Cold Spring Harb Perspect Med, 2022. 12(1). 59. Lee, S. and W. Lee, A Review of Mendelian Randomization: Assumptions, Methods, and Application to Obesity-Related Diseases. J Obes Metab Syndr, 2025. 34(1): p. 14-26. 60. Lin, Z., Y. Deng, and W. Pan, Combining the strengths of inverse-variance weighting and Egger regression in Mendelian randomization using a mixture of regressions model. PLoS Genet, 2021. 17(11): p. e1009922. 61. Burgess, S., A. Butterworth, and S.G. Thompson, Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol, 2013. 37(7): p. 658-65. 62. Mounier, N. and Z. Kutalik, Bias correction for inverse variance weighting Mendelian randomization. Genet Epidemiol, 2023. 47(4): p. 314-331. 63. Bowden, J., et al., A framework for the investigation of pleiotropy in two-sample summary data Mendelian randomization. Stat Med, 2017. 36(11): p. 1783-1802. 64. Burgess, S. and S.G. Thompson, Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol, 2017. 32(5): p. 377-389. 65. Bowden, J., et al., Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet Epidemiol, 2016. 40(4): p. 304-14. 66. Burgess, S., et al., Modal-based estimation via heterogeneity-penalized weighting: model averaging for consistent and efficient estimation in Mendelian randomization when a plurality of candidate instruments are valid. Int J Epidemiol, 2018. 47(4): p. 1242-1254. 67. Tanaka, T., et al., A genome-wide association analysis of serum iron concentrations. Blood, 2010. 115(1): p. 94-96. 68. Koller, D.L., et al., Genome-wide association study of serum iron phenotypes in premenopausal women of European descent. Blood Cells Molecules and Diseases, 2016. 57: p. 50-53. 69. Benyamin, B., et al., Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis (vol 5, 4926, 2014). Nature Communications, 2015. 6. 70. Bell, S., et al., A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. Commun Biol, 2021. 4(1): p. 156. 71. Ye, K.X., et al., Natural selection on in Asian populations contributes to enhanced non-heme iron absorption. Bmc Genetics, 2015. 16. 72. Kang, W.H., et al., Ethnic Differences in Iron Status. Advances in Nutrition, 2021. 12(5): p. 1838-1853. 73. Timoteo, V.J., et al., Common and ethnic-specific genetic determinants of hemoglobin concentration between Taiwanese Han Chinese and European Whites: findings from comparative two-stage genome-wide association studies. Journal of Nutritional Biochemistry, 2023. 111. 74. Gill, D., et al., Associations of genetically determined iron status across the phenome: A mendelian randomization study. Plos Medicine, 2019. 16(6). 75. Qiu, J.Q., F.Z. Lian, and X.X. Fang, Iron status and mental disorders: A Mendelian randomization study. Frontiers in Nutrition, 2022. 9. 76. Liu, Y.A., et al., Iron Status and Risk of Heart Disease, Stroke, and Diabetes: A Mendelian Randomization Study in European Adults. Journal of the American Heart Association, 2024. 13(6). 77. Chen, C.Y., et al., Analysis across Taiwan Biobank, Biobank Japan, and UK Biobank identifies hundreds of novel loci for 36 quantitative traits. Cell Genom, 2023. 3(12): p. 100436. 78. Chen, H.H., et al., Population-Specific Polygenic Risk Scores Developed for the Han Chinese. medrxiv, 2025. 79. Burgess, S., et al., Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res, 2019. 4: p. 186. 80. Correnti, M., et al., Iron Mining for Erythropoiesis. Int J Mol Sci, 2022. 23(10). 81. Kalakonda, A., B.A. Jenkins, and S. John, Physiology, Bilirubin, in StatPearls. 2025: Treasure Island (FL). 82. He, A., et al., Association between serum iron and liver transaminases based on a large adult women population. J Health Popul Nutr, 2023. 42(1): p. 69. 83. Wang, K., et al., Genetic effects of iron levels on liver injury and risk of liver diseases: A two-sample Mendelian randomization analysis. Front Nutr, 2022. 9: p. 964163. 84. Zheng, H., et al., Relationship between iron overload caused by abnormal hepcidin expression and liver disease: A review. Medicine (Baltimore), 2023. 102(11): p. e33225. 85. Liu, Y., et al., Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother, 2023. 168: p. 115728. 86. Alzahrani, B.A., et al., The effect of different types of anemia on HbA1c levels in non-diabetics. BMC Endocr Disord, 2023. 23(1): p. 24. 87. Guo, W., et al., Increased Levels of Glycated Hemoglobin A1c and Iron Deficiency Anemia: A Review. Med Sci Monit, 2019. 25: p. 8371-8378. 88. Wang, J., et al., The influence of shorter red blood cell lifespan on the rate of HbA1c target achieved in type 2 diabetes patients with a HbA1c detection value lower than 7. J Diabetes, 2023. 15(1): p. 7-14. 89. Zhang, S., et al., The Role Played by Ferroptosis in Osteoarthritis: Evidence Based on Iron Dyshomeostasis and Lipid Peroxidation. Antioxidants (Basel), 2022. 11(9). 90. Lu, S., et al., Ferroptosis and its role in osteoarthritis: mechanisms, biomarkers, and therapeutic perspectives. Front Cell Dev Biol, 2024. 12: p. 1510390. 91. Cai, C., W. Hu, and T. Chu, Interplay Between Iron Overload and Osteoarthritis: Clinical Significance and Cellular Mechanisms. Front Cell Dev Biol, 2021. 9: p. 817104. 92. Zhang, Y., et al., Novel insights into the role of ferroptosis in temporomandibular joint osteoarthritis and knee osteoarthritis. Int J Med Sci, 2025. 22(9): p. 2119-2131. 93. Kulaszynska, M., S. Kwiatkowski, and K. Skonieczna-Zydecka, The Iron Metabolism with a Specific Focus on the Functioning of the Nervous System. Biomedicines, 2024. 12(3). 94. Ruan, G., et al., The effect of systemic iron status on osteoarthritis: A mendelian randomization study. Front Genet, 2023. 14: p. 1122955. 95. Ward, R.J., et al., The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol, 2014. 13(10): p. 1045-60. 96. Wu, Q., et al., Brain Iron Homeostasis and Mental Disorders. Antioxidants (Basel), 2023. 12(11). 97. Salvador, G.A., R.M. Uranga, and N.M. Giusto, Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis, 2010. 2011: p. 720658. 98. Wu, J., et al., Iron overload contributes to general anaesthesia-induced neurotoxicity and cognitive deficits. J Neuroinflammation, 2020. 17(1): p. 110. 99. Salvador, G.A., Iron in neuronal function and dysfunction. Biofactors, 2010. 36(2): p. 103-10. 100. Morse, A.C., et al., Sex and Genetics are Important Cofactors in Assessing the Impact of Iron Deficiency on the Developing Mouse Brain. Nutr Neurosci, 1999. 2(5): p. 323-35. 101. Qiu, J., F. Lian, and X. Fang, Iron status and mental disorders: A Mendelian randomization study. Front Nutr, 2022. 9: p. 1084860. 102. Zhang, J., et al., Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms. Biomed Pharmacother, 2021. 137: p. 111380. 103. Doyard, M., et al., Decreased Bone Formation Explains Osteoporosis in a Genetic Mouse Model of Hemochromatosiss. PLoS One, 2016. 11(2): p. e0148292. 104. Jeney, V., Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front Pharmacol, 2017. 8: p. 77. 105. Zou, L., et al., Three signalling pathways for iron overload in osteoporosis: a narrative review. J Orthop Surg Res, 2025. 20(1): p. 186. 106. Burden, A.M., et al., Increased Risk of Fracture Among Patients With Iron Overload: A Population-based Matched Cohort Study. J Clin Endocrinol Metab, 2025. 110(8): p. e2754-e2764. 107. Garton, T., et al., Brain iron overload following intracranial haemorrhage. Stroke Vasc Neurol, 2016. 1(4): p. 172-184. 108. Koduri, S., et al., The Role of Iron in Hemorrhagic Stroke. Stroke Vasc Interv Neurol, 2022. 2(5). 109. Liu, R., et al., Association of Brain Iron Overload With Brain Edema and Brain Atrophy After Intracerebral Hemorrhage. Front Neurol, 2020. 11: p. 602413. 110. Ju, J.J. and L.H. Hang, Neuroinflammation and iron metabolism after intracerebral hemorrhage: a glial cell perspective. Front Neurol, 2024. 15: p. 1510039. 111. Daglas, M. and P.A. Adlard, The Involvement of Iron in Traumatic Brain Injury and Neurodegenerative Disease. Front Neurosci, 2018. 12: p. 981. 112. Nelson, J.E., Kowdley, K.V., Iron and hepatitis C. Current Hepatitis Reports, 2004. Volume 3: p. 140–147. 113. Zou, D.M. and W.L. Sun, Relationship between Hepatitis C Virus Infection and Iron Overload. Chin Med J (Engl), 2017. 130(7): p. 866-871. 114. Marchetti, M., et al., Iron Metabolism at the Interface between Host and Pathogen: From Nutritional Immunity to Antibacterial Development. Int J Mol Sci, 2020. 21(6). 115. Kao, J.K., et al., Chronic Iron Overload Results in Impaired Bacterial Killing of THP-1 Derived Macrophage through the Inhibition of Lysosomal Acidification. PLoS One, 2016. 11(5): p. e0156713. 116. Hoen, B., Iron and infection: clinical experience. Am J Kidney Dis, 1999. 34(4 Suppl 2): p. S30-4. 117. Cassat, J.E. and E.P. Skaar, Iron in infection and immunity. Cell Host Microbe, 2013. 13(5): p. 509-519. 118. Xu, J., et al., Genetic Causal Association between Iron Status and Osteoarthritis: A Two-Sample Mendelian Randomization. Nutrients, 2022. 14(18). 119. Hennigar, S.R. and J.P. McClung, Nutritional Immunity: Starving Pathogens of Trace Minerals. Am J Lifestyle Med, 2016. 10(3): p. 170-173. 120. Butler-Laporte, G., et al., Increasing serum iron levels and their role in the risk of infectious diseases: a Mendelian randomization approach. Int J Epidemiol, 2023. 52(4): p. 1163-1174. 121. Vujic, M., Molecular basis of HFE-hemochromatosis. Front Pharmacol, 2014. 5: p. 42. 122. Barton, J.C., C.Q. Edwards, and R.T. Acton, HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene, 2015. 574(2): p. 179-92. 123. Ramsay, A.J., et al., Matriptase-2 (TMPRSS6): a proteolytic regulator of iron homeostasis. Haematologica, 2009. 94(6): p. 840-9. 124. Silvestri, L., et al., The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab, 2008. 8(6): p. 502-11. 125. Chen, W., et al., Abcb10 physically interacts with mitoferrin-1 (Slc25a37) to enhance its stability and function in the erythroid mitochondria. Proc Natl Acad Sci U S A, 2009. 106(38): p. 16263-8. 126. Yien, Y.Y. and M. Perfetto, Regulation of Heme Synthesis by Mitochondrial Homeostasis Proteins. Front Cell Dev Biol, 2022. 10: p. 895521. 127. Shahbazi, S., et al., Association of ABO and Colton Blood Group Gene Polymorphisms With Hematological Traits Variation. Medicine (Baltimore), 2015. 94(48): p. e2144. 128. McLachlan, S., et al., Replication and Characterization of Association between ABO SNPs and Red Blood Cell Traits by Meta-Analysis in Europeans. PLoS One, 2016. 11(6): p. e0156914. 129. Hong, K.W., et al., Association between the ABO locus and hematological traits in Korean. BMC Genet, 2012. 13: p. 78. 130. Burgess, S., N.M. Davies, and S.G. Thompson, Bias due to participant overlap in two-sample Mendelian randomization. Genet Epidemiol, 2016. 40(7): p. 597-608. 131. Hemani, G., J. Bowden, and G. Davey Smith, Evaluating the potential role of pleiotropy in Mendelian randomization studies. Hum Mol Genet, 2018. 27(R2): p. R195-R208. 132. Cho, Y., et al., Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework. Nat Commun, 2020. 11(1): p. 1010. 133. Yamagata University Genomic Cohort, C., Pleiotropic effect of common variants at ABO Glycosyltranferase locus in 9q32 on plasma levels of pancreatic lipase and angiotensin converting enzyme. PLoS One, 2014. 9(2): p. e55903. 134. Souto, J.C., et al., Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol, 2000. 20(8): p. 2024-8. 135. Cruz, L.A., J.N. Cooke Bailey, and D.C. Crawford, Importance of Diversity in Precision Medicine: Generalizability of Genetic Associations Across Ancestry Groups Toward Better Identification of Disease Susceptibility Variants. Annu Rev Biomed Data Sci, 2023. 6: p. 339-356. 136. Marigorta, U.M. and A. Navarro, High trans-ethnic replicability of GWAS results implies common causal variants. PLoS Genet, 2013. 9(6): p. e1003566. 137. Dias, J.A., et al., Evaluating Multi-Ancestry Genome-Wide Association Methods: Statistical Power, Population Structure, and Practical Implications. medRxiv, 2025. 138. Timoteo, V.J., K.M. Chiang, and W.H. Pan, Positive or U-Shaped Association of Elevated Hemoglobin Concentration Levels with Metabolic Syndrome and Metabolic Components: Findings from Taiwan Biobank and UK Biobank. Nutrients, 2022. 14(19). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99812 | - |
| dc.description.abstract | 人體鐵狀況與健康狀態息息相關,涉及範圍甚廣,不論鐵缺乏或過剩都有某些健康效應,理解缺乏與過盛的健康效應之不同,將有助於理解鐵營養之生物意涵。本研究採用雙樣本全表型孟德爾隨機化(Phenome-wide MR),探討遺傳推估之鐵狀況在台灣人群對各種健康結果之因果影響。
本研究使用一大型東亞族群(n=245,062)的血紅素(Hemoglobin)統合分析找到的23,883個與血紅素相關之單核苷酸多態性指標(Single-nucleotide polymorphism, SNP),透過嚴格的統計標準來確保獨立性以及遺傳工具強度,然後使用鐵蛋白(Ferritin)和eQTL數據驗證其與鐵代謝的生物學相關性,篩選出四個鐵狀況遺傳工具變數組成遺傳估計推估鐵狀況指標;再使用臺灣精準醫療計畫資料檢驗其對1,102個臨床表型的因果效應。 分析結果顯示,遺傳估計鐵過剩與骨關節炎、骨折、顱內出血及情緒障礙的風險增加有因果關聯;對貧血則具有保護作用,並與較低的糖化血色素(HbA1c)相關。這些發現為鐵營養對人體健康的廣泛影響提供生物學證據,顯示鐵質雖為必需元素,應避免其缺乏,但較高的鐵質狀況亦可能涉及多種疾病的病程發展。本研究強調了維持鐵質恆定、鐵營養適中,以及在此領域精準營養應用之重要性。 | zh_TW |
| dc.description.abstract | Systemic iron status is critical for health, with both deficiency and excess leading to a wide range of adverse outcomes, yet its causal effects remain unclear due to limitations in observational studies.
This study employed a Two-sample Phenome-wide Mendelian randomization (Phenome-wide MR) to investigate the causal landscape of genetically-proxied iron status across a wide range of health outcomes in Taiwanese population. Using four genetic instruments for iron status, which were filtered from 23,883 candidates based on stringent statistical and biological criteria, from a large East Asian hemoglobin meta-analysis (n=245,062), we tested for causal effects across 1,102 clinical phenotypes with the Taiwan Precision Medicine Initiative statistics. These four instruments were curated from 23,883 candidates by applying stringent statistical filters for independence and strength, and were subsequently validated for biological relevance to iron metabolism using ferritin and eQTL data. Our analysis revealed that a genetic predisposition to higher iron status was causally associated with an increased risk of osteoarthritis, bone fractures, intracranial hemorrhage, and mental disorders. Conversely, it was strongly protective against anemia and associated with lower HbA1c. These findings provide biological evidence for the widespread, pleiotropic effects of iron, demonstrating that while it is essential for maintaining health, excess iron status is a causal risk factor for diverse diseases. This underscores the critical importance of balanced iron homeostasis and cautions against indiscriminate supplementation and highlights the need for precision nutrition strategies to optimize iron status. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:45:29Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:45:29Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
中文摘要 i Abstract ii 目次 iv 圖次 v 表次 vi Introduction 1 Function of Iron in human body 1 Metabolism of Iron 2 Measurement of iron state 6 Deficiency and excess of iron nutriture 10 Mendelian Randomization (MR) 12 Current status of large-scale GWAS studies on iron status 17 Current status of PheWAS studies on iron status and outcomes 19 Methods 21 Data Sources 21 Instrumental Variables Selection and Quality Control 22 Statistical Analysis 24 Sensitivity Analyses 24 Results Categorization and Visualization 25 Software 26 Results 27 Discussion 35 Limitations 46 Reference 49 Supplementary Figure 58 | - |
| dc.language.iso | en | - |
| dc.subject | 血紅素 | zh_TW |
| dc.subject | 鐵狀態 | zh_TW |
| dc.subject | 因果推斷 | zh_TW |
| dc.subject | 全表型研究 | zh_TW |
| dc.subject | 孟德爾隨機化 | zh_TW |
| dc.subject | Iron Status | en |
| dc.subject | Hemoglobin | en |
| dc.subject | Causal Inference | en |
| dc.subject | Phenome-wide Study | en |
| dc.subject | Mendelian Randomization | en |
| dc.title | 以雙樣本全表型 MR 探討基因推估鐵狀況之因果效應 | zh_TW |
| dc.title | A Two-sample Phenome-wide MR Investigation on Causal Effects of Genetically-Proxied Iron Status | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 林甫容;陳弘昕 | zh_TW |
| dc.contributor.coadvisor | Fu-Jung Lin;Hung-Hsin Chen | en |
| dc.contributor.oralexamcommittee | 張榮素;陳建勳 | zh_TW |
| dc.contributor.oralexamcommittee | Jung-Su Chang;Chien-Hsiun Chen | en |
| dc.subject.keyword | 鐵狀態,血紅素,孟德爾隨機化,全表型研究,因果推斷, | zh_TW |
| dc.subject.keyword | Iron Status,Hemoglobin,Mendelian Randomization,Phenome-wide Study,Causal Inference, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202504128 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | N/A | - |
| Appears in Collections: | 生化科技學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-113-2.pdf Restricted Access | 2.92 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
