請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99791完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝博全 | zh_TW |
| dc.contributor.advisor | Po-Chuan Hsieh | en |
| dc.contributor.author | 郭博瑢 | zh_TW |
| dc.contributor.author | PO-JUNG KUO | en |
| dc.date.accessioned | 2025-09-17T16:41:40Z | - |
| dc.date.available | 2025-09-18 | - |
| dc.date.copyright | 2025-09-17 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-07-25 | - |
| dc.identifier.citation | 侯詠德, 周哲宇, 陳力騏, 鄭宗記, 謝博全. 2017. 藉氣相層析圖譜辨識檸檬桉. 台灣農學會報 18(2):112-126
程玉芬, 張志偉, 贾永霞, 陳連福, 于慧. 2019. 對葉榕花序不同發育時期氣味成分的變化及其對傳粉者的吸引作用. 熱帶亞熱帶植物學報 27(3): 299-308 Abanda-Nkpwatt1, D., M. Musch, J. Tschiersch, M. Boettner and W. Schwab. 2006. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. Journal of Experimental Botany 57(15): 4025-4032 Castelyn, H. D., J. J. Appelgryn, M. S. Mafa, Z. A. Pretorius and B. Visser. 2015. Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australasian Plant Pathol 44: 245-254 D’Alessandro, M., M. Erb, J. Ton, A. Brandenburg, D. Karlen, J. Zopfi and T. C. J. Turlings. 2014. Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, Cell and Environment 37: 813-826 Delaney, K. J., B. Breza-Boruta, G. Lemańczyk, J. Bocianowski, D. Wrzesińska, I. Kalka and D. Piesik. 2015. Maize VOC induction after infection by the bacterial pathogen, Pantoea ananatis, alters neighbouring plant VOC emission. Journal of Plant Diseases and Protection 122 (3): 125-132 Deasy, W., T. Shepherd, C. J. Alexander, A. N. E. Bircha and K. A. Evans. 2015. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L. Phytochem. Anal. 27: 343-353 Farré-Armengol, G., M. Fernández-Martínez, I. Filella, R. R. Junker, J Peñuelas. 2020. Deciphering the Biotic and Climatic Factors That Influence Floral Scents: A Systematic Review of Floral Volatile Emissions. Frontiers in Plant Science 11: 1154 Geron, C., A. Guenther, J. Greenberg, T. Karl, R. Rasmussen. 2006. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmospheric Environment 40: 1645-1660 Grabmer, W., M. Graus, C. Lindinger, A. Wisthaler, B. Rappengluck, R. Steinbrecher, A. Hansel. 2004. Disjunct eddy covariance measurements of monoterpene fluxes from a Norway spruce forest using PTR-MS. International Journal of Mass Spectrometry 239: 111-115 Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, C. Geron. 2006. Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys. 6: 3181–3210 Heil. M., Herbivore-induced plant volatiles: targets, perception and unanswered questions. 2014. New Phytologist 204: 297-306 Imoisi, C. and S. E. Okhale. Chemical Composition Analysis of Eucalyptus citriodora Essential Oil Using GC-MS and NMR Spectroscopy. 2024. Trends in Agriculture Science 3(2): 83-90 Jansen, R. M. C., M. Miebach, E. Kleist, E. J. van Henten1 and J. Wildt. 2008. Release of lipoxygenase products and monoterpenes by tomato plants as an indicator of Botrytis cinerea-induced stress. Plant Biology 11: 859–868 Kalske, A., K. Shiojiri, A. Uesugi, Y. Sakata, K. Morrell and A. Kessler. 2019. Insect Herbivory Selects for Volatile-Mediated Plant-Plant Communication. Current Biology 29: 3128-3133 Kawaguchi, K., H. Yurimoto, M. Oku, Y. Sakai. 2011. Yeast Methylotrophy and Autophagy in a MethanolOscillating Environment on Growing Arabidopsis thaliana Leaves. PLoS ONE 6(9): e25257 Martín-Cacheda1, L., G. Röder, L. Abdala-Roberts, X. Moreira. 2024. Test of Specificity in Signalling between Potato Plants in Response to Infection by Fusarium Solani and Phytophthora Infestans. Journal of Chemical Ecology 50: 562-572 Rodriguez-Saona, C., I. Kaplan, J. Braasch, D. Chinnasamy, L. Williams. 2011. Field responses of predaceous arthropods to methyl salicylate: A meta-analysis and case study in cranberries. Biological Control 59: 294-303 Sugimoto, K., K. Matsuia, Y. Iijimac, Y. Akakabea, S. Muramotoa, R. Ozawab, M. Uefuneb, R. Sasakic, K. M. Alamgird, S. Akitakea, T. Nobukea, I. Galisd, K. Aokic, D. Shibatac and J. Takabayashib. 2014. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. PNAS 111(19): 7144-7149 Tamiru, A., T. J. A. Bruce, C.M. Woodcock, J. C. Caulfield, C. A. O. Midega1, C. K. P. O. Ogol, P. Mayon, M. A. Birkett, J. A. Pickett and Z. R. Khan. 2011. Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecology Letters 14: 1075-1083 Toome, M., P. Randjarv, L. Copolovici, U. Niinemets, K. Heinsoo, A. Luik, S.M. Noe. 2010. Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232: 235-243 Vázquez González, C., V. Quiroga, L. Martín Cacheda, S. Rasmann, G Röder, L. Abdala Roberts and X. Moreira. 2023. Efect of herbivore load on VOC mediated plant communication in potato. Planta 257: 42 Wenda-Piesik, A., D. Piesik, T. Ligor and B. Buszewski. 2010. Volatile organic compounds (VOCs) from cereal plants infested with crown rot: their identity and their capacity for inducing production of VOCs in uninfested plants. International Journal of Pest Management 56(4): 377-383 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99791 | - |
| dc.description.abstract | 本研究旨在開發一套便攜式的生物源揮發性有機化合物(Biogenic Volatile Organic Compounds,BVOCs)氣體蒐集裝置,以實現野外環境下更貼近自然條件的氣體取樣。裝置採用 Push–Pull 架構,前端推氣、後端抽氣,並利用分流系統將氣流平均分配至多個通道。所有元件微型化後整合於工具箱內。供電系統支援行動電源與外接電源供應器,可供操作者自由切換,滿足室內外長時間運作之需求;機構設計上,上層為流速控制與吸附管更換區域,下層為幫浦與管路,有效降低操作時可能造成的干擾。所有機構設計皆為可拆卸式,有利於後續維護。
為減少操作者差異所致的取樣誤差,本裝置引入基於 Arduino Uno 的 PI 控制演算法,並以 Raspberry Pi 5 建置人機介面:使用者可透過螢幕設定目標流速、監測即時流速與剩餘蒐集時間;系統將 PWM(Pulse-width modulation) 控制訊號輸出至幫浦,並以經過RC濾波的流速回饋進行閉迴路調節。實驗結果顯示,在設定流速0.20-1.00 L/min 範圍內,裝置能於 7 s 內達成穩定,30分鐘內的總流量誤差小於 30 mL,長時間運作下相對標準差低於1%,成功驗證了穩定性與準確度。 綜合而言,本研究所開發之便攜式多通道氣體蒐集裝置兼具高效能、易操作與可維護性,能滿足實驗室與野外取樣需求,為後續生態化學監測提供了可靠之技術平台。 | zh_TW |
| dc.description.abstract | This study aims to develop a portable, dynamic sampling device for Biogenic Volatile Organic Compounds (BVOCs) to enable gas collection under natural field conditions. The device employs a Push–Pull configuration—air is pushed in at the front and drawn out at the rear—and uses a manifold system to distribute flow evenly across multiple channels. All core components have been miniaturized and integrated into a toolbox. The power system supports both portable battery and external power supply modes, which users can switch between freely to accommodate long duration operation indoors or outdoors. Structurally, the upper compartment houses the flow control module and adsorption tube exchange area, while the lower compartment contains the pump and tubing, effectively minimizing operational interference. All mechanical assemblies are designed for quick disassembly to facilitate maintenance.
To reduce sampling error arising from operator variability, the device incorporates a PI control algorithm running on an Arduino Uno and provides a user interface implemented on a Raspberry Pi 5. Through the touchscreen interface, users can set the target flow rate and monitor real time flow and remaining collection time; the system outputs PWM control signals to the pump and uses flow feedback—filtered by an RC low pass circuit—for closed loop adjustment. Experimental results demonstrate that, across a setpoint range of 0.20–1.00 L/min, the device reaches stability within 7 s, maintains a total volume error under 30 mL, and exhibits a relative standard deviation below 1 % during extended operation, thereby validating its stability and accuracy. In summary, the portable, multi channel gas sampling device developed in this study combines high performance, ease of operation, and maintainability. It meets the requirements of both laboratory and field sampling and provides a reliable technical platform for future ecological chemistry monitoring. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:41:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-09-17T16:41:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 I
誌謝 II 摘要 III ABSTRACT IV 目次 VI 圖次 IX 表次 XI 第一章 研究動機與目的 1 第二章 文獻探討 3 2.1揮發性有機化合物 3 2.2 植物的揮發性有機化合物 5 2.2.1植物間的溝通 5 2.2.2對抗外界刺激 7 2.2.3增加授粉機會 9 2.3植物微生物群的揮發性有機化合物 10 2.4生物源揮發性有機化合物(BVOCS)檢測與蒐集 11 2.4.1 生物源揮發性有機物的檢測 11 2.4.2 生物源揮發性有機物的蒐集-小範圍 12 2.4.3 生物源揮發性有機物的蒐集-大範圍 15 2.5 PID回授控制 16 2.5.1 自動控制系統概述 16 2.5.2 PID 控制數學模型及系統響應 17 2.5.3 PID 控制參數調整 19 第三章 材料與方法 20 3.1 蒐集裝置架構測試 20 3.1.1 分流系統設計 21 3.1.2 空氣過濾管的必要性 23 3.2 旋鈕式氣體蒐集裝置開發 25 3.2.1供電系統設計 26 3.2.2流道及控制系統 27 3.3 自動回授控制蒐集裝置之開發 28 3.3.1 流速計雜訊 30 3.3.2 PID參數最適化 32 3.3.3 流速總流量及穩定時間 33 3.3.4 使用者介面(UI)設計 34 3.4 旋鈕式蒐集裝置及自動回授控制蒐集裝置效能比較 35 3.4.1氣體蒐集效果比較 35 3.4.2 運作時長比較 36 3.4.3 吸附管溫度測試 37 第四章 結果與討論 38 4.1氣體蒐集裝置雛型架構測試 38 4.1.1 分流系統設計 38 4.1.2空氣過濾管的效果 41 4.2 旋鈕式氣體蒐集裝置開發 45 4.2.1供電系統設計 45 4.2.2流道及控制系統設計 47 4.3 自動回授控制氣體蒐集裝置開發 53 4.3.1流速計雜訊 53 4.3.2 PID參數最適化 56 4.3.3流速總流量及穩定時間 61 4.3.4 使用者介面設計 62 4.4 旋鈕式蒐集裝置及自動回授控制蒐集裝置效能比較 63 4.4.1氣體蒐集效果比較 63 4.4.2 運作時長比較 64 4.4.3 吸附管溫度測試 65 第五章 結論與未來研究方向 66 5.1 結論 66 5.2 未來研究方向 68 參考文獻 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 流速控制 | zh_TW |
| dc.subject | 生物源揮發性有機化合物 | zh_TW |
| dc.subject | 氣體蒐集 | zh_TW |
| dc.subject | 便攜式裝置 | zh_TW |
| dc.subject | 閉迴路控制 | zh_TW |
| dc.subject | Flow rate control | en |
| dc.subject | Close-loop control | en |
| dc.subject | Portable device | en |
| dc.subject | Gas collection | en |
| dc.subject | Biogenic volatile organic compounds | en |
| dc.title | 生物源揮發性有機化合物快速蒐集便攜式裝置之開發 | zh_TW |
| dc.title | Development of a Portable Device for Rapid Collection of Biogenic Volatile Organic Compounds | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊汶博;陳賢明;林柏安;吳筱梅 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Po Chuang;Hieng-Ming Ting;Po-An Lin;Hsiao-Mei Wu | en |
| dc.subject.keyword | 生物源揮發性有機化合物,氣體蒐集,便攜式裝置,閉迴路控制,流速控制, | zh_TW |
| dc.subject.keyword | Biogenic volatile organic compounds,Gas collection,Portable device,Close-loop control,Flow rate control, | en |
| dc.relation.page | 72 | - |
| dc.identifier.doi | 10.6342/NTU202502150 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-07-28 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2030-07-24 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
