請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99792完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴育英 | zh_TW |
| dc.contributor.advisor | Yu-Ying Lai | en |
| dc.contributor.author | 游伃宸 | zh_TW |
| dc.contributor.author | Yu-Chen Yu | en |
| dc.date.accessioned | 2025-09-17T16:41:51Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-01 | - |
| dc.identifier.citation | (1) Liu, Z.; Deng, Z.; Davis, S. J.; Ciais, P. Global carbon emissions in 2023. Nature Reviews Earth & Environment 2024, 5, 253-254.
(2) Tiseo, I. Average monthly carbon dioxide (CO₂) levels in the atmosphere worldwide from 1990 to 2025; 2025. (3) Lan, X., Tans, P. and K.W. . Thoning: Trends in globally-averaged CO2 determined from NOAA Global Monitoring Laboratory measurements. ; 2025. (4) Yousaf, M.; Zaman, M.; Mahmood, A.; Imran, M.; Elkamel, A.; Rizwan, M.; Wilberforce, T.; Riaz, F. Carbon dioxide utilization: A critical review from multiscale perspective. Energy Science & Engineering 2022, 10, 4890-4923. (5) Budinis, S.; Krevor, S.; Dowell, N. M.; Brandon, N.; Hawkes, A. An assessment of CCS costs, barriers and potential. Energy Strategy Reviews 2018, 22, 61-81. (6) Chen, C.; Jiao, F.; Lu, B.; Liu, T.; Liu, Q.; Jin, H. Challenges and perspectives for solar fuel production from water/carbon dioxide with thermochemical cycles. Carbon Neutrality 2023, 2, 9. (7) She, X.; Wang, Y.; Xu, H.; Chi Edman Tsang, S.; Ping Lau, S. Challenges and Opportunities in Electrocatalytic CO2 Reduction to Chemicals and Fuels. Angewandte Chemie International Edition 2022, 61, e202211396. (8) Nahar, S.; Zain, M. F. M.; Kadhum, A. A. H.; Hasan, H. A.; Hasan, M. R. Advances in Photocatalytic CO2 Reduction with Water: A Review. Materials 2017, 10, 629. (9) Inoue, T.; Fujishima, A.; Konishi, S.; Honda, K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature 1979, 277, 637-638. (10) Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Metal-Organic Framework (MOF) Compounds: Photocatalysts for Redox Reactions and Solar Fuel Production. Angewandte Chemie-International Edition 2016, 55, 5414-5445. (11) Hornberger, L.-S.; Adams, F. Photocatalytic CO2 Conversion Using Metal-Containing Coordination Polymers and Networks: Recent Developments in Material Design and Mechanistic Details. Polymers 2022, 14, 2778. (12) Bian, J.; Zhang, Z.; Liu, Y.; Chen, E.; Tang, J.; Jing, L. Strategies and reaction systems for solar-driven CO2 reduction by water. Carbon Neutrality 2022, 1, 5. (13) Mao, J.; Li, K.; Peng, T. Recent advances in the photocatalytic CO2 reduction over semiconductors. Catalysis Science & Technology 2013, 3, 2481-2498, 10.1039/C3CY00345K. (14) Alkhatib, I. I.; Garlisi, C.; Pagliaro, M.; Al-Ali, K.; Palmisano, G. Metal-organic frameworks for photocatalytic CO2 reduction under visible radiation: A review of strategies and applications. Catalysis Today 2020, 340, 209-224. (15) Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an Efficient Photocatalytic System for CO2 Reduction Using Rhenium(I) Complexes Based on Mechanistic Studies. Journal of the American Chemical Society 2008, 130, 2023-2031. (16) Wang, Y.; Chen, E.; Tang, J. Insight on Reaction Pathways of Photocatalytic CO2 Conversion. ACS Catalysis 2022, 12, 7300-7316. (17) Zhang, Q.; Yang, C.; Guan, A.; Kan, M.; Zheng, G. Photocatalytic CO2 conversion: from C1 products to multi-carbon oxygenates. Nanoscale 2022, 14, 10268-10285, 10.1039/D2NR02588D. (18) Variar, A. G.; M.S, R.; Ail, V. U.; S, S. P.; K, S.; Tahir, M. Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: A review. Journal of Industrial and Engineering Chemistry 2021, 99, 19-47. (19) White, J. L.; Baruch, M. F.; Pander, J. E., III; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; et al. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chemical Reviews 2015, 115, 12888-12935. (20) Kuriki, R.; Ishitani, O.; Maeda, K. Unique Solvent Effects on Visible-Light CO2 Reduction over Ruthenium(II)-Complex/Carbon Nitride Hybrid Photocatalysts. ACS Applied Materials & Interfaces 2016, 8, 6011-6018. (21) Jitaru, M. Electrochemical carbon dioxide reduction - Fundamental and applied topics. J. Univ. Chem. Technol. Metall. 2007, 42, 333-344. (22) Asai, Y.; Katsuragi, H.; Kita, K.; Tsubomura, T.; Yamazaki, Y. Photocatalytic CO2 reduction using metal complexes in various ionic liquids. Dalton Transactions 2020, 49, 4277-4292, 10.1039/C9DT04689E. (23) Wang, W.; Wang, L.; Su, W.; Xing, Y. Photocatalytic CO2 reduction over copper-based materials: A review. Journal of CO2 Utilization 2022, 61, 102056. (24) Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chemical Reviews 2010, 110, 6503-6570. (25) Kamat, P. V.; Jin, S. Semiconductor Photocatalysis: “Tell Us the Complete Story!”. ACS Energy Letters 2018, 3, 622-623. (26) Das, R.; Chakraborty, S.; Peter, S. C. Systematic Assessment of Solvent Selection in Photocatalytic CO2 Reduction. ACS Energy Letters 2021, 6, 3270-3274. (27) Chen, L.; Zhang, J.; Li, Z.-T.; Tian, J. Systematic Analysis of False-Positive CH4 Production in Photocatalytic CO2 Reduction: The Role of Solvent and Reagent Decomposition. Chemistry – A European Journal 2025, 31, e202500403. (28) Liao, G.; Ding, G.; Yang, B.; Li, C. Challenges in Photocatalytic Carbon Dioxide Reduction. Precision Chemistry 2024, 2, 49-56. (29) Yamazaki, Y.; Takeda, H.; Ishitani, O. Photocatalytic reduction of CO2 using metal complexes. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25, 106-137. (30) Tamaki, Y.; Koike, K.; Morimoto, T.; Ishitani, O. Substantial improvement in the efficiency and durability of a photocatalyst for carbon dioxide reduction using a benzoimidazole derivative as an electron donor. Journal of Catalysis 2013, 304, 22-28. (31) Sahara, G.; Ishitani, O. Efficient Photocatalysts for CO2 Reduction. Inorganic Chemistry 2015, 54, 5096-5104. (32) Kamogawa, K.; Shimoda, Y.; Miyata, K.; Onda, K.; Yamazaki, Y.; Tamaki, Y.; Ishitani, O. Mechanistic study of photocatalytic CO2 reduction using a Ru(ii)–Re(i) supramolecular photocatalyst. Chemical Science 2021, 12, 9682-9693, 10.1039/D1SC02213J. (33) Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic Reduction of Low Concentration of CO2. Journal of the American Chemical Society 2016, 138, 13818-13821. (34) Jiang, W.; Loh, H.; Low, B. Q. L.; Zhu, H.; Low, J.; Heng, J. Z. X.; Tang, K. Y.; Li, Z.; Loh, X. J.; Ye, E.; et al. Role of oxygen vacancy in metal oxides for photocatalytic CO2 reduction. Applied Catalysis B: Environmental 2023, 321, 122079. (35) Wu, H.-L.; Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction. Advanced Materials 2019, 31, 1900709. (36) Jiao, H.; Wang, C.; Xiong, L.; Tang, J. Insights on Carbon Neutrality by Photocatalytic Conversion of Small Molecules into Value-Added Chemicals or Fuels. Accounts of Materials Research 2022, 3, 1206-1219. (37) Xie, W.; Xu, J.; Md Idros, U.; Katsuhira, J.; Fuki, M.; Hayashi, M.; Yamanaka, M.; Kobori, Y.; Matsubara, R. Metal-free reduction of CO2 to formate using a photochemical organohydride-catalyst recycling strategy. Nature Chemistry 2023, 15, 794-802. (38) P, S.; Mandal, S. K. From CO2 activation to catalytic reduction: a metal-free approach. Chemical Science 2020, 11, 10571-10593, 10.1039/D0SC03528A. (39) Nikoloudakis, E.; López-Duarte, I.; Charalambidis, G.; Ladomenou, K.; Ince, M.; Coutsolelos, A. G. Porphyrins and phthalocyanines as biomimetic tools for photocatalytic H2 production and CO2 reduction. Chemical Society Reviews 2022, 51, 6965-7045, 10.1039/D2CS00183G. (40) Wang, T.; Han, B. Carbazole-based porous organic polymers for carbon dioxide capture and catalytic conversion. Chinese Science Bulletin 2020, 65, 3389-3400. (41) Boruah, A.; Boro, B.; Paul, R.; Chang, C.-C.; Mandal, S.; Shrotri, A.; Pao, C.-W.; Mai, B. K.; Mondal, J. Site-Selective Zn-Metalation in Poly-Triphenyl Amine-based Porous Organic Polymer for Solid–Gas Phase CO2 Photoreduction. ACS Applied Materials & Interfaces 2024, 16, 34437-34449. (42) Chen, L.; Liu, T.; Chao, D. Organic terpyridine molecule as an efficient cocatalyst for metal–free CO2 photoreduction mediated by mesoporous graphitic carbon nitride. Chemical Engineering Journal 2022, 429, 132348. (43) Kumagai, H.; Tamaki, Y.; Ishitani, O. Photocatalytic Systems for CO2 Reduction: Metal-Complex Photocatalysts and Their Hybrids with Photofunctional Solid Materials. Accounts of Chemical Research 2022, 55, 978-990. (44) Liu, D.-C.; Zhong, D.-C.; Lu, T.-B. Non-noble metal-based molecular complexes for CO2 reduction: From the ligand design perspective. EnergyChem 2020, 2, 100034. (45) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts. Journal of the Chemical Society, Chemical Communications 1983, 536-538, 10.1039/C39830000536. (46) Hawecker, J.; Lehn, J.-M.; Ziessel, R. Photochemical and Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (2,2′-Bipyridine)tricarbonylchlororhenium(I) and Related Complexes as Homogeneous Catalysts. Helvetica Chimica Acta 1986, 69, 1990-2012. (47) Sampson, M. D.; Froehlich, J. D.; Smieja, J. M.; Benson, E. E.; Sharp, I. D.; Kubiak, C. P. Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts. Energy & Environmental Science 2013, 6, 3748-3755, 10.1039/C3EE42186D. (48) Schneider, T. W.; Ertem, M. Z.; Muckerman, J. T.; Angeles-Boza, A. M. Mechanism of Photocatalytic Reduction of CO2 by Re(bpy)(CO)3Cl from Differences in Carbon Isotope Discrimination. ACS Catalysis 2016, 6, 5473-5481. (49) Tsipis, A. C.; Sarantou, A. A. DFT insights into the photocatalytic reduction of CO2 to CO by Re(i) complexes: the crucial role of the triethanolamine “magic” sacrificial electron donor. Dalton Transactions 2021, 50, 14797-14809, 10.1039/D1DT02188E. (50) Chattopadhyay, S.; Cheah, M. H.; Lomoth, R.; Hammarström, L. Direct Detection of Key Intermediates during the Product Release in Rhenium Bipyridine-Catalyzed CO2 Reduction Reaction. ACS Catalysis 2024, 14, 16324-16334. (51) Reguero, M.; Claver, C.; Carrilho, R. M. B.; Masdeu-Bultó, A. M. Immobilized Molecular Catalysts for CO2 Photoreduction. Advanced Sustainable Systems 2022, 6, 2100493. (52) Lang, P.; Giereth, R.; Tschierlei, S.; Schwalbe, M. Unexpected wavelength dependency of the photocatalytic CO2 reduction performance of the well-known (bpy)Re(CO)3Cl complex. Chemical Communications 2019, 55, 600-603, 10.1039/C8CC08742C. (53) Liang, W.; Church, T. L.; Zheng, S.; Zhou, C.; Haynes, B. S.; D'Alessandro, D. M. Site Isolation Leads to Stable Photocatalytic Reduction of CO2 over a Rhenium-Based Catalyst. Chemistry – A European Journal 2015, 21, 18576-18579. (54) Benson, E. E.; Kubiak, C. P. Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy)(CO)3Cl. Chemical Communications 2012, 48, 7374-7376, 10.1039/C2CC32617E. (55) Cheung, P. L.; Kapper, S. C.; Zeng, T.; Thompson, M. E.; Kubiak, C. P. Improving Photocatalysis for the Reduction of CO2 through Non-covalent Supramolecular Assembly. Journal of the American Chemical Society 2019, 141, 14961-14965. (56) Wang, L.; Zhu, W. Organic Donor-Acceptor Systems for Photocatalysis. Advanced Science 2024, 11, 2307227. (57) Fu, Z.; Vogel, A.; Zwijnenburg, M. A.; Cooper, A. I.; Sprick, R. S. Photocatalytic syngas production using conjugated organic polymers. Journal of Materials Chemistry A 2021, 9, 4291-4296, 10.1039/D0TA09613J. (58) Wang, S.-H.; Khurshid, F.; Chen, P.-Z.; Lai, Y.-R.; Cai, C.-W.; Chung, P.-W.; Hayashi, M.; Jeng, R.-J.; Rwei, S.-P.; Wang, L. Solution-Processable Naphthalene Diimide-Based Conjugated Polymers as Organocatalysts for Photocatalytic CO2 Reaction with Extremely Stable Catalytic Activity for Over 330 Hours. Chemistry of Materials 2022, 34, 4955-4963. (59) Sprick, R. S.; Aitchison, Catherine M.; Berardo, E.; Turcani, L.; Wilbraham, L.; Alston, B. M.; Jelfs, K. E.; Zwijnenburg, M. A.; Cooper, A. I. Maximising the hydrogen evolution activity in organic photocatalysts by co-polymerisation. Journal of Materials Chemistry A 2018, 6, 11994-12003, 10.1039/C8TA04186E. (60) Tan, Z.-R.; Xing, Y.-Q.; Cheng, J.-Z.; Zhang, G.; Shen, Z.-Q.; Zhang, Y.-J.; Liao, G.; Chen, L.; Liu, S.-Y. EDOT-based conjugated polymers accessed via C–H direct arylation for efficient photocatalytic hydrogen production. Chemical Science 2022, 13, 1725-1733, 10.1039/D1SC05784G. (61) Ren, F.-Y.; Chen, K.; Qiu, L.-Q.; Chen, J.-M.; Darensbourg, D. J.; He, L.-N. Amphiphilic Polycarbonate Micellar Rhenium Catalysts for Efficient Photocatalytic CO2 Reduction in Aqueous Media. Angewandte Chemie International Edition 2022, 61, e202200751. (62) Nakada, A.; Miyakawa, R.; Itagaki, R.; Kato, K.; Takashima, C.; Saeki, A.; Yamakata, A.; Abe, R.; Nakai, H.; Chang, H.-C. Photoexcited charge manipulation in conjugated polymers bearing a Ru(ii) complex catalyst for visible-light CO2 reduction. Journal of Materials Chemistry A 2022, 10, 19821-19828, 10.1039/D2TA02183H. (63) An, Y.; Lv, X.; Jiang, W.; Wang, L.; Shi, Y.; Hang, X.; Pang, H. The stability of MOFs in aqueous solutions—research progress and prospects. Green Chemical Engineering 2024, 5, 187-204. (64) Xue, W.; Wang, J.; Huang, H.; Mei, D. Structural and Hydrolytic Stability of Coordinatively Unsaturated Metal–Organic Frameworks M3(BTC)2 (M = Cu, Co, Mn, Ni, and Zn): A Combined DFT and Experimental Study. The Journal of Physical Chemistry C 2021, 125, 5832-5847. (65) Zhang, Y.; Cao, L.; Bai, G.; Lan, X. Engineering Single Cu Sites into Covalent Organic Framework for Selective Photocatalytic CO2 Reduction. Small 2023, 19, 2300035. (66) Infrared Spectra of Some Common Functional Groups. (67) Rao, C. N. R.; Venkataraghavan, R.; Kasturi, T. R. CONTRIBUTION TO THE INFRARED SPECTRA OF ORGANOSULPHUR COMPOUNDS. Canadian Journal of Chemistry 1964, 42, 36-42. (68) Rahimi, F. A.; Dey, S.; Verma, P.; Maji, T. K. Photocatalytic CO2 Reduction Based on a Re(I)-Integrated Conjugated Microporous Polymer: Role of a Sacrificial Electron Donor in Product Selectivity and Efficiency. ACS Catalysis 2023, 13, 5969-5978. (69) Alemany, L. B.; Grant, D. M.; Pugmire, R. J.; Alger, T. D.; Zilm, K. W. Cross polarization and magic angle sample spinning NMR spectra of model organic compounds. 2. Molecules of low or remote protonation. Journal of the American Chemical Society 1983, 105, 2142-2147. (70) Smernik, R. J.; Oades, J. M. Effects of added paramagnetic ions on the 13C CP/MAS NMR spectrum of a de-ashed soil. Geoderma 1999, 89, 219-248. (71) Greiner, M. T.; Rocha, T. C. R.; Johnson, B.; Klyushin, A.; Knop-Gericke, A.; Schlögl, R. The Oxidation of Rhenium and Identification of Rhenium Oxides During Catalytic Partial Oxidation of Ethylene: An In-Situ XPS Study. Zeitschrift für Physikalische Chemie 2014, 228, 521-541. (72) Stufkens, D. J. The Remarkable Properties of α-Diimine Rhenium Tricarbonyl Complexes in Their Metal-to-Ligand Charge-Transfer (MLCT) Excited States. Comments on Inorganic Chemistry 1992, 13, 359-385. (73) Vlček, A. n. Mechanistic roles of metal-to-ligand charge-transfer excited states in organometallic photochemistry. Coordination Chemistry Reviews 1998, 177, 219-256. (74) Qiu, L.-Q.; Chen, K.-H.; Yang, Z.-W.; He, L.-N. A rhenium catalyst with bifunctional pyrene groups boosts natural light-driven CO2 reduction. Green Chemistry 2020, 22, 8614-8622, 10.1039/D0GC03111A. (75) Yuan, H.; Krishna, A.; Wei, Z.; Su, Y.; Chen, J.; Hua, W.; Zheng, Z.; Song, D.; Mu, Q.; Pan, W.; et al. Ligand-Bound CO2 as a Nonclassical Route toward Efficient Photocatalytic CO2 Reduction with a Ni N-Confused Porphyrin. Journal of the American Chemical Society 2024, 146, 10550-10558. (76) Trenker, S.; Vignolo-Gonzalez, H. A.; Rodríguez-Camargo, A.; Yao, L.; Zwijnenburg, M. A.; Lotsch, B. V. Identifying Bottlenecks in the Photocatalytic Oxygen Evolution Reaction with Covalent Organic Frameworks. Chemistry of Materials 2025, 37, 4463-4474. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99792 | - |
| dc.description.abstract | 本研究成功設計並合成四種含聯吡啶和苯並噻二唑單元的線性共軛高分子(P1−P4),其中P3與P4進一步螯合錸 (Re) 金屬,探討其於光驅動二氧化碳還原反應中的結構特性與催化表現。高分子經Suzuki與Stille耦合反應製備,並以衰減全反射紅外光譜儀、固態核磁共振光譜儀、X光光電子能譜與感應耦合電漿質譜儀等分析確認其結構與金屬組成。吸收光譜與循環伏安法結果指出,金屬錯合與共軛鏈段延伸可提升光吸收能力並降低能隙,有助於光生電子參與 CO2 還原反應。在光催化CO2 還原實驗中,P3與P4在CO2還原為CO的催化週轉數 (turnover number,TON) 分別達到60.7與52.1,明顯優於未螯合金屬的P1 (TON = 7.4) 與P2 (未檢出CO) 及傳統小分子 [fac-Re(bpy) (CO)3Cl] (ReBpy, TON = 14.4),證明同時引入共軛高分子骨架及金屬中心能有效提升電子傳輸效率與整體催化效率。控制實驗與 13CO2 同位素標記實驗進一步證實產物確實來自 CO2 還原。光響應電流測試亦顯示P3與P4具備最佳的光生載子分離與傳輸能力,與其高催化效率相互呼應。此外,在多輪循環測試中,P3 與 P4 均展現優異的穩定性與可重複使用性,成功克服了傳統ReBpy小分子催化劑在光照下易生成Re−Re二聚體而失活的問題,顯示高分子主鏈所帶來的立體位阻與配位穩定性有助於抑制Re−Re二聚化反應,延長催化劑壽命。本成果為發展高效且耐久的光催化CO2還原材料提供了新策略與實驗依據。 | zh_TW |
| dc.description.abstract | In this study, four linear conjugated polymers (P1−P4) incorporating bipyridine and benzothiadiazole units have been synthesized. Among them, P3 and P4 are further coordinated with rhenium (Re) complexes to investigate their photocatalytic performance toward CO2 reduction. The polymers have been prepared via Suzuki and Stille coupling reactions, and their structures and metal compositions are confirmed by attenuated total reflectance Fourier-transform infrared spectroscopy, solid-state nuclear magnetic resonance, X-ray photoelectron spectroscopy and inductively coupled plasma mass spectrometry. UV−Vis absorption and cyclic voltammetry show that both metal coordination and π-conjugation extension enhance light absorption and reduce the band gap. Photocatalytic experiments demonstrate that P3 and P4 achieve turnover numbers (TON) of 60.7 and 52.1 for CO generation, respectively, significantly outperforming the non-metal-chelated polymers P1 (TON = 7.4) and P2 (no detection of CO), as well as the traditional molecular catalyst [fac-Re(bpy) (CO)3Cl] (ReBpy, TON = 14.4). Control experiments and 13CO2 isotope labeling confirm that the CO product originates from CO2 reduction. Photocurrent measurements further reveal that P3 and P4 exhibit the most efficient photogenerated charge separation and transport. Moreover, both P3 and P4 display excellent reusability and stability across multiple reaction cycles, successfully overcoming the Re−Re dimerization-induced deactivation typically observed in small-molecule ReBpy systems. This improvement is attributed to the steric hindrance and coordination stability imparted by the polymer backbone, which effectively suppresses Re−Re aggregation and prolongs catalyst lifetime. Overall, this work provides a promising design strategy and experimental basis for the development of efficient and durable polymer-based photocatalysts for CO2 reduction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:41:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:41:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 中文摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xii 圖次(附錄) xiii 第1章 緒論 1 1-1 光催化二氧化碳還原 1 1-1-1 光催化二氧化碳還原之發展背景 1 1-1-2 光催化二氧化碳還原之反應原理與機制 3 1-1-3 光催化二氧化碳還原中溶劑系統之探討 5 1-1-4 犧牲試劑應用於光催化二氧化碳還原反應 8 1-2 有機光催化劑之種類 10 1-2-1 有機小分子 10 1-2-2 有機金屬螯合小分子 11 1-2-3 有機線性共軛高分子 13 1-2-4 有機線性共軛金屬螯合高分子 16 1-2-5 金屬有機框架 18 1-3 研究動機 19 第2章 結果與討論 21 2-1 設計與合成 21 2-1-1 小分子型催化劑 ReBpy 之合成 21 2-1-2 聚合前驅物之合成 21 2-1-3 共軛高分子 P1 與 P2 之合成 22 2-1-4 金屬螯合共軛高分子 P3 與 P4 之合成 23 2-2 化學結構鑑定 24 2-3 X射線光電子能譜分析 28 2-4 吸收光譜 32 2-5 金屬元素含量分析 34 2-6 光催化二氧化碳還原 36 2-6-1 最佳化實驗及光催化二氧化碳還原效率 36 2-6-2 控制實驗 39 2-6-3 同位素標記實驗 41 2-6-4 循環實驗 42 2-7 循環伏安法 44 2-8 光響應電流 51 第3章 結論 53 第4章 實驗 54 4-1 試藥 54 4-2 實驗儀器 56 4-2-1 氣相層析儀 (Gas Chromatography, GC) 56 4-2-2 核磁共振光譜儀 (Nuclear Magnetic Resonance Spectroscopy, NMR) 56 4-2-3 紫外光可見光光譜儀 57 4-2-4 衰減全反射紅外光譜 (Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy, ATR-FTIR) 57 4-2-5 X 光光電子能譜 (X-ray Photoelectron Spectroscopy, XPS) 58 4-2-6 瞬態光電流 (Transient Photocurrent) 58 4-2-7 循環伏安儀 58 4-2-8 感應耦合電漿質譜儀 (Inductively Coupled Plasma Mass Spectrometer, ICP-MS) 59 4-2-9 高解析氣相層析質譜儀 (High Resolution Gas Chromatography Mass Spectrometer, GC-MS) 59 4-3 光催化二氧化碳還原實驗 60 4-3-1 氫氣及一氧化碳之定量 60 4-3-2 光催化二氧化碳還原反應實驗 62 4-4 合成 63 參考文獻 72 附錄 84 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 共軛高分子 | zh_TW |
| dc.subject | 光催化二氧化碳還原反應 | zh_TW |
| dc.subject | 光催化劑穩定性 | zh_TW |
| dc.subject | 金屬螯合 | zh_TW |
| dc.subject | 錸錯合物 | zh_TW |
| dc.subject | rhenium complex | en |
| dc.subject | metal chelation | en |
| dc.subject | photocatalyst stability | en |
| dc.subject | conjugated polymer | en |
| dc.subject | photocatalytic CO2 reduction reaction | en |
| dc.title | 含錸聯吡啶錯合物之線性共軛高分子應用於光驅動二氧化碳還原反應 | zh_TW |
| dc.title | Linear Conjugated Polymers with Re-Bipyridine Complexes for Light-Driven Carbon Dioxide Reduction | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡福裕;吳冠毅 | zh_TW |
| dc.contributor.oralexamcommittee | Fu-Yu Tsai;Kuan-Yi Wu | en |
| dc.subject.keyword | 光催化二氧化碳還原反應,共軛高分子,錸錯合物,金屬螯合,光催化劑穩定性, | zh_TW |
| dc.subject.keyword | photocatalytic CO2 reduction reaction,conjugated polymer,rhenium complex,metal chelation,photocatalyst stability, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202503112 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2030-07-31 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.42 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
