Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 共同教育中心
  3. 智慧醫療與健康資訊碩士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99780
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳文超zh_TW
dc.contributor.advisorWen-Chau Wuen
dc.contributor.authorChonthicha Chaemkhuntodzh_TW
dc.contributor.authorChonthicha Chaemkunthoden
dc.date.accessioned2025-09-17T16:39:42Z-
dc.date.available2025-09-18-
dc.date.copyright2025-09-17-
dc.date.issued2025-
dc.date.submitted2025-07-30-
dc.identifier.citation[1] Ramstrand N, Dudkiewicz I, Hermansson L, Trossa S, Rybarczyk Y. Standardized outcome measures in lower limb prosthetics: a systematic review of the literature. Prosthet Orthot Int. 2010 Jun;34(2):146-53.
[2] Dillon MP, Fortington LV, Hafner BJ. From outcome measurement to improving health outcomes: barriers and facilitators for embedding outcome measurement in clinical practice. Prosthet Orthot Int. 2022;46(4):363–375.
[3] Finch JL, Heath GH, David AR, Kulkarni J. Biomechanical assessment of two artificial big toe restorations from ancient Egypt and their significance to the history of prosthetics. J Prosthet Orthot. 2012;24(4):181-91.
[4] Childress DS. Historical aspects of powered limb prostheses. Clin Prosthet Orthot. 1985;9(1):2-13.
[5] Peiris RL, Lai CH, Nakauchi Y, Owen CA. Materials and manufacturing processes for prosthetic lower limbs: a review. Int J Precis Eng Manuf. 2021;22(4):723-39.
[6] Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. Active lower limb prosthetics: a systematic review of design issues and solutions. Biomed Eng Online. 2016;15(3):140.
[7] Tan JM, Halford GRJ, Lukin M, Kohler F, et al. Recommendations from the ISPO lower-limb COMPASS: Patient-reported and performance-based outcome measures. Prosthet Orthot Int. 2023;47(1):13-25.
[8] National Amputee Statistical Database Steering Group. Amputee and Prosthetic Rehabilitation – Standards and Guidelines (3rd ed.). BSRM Working Party; 2003:14–15.
[9] VA Amputation System of Care (ASoC). U.S. Department of Veterans Affairs; 2025.
[10] Kamrad I, Söderberg B, Örneholm H, Hagberg K. SwedeAmp—the Swedish Amputation and Prosthetics Registry: data on 5762 patients. Acta Orthop. 2020;91(4):464–470.
[11] Hafner BJ, Sanders JE, Czerniecki J, Fergason J. Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and measurement methods. J Rehabil Res Dev. 2002;39(1):1–11.
[12] Balk EM, Gazula A, Markozannes G, et al. Standardizing Outcome Measures for Prosthetic Research and Practice. Prosthet Orthot Int. 2022;46(1):6–15.
[13] Jayaraman C, Mummidisetty CK, Walters LS, Gainey M, Jayaraman A. The future of wearable technologies and AI in prosthetic and orthotic care. Prosthet Orthot Int. 2022;46(1):22–9.
[14] Resnik L, Borgia M, Silver B, Cancio J. Systematic review of measures of impairment and activity limitation for persons with upper limb trauma and amputation. Arch Phys Med Rehabil. 2017;98(9):1863-92.e14.
[15] Hawkins AT, Henry AJ, Crandell DM, Nguyen LL. A systematic review of functional and quality of life assessment after major lower extremity amputation. Ann Vasc Surg. 2014;28(3):763-80.
[16] Kruse CS, Kristof C, Jones B, Mitchell E, Martinez A. Barriers to electronic health record adoption: a systematic literature review. J Med Syst. 2016;40(12):252.
[17] Balk EM, Gazula A, Markozannes G, Kimmel HJ, Saldanha IJ, Trikalinos TA, et al. Lower limb prostheses: measurement instruments, comparison of component effects by subgroups, and long-term outcomes. Comp Eff Rev. 2020;(214):1-143.
[18] Klenow TD, Kahle JT, Fedel FJ, Ropp J, Highsmith MJ. Prediction of gait speed and walking performance by artificial intelligence methods in persons with transtibial and transfemoral amputation. J Rehabil Assist Technol Eng. 2021;8:20556683211060080.
[19] Sharma A, Vamsi KK, Ramnath S, Chandrasekhar E, Rajasekaran C, Vaidyanathan R. Prediction of prosthetic socket fit based on machine learning and sensor-based gait analysis: a scoping review. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2168-77.
[20] Shahbazi M, Atashzar SF, Patel RV. A systematic review of multilateral telerobotics systems. IEEE Trans Haptics. 2018;11(3):338-56.
[21] Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347–58.
[22] van der Linde H, Hofstad CJ, Geurts AC, Postema K, Geertzen JH, van Limbeek J. A systematic literature review of the effect of different prosthetic components on human functioning with a lower-limb prosthesis. J Rehabil Res Dev. 2004;41(4):555-70.
[23] Jain S, Hafner BJ, Allyn KJ, Halsne EG, Cagle JC, Sanders JE. Data-driven prediction of prosthesis type for individuals with lower limb amputation using machine learning techniques. J Rehabil Assist Technol Eng. 2021;8:20556683211060146.
[24] Schaffalitzky E, Gallagher P, Maclachlan M, Ryall N. Understanding the benefits of prosthetic prescription: exploring the experiences of practitioners and lower limb prosthetic users. Disabil Rehabil. 2011;33(15-16):1314-23.
[25] Bright TJ, Wong A, Dhurjati R, Bristow E, Bastian L, Coeytaux RR, et al. Effect of clinical decision-support systems: a systematic review. Ann Intern Med. 2012;157(1):29-43.
[26] Ennion L, Johannesson AG. A qualitative study of the challenges of providing pre-prosthetic rehabilitation in rural South Africa. Prosthet Orthot Int. 2017;42(3):288–296.
[27] Ennion L, Manig S. Experiences of lower limb prosthetic users in a rural setting in the Mpumalanga Province, South Africa. Prosthet Orthot Int. 2018;43(4):478–485.
[28] Meier RH, Melton D. Ideal functional outcomes for amputation levels. Phys Med Rehabil Clin N Am. 2014;25(1):199-212.
[29] Safaeifar M, Lin CH, Makhdom AM, Hafezi P, Alsubaie M, Jubran S, et al. Current trends and challenges in the outcome assessment of upper limb prostheses: a narrative review. Arch Rehabil Res Clin Transl. 2023;5(3):100254.
[30] Raichle KA, Hanley MA, Molton I, Kadel NJ, Campbell K, Phelps E, et al. Prosthesis use in persons with lower- and upper-limb amputation. J Rehabil Res Dev. 2008;45(7):961-72.
[31] Dillon MP, Fatone S, Quigley M. Systematic review of the literature on outcomes measurement for adults with lower-limb amputation: updating the evidence base to inform the development of a core outcome set. Arch Phys Med Rehabil. 2022;103(5):980-9.e11.
[32] Lingham TR, Pezzin LE, MacKenzie EJ. Continuity of care and rehabilitation outcomes in the amputee population. Arch Phys Med Rehabil. 2001;82(6):776–83.
[33] Desmond D, Gallagher P, Henderson-Slater D, Chatfield R. Pain and psychosocial adjustment to lower limb amputation amongst prosthesis users. Prosthet Orthot Int. 2008;32(2):244-52.
[34] Klenow TD, Kahle JT, Highsmith MJ. The current state of artificial intelligence in prosthetics and orthotics. J Prosthet Orthot. 2021;33(2):104–110.
[35] Heinemann AW, Bode RK, O'Reilly C. Development and measurement properties of the Orthotics and Prosthetics Users' Survey (OPUS): a comprehensive set of clinical outcome instruments. Prosthet Orthot Int. 2003;27(3):191-206.
[36] Thurston AJ. Paré and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007;77(12):1114-9.
[37] Wilson AB Jr. History of amputation surgery and prosthetics. In: Bowker JH, Michael JW, editors. Atlas of limb prosthetics: surgical, prosthetic, and rehabilitation principles. 2nd ed. St. Louis: Mosby-Year Book; 1992. p. 3-15.
[38] Fleer D, Leichtle SW, Riener R, Schmidt H. Comprehensive review of contemporary lower limb prosthetic componentry. J Rehabil Assist Technol Eng. 2022;9:20556683221113332.
[39] Osseointegration Group of Australia. Evolution of prosthetic devices [Internet]. 2023 [cited 2025 Jan 15]. Available from: https://osseointegration.org/osseointegration-history-timeline/
[40] Bowker JH, Pritham CH. The history of amputation surgery and prosthetics. In: Smith DG, Michael JW, Bowker JH, editors. Atlas of Amputations and Limb Deficiencies: Surgical, Prosthetic, and Rehabilitation Principles. 3rd ed. Rosemont, IL: American Academy of Orthopaedic Surgeons; 2004. p. 3-19.
[41] Seymour R. Prosthetics and Orthotics: Lower Limb and Spinal. Philadelphia: Lippincott Williams & Wilkins; 2002.
[42] Healthline Media. Lower extremity amputation levels [Internet]. 2023 [cited 2025 Jan 15]. Available from: https://www.healthline.com/health/amputation#types
[43] Laferrier JZ, Gailey R. Advances in lower-limb prosthetic technology. Phys Med Rehabil Clin N Am. 2010;21(1):87-110.
[44] Dobson A, El-Gamil A, Shimer M, DaVanzo JE. Economic value of prosthetic services among Medicare beneficiaries: a claims-based retrospective cohort study. Mil Med. 2016;181(2 Suppl):18-24.
[45] Resnik L, Borgia M. Predicting prosthetic prescription after major lower-limb amputation. J Rehabil Res Dev. 2015;52(6):641-52.
[46] Biddiss E, Beaton D, Chau T. Consumer design priorities for upper limb prosthetics. Disabil Rehabil Assist Technol. 2007;2(6):346-57.
[47] Gliklich RE, Dreyer NA, Leavy MB, editors. Registries for Evaluating Patient Outcomes: A User's Guide. 3rd ed. Rockville (MD): Agency for Healthcare Research and Quality; 2014.
[48] Robertsson O, Dunbar M, Knutson K, Lewold S, Lidgren L. Validation of the Swedish Knee Arthroplasty Register: a postal survey regarding 30,376 knees operated on between 1975 and 1995. Acta Orthop Scand. 1999;70(5):467-72.
[49] American College of Surgeons Committee on Trauma. National Trauma Data Bank Annual Report 2016. Chicago: American College of Surgeons; 2016.
[50] Shahian DM, Jacobs JP, Edwards FH, Brennan JM, Dokholyan RS, Prager RL, et al. The Society of Thoracic Surgeons National Database. Heart. 2013;99(20):1494-501.
[51] Warren JL, Klabunde CN, Schrag D, Bach PB, Riley GF. Overview of the SEER-Medicare data: content, research applications, and generalizability to the United States elderly population. Med Care. 2002;40(8 Suppl):IV-3-18.
[52] Dokholyan RS, Muhlbaier LH, Falletta JM, Jacobs JP, Shahian D, Haan CK, et al. Regulatory and ethical considerations for linking clinical and administrative databases. Am Heart J. 2009;157(6):971-82.
[53] Larsson S, Lawyer P, Garellick G, Lindahl B, Lundström M. Use of 13 disease registries in 5 countries demonstrates the potential to use outcome data to improve health care's value. Health Aff (Millwood). 2012;31(1):220-7.
[54] Cohen DJ, Keller SR, Hayes GR, Dorr DA, Ash JS, Sittig DF. Integrating patient-generated health data into clinical care settings or clinical decision-making: lessons learned from project HealthDesign. JMIR Hum Factors. 2016;3(2):e26.
[55] Sedrakyan A, Paxton EW, Marinac-Dabic D. International consortium of orthopaedic registries: overview and summary. J Bone Joint Surg Am. 2011;93 Suppl 3:1-12.
[56] Annas GJ. HIPAA regulations - a new era of medical-record privacy? N Engl J Med. 2003;348(15):1486-90.
[57] Voigt P, von dem Bussche A. The EU General Data Protection Regulation (GDPR): A Practical Guide. Cham: Springer International Publishing; 2017.
[58] Office of the Privacy Commissioner of Canada. PIPEDA in brief. Ottawa: Office of the Privacy Commissioner of Canada; 2019.
[59] Kanchanatawewat K, Tandayya P. Thailand's Personal Data Protection Act and its application in the healthcare context. Journal of Law, Policy and Globalization. 2020;95:10-7.
[60] Fernández-Alemán JL, Señor IC, Lozoya PÁO, Toval A. Security and privacy in electronic health records: a systematic literature review. J Biomed Inform. 2013;46(3):541-62.
[61] Camara C, Peris-Lopez P, Tapiador JE. Security and privacy issues in implantable medical devices: A comprehensive survey. J Biomed Inform. 2015;55:272-89.
[62] Kuo TT, Kim HE, Ohno-Machado L. Blockchain distributed ledger technologies for biomedical and health care applications. J Am Med Inform Assoc. 2017;24(6):1211-20.
[63] Klugman CM, Dunn LB, Schwartz J, Cohen IG. The ethics of smart implants. J Bioeth Inq. 2018;15(4):559-68.
[64] Kamrad I, Söderberg B, Örneholm H, Hagberg K. SwedeAmp-the Swedish Amputation and Prosthetics Registry: 8-year data on 5762 patients with lower limb amputation show sex differences in amputation level and in patient-reported outcome. Acta Orthop. 2020;91(4):464-70.
[65] Davies B, Datta D. Mobility outcome following unilateral lower limb amputation. Prosthet Orthot Int. 2003;27(3):186-90.
[66] Bhatnagar V, Richard E, Melcer T, Walker J, Galarneau M. Lower limb amputation and effect of posttraumatic stress disorder on Department of Veterans Affairs outpatient cost trends. J Rehabil Res Dev. 2015;52(7):827-38.
[67] Geil MD, Coulter C. Analysis of locomotor adaptations in young children with limb loss in an early prosthetic knee prescription protocol. Prosthet Orthot Int. 2014;38(1):54-61.
[68] Ramirez M, Magee K, Goldschmidt EB. Existing and emerging registries that incorporate prosthetic and orthotic outcomes data. J Prosthet Orthot. 2017;29(4):148-56.
[69] Heinemann AW, Ehrlich-Jones L, Connelly L, Semik P, Fatone S. Enhancing quality of prosthetic services with process and outcome information. Prosthet Orthot Int. 2017;41(2):164-70.
[70] Condie E, Jefferies D, Treweek S, Sexton S. A consensus statement on the orthotic management of ankle and foot conditions. Glasgow: International Society for Prosthetics and Orthotics; 2018.
[71] Blough DK, Hubbard S, McFarland LV, Smith DG, Gambel JM, Reiber GE. Prosthetic cost projections for servicemembers with major limb loss from Vietnam and OIF/OEF. J Rehabil Res Dev. 2010;47(4):387-402.
[72] Arts DG, De Keizer NF, Scheffer GJ. Defining and improving data quality in medical registries: a literature review, case study, and generic framework. J Am Med Inform Assoc. 2002;9(6):600-11.
[73] Lynn MR. Determination and quantification of content validity. Nurs Res. 1986;35(6):382-5.
[74] Polit DF, Beck CT, Owen SV. Is the CVI an acceptable indicator of content validity? Appraisal and recommendations. Res Nurs Health. 2007;30(4):459-67.
[75] Gliklich RE, Dreyer NA, Leavy MB. Use of patient-reported outcomes in registries. In: Gliklich RE, Dreyer NA, Leavy MB, editors. Registries for Evaluating Patient Outcomes: A User's Guide. 3rd ed. Rockville (MD): Agency for Healthcare Research and Quality; 2014. Chapter 5.
[76] Hargrove LJ, Young AJ, Simon AM, Fey NP, Lipschutz RD, Finucane SB, et al. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial. JAMA. 2015;313(22):2244-52.
[77] Hsiao H, Chan L, Lin S, Fraytak E, Hsu M, Raza S, et al. Development and validation of a transparent clinical decision algorithm to assist prosthetists with microprocessor knee prescription. J Rehabil Assist Technol Eng. 2023;10:20556683231202377.
[78] Khadka R, Raza S, Tsai D, Hsiao H, Fatone S, Gard SA. Prediction of walking ability in people with lower limb amputation using machine learning: a retrospective study. J Clin Med. 2024;13(22):6763.
[79] Shah NH, Milstein A, Bagley SC. Making machine learning models clinically useful. JAMA. 2019;322(14):1351-2.
[80] Holzinger A, Biemann C, Pattichis CS, Kell DB. What do we need to build explainable AI systems for the medical domain? arXiv:1712.09923 [cs.AI]. 2017.
[81] Gerke S, Minssen T, Cohen G. Ethical and legal challenges of artificial intelligence-driven healthcare. In: Bohr A, Memarzadeh K, editors. Artificial Intelligence in Healthcare. London: Academic Press; 2020. p. 295-336.
[82] Liu M, Wang D, Huang HH. Transfer learning for EMG pattern recognition with deep domain adaptation. IEEE Trans Biomed Eng. 2021;68(4):1098-108.
[83] Jiang F, Jiang Y, Zhi H, Dong Y, Li H, Ma S, et al. Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol. 2017;2(4):230-43.
[84] Mandl KD, Kohane IS. Escaping the EHR trap--the future of health IT. N Engl J Med. 2012;366(24):2240-2.
[85] Zahabi M, Kaber DB, Swangnetr M. Usability and safety in electronic medical records interface design: a review of recent literature and guideline formulation. Hum Factors. 2015;57(5):805-34.
[86] Lehne M, Sass J, Essenwanger A, Schepers J, Thun S. Why digital medicine depends on interoperability. NPJ Digit Med. 2019;2:79.
[87] Ventola CL. Mobile devices and apps for health care professionals: uses and benefits. P T. 2014;39(5):356-64.
[88] Blaya JA, Fraser HS, Holt B. E-health technologies show promise in developing countries. Health Aff (Millwood). 2010;29(2):244-51.
[89] Johnson CM, Johnson TR, Zhang J. A user-centered framework for redesigning health care interfaces. J Biomed Inform. 2005;38(1):75-87.
[90] Jaspers MW. A comparison of usability methods for testing interactive health technologies: methodological aspects and empirical evidence. Int J Med Inform. 2009;78(5):340-53.
[91] Middleton B, Bloomrosen M, Dente MA, Hashmat B, Koppel R, Overhage JM, et al. Enhancing patient safety and quality of care by improving the usability of electronic health record systems: recommendations from AMIA. J Am Med Inform Assoc. 2013;20(e1):e2-8.
[92] Kushniruk AW, Patel VL. Cognitive and usability engineering methods for the evaluation of clinical information systems. J Biomed Inform. 2004;37(1):56-76.
[93] Haque M, Kawsar F, Adibuzzaman M, Uddin M, Ahamed SI, Love R, et al. Findings of e-ESAS: a mobile based symptom monitoring system for breast cancer patients in rural Bangladesh. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. New York: ACM; 2012. p. 899-908.
[94] Ramakrishnan IV, Ashok V, Billah SM. Non-visual web browsing: beyond web accessibility. In: Universal Access in Human-Computer Interaction. Applications and Services for Quality of Life. Berlin: Springer; 2013. p. 322-31.
[95] Greenhalgh T, Wherton J, Papoutsi C, Lynch J, Hughes G, A'Court C, et al. Beyond adoption: a new framework for theorizing and evaluating nonadoption, abandonment, and challenges to the scale-up, spread, and sustainability of health and care technologies. J Med Internet Res. 2017;19(11):e367.
[96] Nilsen P. Making sense of implementation theories, models and frameworks. Implement Sci. 2015;10:53.
[97] Damschroder LJ, Aron DC, Keith RE, Kirsh SR, Alexander JA, Lowery JC. Fostering implementation of health services research findings into practice: a consolidated framework for advancing implementation science. Implement Sci. 2009;4:50.
[98] Powell BJ, Waltz TJ, Chinman MJ, Damschroder LJ, Smith JL, Matthieu MM, et al. A refined compilation of implementation strategies: results from the Expert Recommendations for Implementing Change (ERIC) project. Implement Sci. 2015;10:21.
[99] Shelton RC, Cooper BR, Stirman SW. The sustainability of evidence-based interventions and practices in public health and health care. Annu Rev Public Health. 2018;39:55-76.
[100] International Organization for Standardization. ISO 9241-210:2019 Ergonomics of human-system interaction — Part 210: Human-centred design for interactive systems. Geneva: ISO; 2019.
[101] Nielsen J, Landauer TK. A mathematical model of the finding of usability problems. In: Proceedings of the INTERACT '93 and CHI '93 Conference on Human Factors in Computing Systems. New York: ACM; 1993. p. 206-13.
[102] Virzi RA. Refining the test phase of usability evaluation: How many subjects is enough? Hum Factors. 1992;34(4):457-68.
[103] Polit DF, Beck CT. The content validity index: are you sure you know what's being reported? Critique and recommendations. Res Nurs Health. 2006;29(5):489-97.
[104] Koo TY, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15(2):155-63.
[105] Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284-90.
[106] Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. 2nd ed. New York: Springer; 2009.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/99780-
dc.description.abstract背景:義肢照護面臨多項挑戰,包括資料收集分散、文件紀錄不一致,以及臨床決策支援有限。現有的義肢登錄系統缺乏標準化、完整的成果衡量,以及先進的分析能力。本研究旨在開發並評估一個人工智慧(AI)強化的互動平台,以解決義肢文件記錄中的這些問題。
方法:本研究採用混合方法設計,分為兩個階段。第一階段採用內容效度指數(CVI)方法,由三位義肢師專家針對六個領域的40個資料項目進行內容驗證。內容資料來自ISPO LEAD和COMPASS指引,以確保標準化。經由兩輪嚴謹的專家驗證,資料集依循系統性評估內容相關性與完整性的標準加以修訂。
第二階段開發AI推薦系統,使用隨機森林演算法。透過模擬多種截肢情境產生500筆合成病歷資料,訓練模型預測五項關鍵義肢組件:接受腔設計、足部型式、膝關節型式、襯墊型式及懸吊系統。AI模型設計用於提供每項義肢組件的循證臨床決策建議。
本平台作為三層式網頁應用程式開發,整合經驗證的資料項目及AI建議。並邀請五位合格義肢師進行可用性測試,評估平台功能、用戶體驗與決策支援能力,包括任務操作與滿意度問卷。
結果:內容效度驗證最終保留39個資料項目,平均量表內容效度指數(S-CVI/Ave)達0.991,顯示專家高度一致認可內容之相關性。平台實現臨床工作流程一條龍服務,涵蓋病患註冊與資料管理,所有重要項目皆與國際最佳實務對齊。
AI推薦系統於五項義肢組件之預測正確率皆達97.0%至100.0%。特徵重要性分析顯示,截肢層級為接受腔選擇最強預測因子(38.9%),行動能力評分為足部型式預測最強因子(52.2%),殘肢問題則為襯墊選擇最重要(83.5%)。即使在樣本數最少的情境下,模型表現亦超過98%正確率。
可用性測試顯示,SUS對應分數平均為84/100,屬於「優異」等級。所有用戶皆能完成所有操作,雖然初次註冊所需時間較長(平均477秒),但全程未發生重大錯誤。總體滿意度高(平均4.2/5),其中對預測功能的滿意度(平均4.80/5)顯著高於聊天機器人(平均4.07/5,p = 0.034)。預測功能滿意度與平台總體滿意度(rs = 0.73, p = 0.031)及專業價值認知(rs = 0.82, p = 0.013)呈現高度正相關。
討論:本研究解決義肢文件記錄重大不足,藉由標準化及AI強化的方法推動資料收集與臨床決策支援。極高的內容效度及國際指引對齊,提升跨機構互通及資料整合的潛力。
AI治療建議系統的強大表現,證明其於義肢臨床決策支援的有效性。特徵重要性分析確認模型捕捉到真實的臨床決策邏輯,支持功能性評估作為義肢處方核心依據的觀點。
可用性評估顯示平台在技術表現與預測功能方面具優勢,同時指出工作流程尚有優化空間。
結論:本研究提出一套完整的下肢義肢AI強化資料登錄平台,顯著提升義肢照護之標準化及決策支援。整合經驗證資料、智慧推薦系統及以用戶為中心的設計,為提升義肢復健成果奠定基礎。儘管結果令人振奮,仍有樣本數、合成資料、單一場域測試及缺乏長期追蹤等限制。
未來建議進行長期追蹤真實資料的驗證研究,拓展AI應用、強化行動裝置、全球多語言支援、患者端入口及利用新興科技強化資料安全。
zh_TW
dc.description.abstractBackground: Prosthetic care faces several challenges including fragmented data collection, inconsistent documentation, and limited clinical decision support. Existing prosthetic registries lack standardization, comprehensive outcome measurement, and advanced analytical capabilities. This research aims to develop and evaluate an AI-enhanced interactive platform to address these gaps in prosthetic documentation.
Methods: This research employed a mixed-methods approach, dividing the study into two phases. In Phase 1, content validation was conducted using the Content Validity Index (CVI) methodology with three expert prosthetists evaluating 40 data elements across six domains. The content was extracted from ISPO LEAD and COMPASS guidelines to ensure standardization. Through a rigorous two-round validation process, the dataset was refined following established guidelines for systematically assessing content relevance and comprehensiveness.
Phase 2 involved developing an AI-powered recommendation system using Random Forest algorithms. A synthetic dataset of 500 patient records simulating diverse amputation scenarios was generated to train models predicting five key prosthetic components: socket design, foot type, knee type, liner type, and suspension system. The AI-based prediction model was designed to support clinical decision-making by providing evidence-based recommendations for each prosthetic component.
The platform was developed as a three-tiered web application integrating validated data elements and AI recommendations. Usability testing with five licensed prosthetists evaluated platform functionality, user experience, and decision support capabilities through task-based assessments and satisfaction questionnaires.
Results: Content validation resulted in a set of 39 data elements, with a scale-level CVI average (S-CVI/Ave) of 0.991, reflecting strong expert agreement on content relevance. The platform enabled end-to-end clinical workflow, including patient registration and data management, with all critical elements aligned to international best practices.
The AI recommendation system demonstrated high predictive accuracy (97.0%–100.0%) across all five prosthetic components. Feature importance analysis showed that amputation level was the strongest predictor for socket selection (38.9%), mobility score for foot type (52.2%), and residual limb problems for liner selection (83.5%). Model performance was consistently high across all amputation levels, with even the least frequent scenarios exceeding 98% accuracy.
Usability testing yielded a mean SUS-equivalent score of 84/100, categorized as "Excellent." All users successfully completed required tasks, though initial patient registration took more time (mean 477 seconds). No critical errors occurred during use. Overall satisfaction was high (mean 4.2/5), with prediction features (mean 4.80/5) receiving higher satisfaction than the chatbot (mean 4.07/5, p = 0.034). There were strong positive correlations between satisfaction with the prediction feature and both total platform satisfaction (rs = 0.73, p = 0.031) and perceived professional value (rs = 0.82, p = 0.013).
Discussion: This study addresses significant limitations in prosthetic care documentation and bridging these gap by providing a standardized, AI-enhanced approach to data collection and clinical decision support data registry. The exceptionally high content validity and alignment with international frameworks enhance potential interoperability and cross-institutional data aggregation.
The robust performance of the AI treatment suggestion validates its effectiveness for clinical decision support in prosthetics. Feature importance analysis confirmed that the model captured authentic clinical decision-making patterns, supporting the position that functional assessment should constitute a central determinant in prosthetic prescription.
Usability evaluation identified strengths in technical performance and prediction capabilities while highlighting opportunities for workflow optimization.
Conclusion: This study presents a comprehensive AI-enhanced platform for lower limb prosthetics data registry that significantly advances standardization and decision support in prosthetic care. By integrating validated data elements, intelligent recommendation systems, and user-centered design, the platform provides a foundation for improving prosthetic rehabilitation outcomes. Despite promising results, limitations include sample size constraints, reliance on synthetic data, single-site evaluation, and limited longitudinal assessment.
Future directions should focus on longitudinal validation studies with real patient data, expanded AI applications, mobile-first enhancements, multilingual adaptations for global implementation, patient portal integration, and enhanced data security through emerging technologies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-09-17T16:39:42Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-09-17T16:39:42Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsContent Page
Acknowledgement ii
摘要 iii
Abstract vi
Table of contents ix
Lists of Figures xii
Lists of Tables xv
Chapter 1 Introduction
1.1 Background 1
1.2 Motivation 3
1.3 Problem Statement 6
1.4 Objectives 9
Chapter 2 Review of literature
2.1 Prosthetics 10
2.2 Data Registry 15
2.3 Data security 18
2.4 Data registry in Prosthetics 20
2.5 Content Validity index 24
2.6 Artificial intelligence in Prosthetics 27
2.7 Online Platform Development 29
2.8 Usability test 31
2.9 Implementation Science in Healthcare Technology 33
Chapter 3 Methods
3.1 Study design 35
3.2 Subjects and Ethical consideration 36
3.3 Content validation 39
3.4 Platform development 43
3.5 Usability test 54
3.6 Data collection 55
3.7 Data analysis 57
Chapter 4 Results
4.1 Content validity index 65
4.2 Predictive Model Performance Evaluation 75
4.3 Platform functionality 87
4.4 Usability test 98
Chapter 5 Discussion
5.1 Overview of Key Findings 111
5.2 Content Validation Outcomes 111
5.3 AI Model Performance Analysis 113
5.4 Platform Development and Implementation 116
5.5 Usability Testing Insights 118
5.6 Implications for Clinical Practice 120
5.7 Limitations and Methodological Considerations 122
5.8 Theoretical and Practical Contributions 124
5.9 Synthesis and Future Directions 125
Chapter 6 Conclusion and Future Direction
6.1 Research Summary and Key Achievements 127
6.2 Contributions to Knowledge 128
6.3 Implications for Stakeholders 129
6.4 Limitations and Challenges 132
6.5 Future Research Directions 134
6.6 Recommendations 137
6.7 Final Reflections 139
6.8 Concluding Statement 142
References 144
-
dc.language.isoen-
dc.subject義肢zh_TW
dc.subject人工智慧zh_TW
dc.subject復健zh_TW
dc.subject資料登錄zh_TW
dc.subject機器學習zh_TW
dc.subject臨床決策支援zh_TW
dc.subjectRehabilitationen
dc.subjectProstheticsen
dc.subjectClinical Decision Supporten
dc.subjectMachine Learningen
dc.subjectData Registryen
dc.subjectArtificial Intelligenceen
dc.title人工智慧強化之下肢義肢數據註冊互動平台的開發:先導性研究zh_TW
dc.titleDevelopment of an AI-Enhanced Interactive Platform for Lower Limb Prosthetics Data Registry: A Pilot Studyen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾孝文;林育君zh_TW
dc.contributor.oralexamcommitteeHsiao-Wen Chung;Yu-chun Linen
dc.subject.keyword義肢,人工智慧,復健,資料登錄,機器學習,臨床決策支援,zh_TW
dc.subject.keywordProsthetics,Artificial Intelligence,Rehabilitation,Data Registry,Machine Learning,Clinical Decision Support,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202502504-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-01-
dc.contributor.author-college共同教育中心-
dc.contributor.author-dept智慧醫療與健康資訊碩士學位學程-
dc.date.embargo-lift2026-07-25-
顯示於系所單位:智慧醫療與健康資訊碩士學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
10.08 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved